dc.contributor.advisor | Guachalla Hurtado, Javier, tutor | |
dc.contributor.author | Mallea Morales, Adriana Miriam | |
dc.date.accessioned | 2021-10-20T14:07:16Z | |
dc.date.available | 2021-10-20T14:07:16Z | |
dc.date.issued | 1996 | |
dc.identifier.uri | http://repositorio.umsa.bo/xmlui/handle/123456789/26416 | |
dc.description.abstract | Con una introducción a los operadores de Diferenciación D, Multiplicación M, definidos sobre el espacio de Hilbert, es posible llegar a deducir que los operadores de Diferenciación y Multiplicación son unitariamente equivalentes, empleando el operador Fourier-Plaucherel F como operador entrelazante. Finalmente se logra verificar que el operador Diferencial D es un operador cerrado, para verificar tal afirmación consideramos una de las implicaciones del teorema Espectral para Operadores Auto-Adjuntos. | es_ES |
dc.language.iso | es | es_ES |
dc.subject | OPERADORES DIFERENCIALES | es_ES |
dc.subject | SERIES DE FOURIER | es_ES |
dc.subject | TEOREMA DE FEJER | es_ES |
dc.title | Una caracterización de operadores diferenciales | es_ES |
dc.type | Thesis | es_ES |
dc.thesisdegreegrantor | Universidad Mayor de San Andrés, Facultad de Ciencias Puras y Naturales, Carrera de Matemática | es_ES |
dc.thesisdegreename | Licenciatura en Matemática | es_ES |