Mostrar el registro sencillo del ítem

dc.contributor.authorWagner, Peter D
dc.contributor.authorAraoz, Mauricio
dc.contributor.authorBoushel, Robert
dc.contributor.authorCalbet, José AL
dc.contributor.authorJessen, Birgitte
dc.contributor.authorRadegran, Göran
dc.contributor.authorSpielvogel, Hilde
dc.contributor.authorSondegaard, Hans
dc.contributor.authorWagner, Harrieth
dc.contributor.authorSaltin, Bengt
dc.date.accessioned2017-02-17T18:27:17Z
dc.date.available2017-02-17T18:27:17Z
dc.date.issued2002
dc.identifier.urihttp://repositorio.umsa.bo/xmlui/handle/123456789/9717
dc.description.abstractPulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600–4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3 concentration 15.1 meq/l), resting arterial pH in L was 7.48 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600–4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 1.3 Torr) than in L (10.5 0.8 Torr), P 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.es_ES
dc.language.isoenes_ES
dc.publisherJ Appl Physioles_ES
dc.subjectHIPOXIAes_ES
dc.subjectVENTILACIÓNes_ES
dc.subjectEQUILIBRIO ÁCIDO-BASEes_ES
dc.subjectCAPACIDAD DE DIFUNSIÓNes_ES
dc.titlePulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanderses_ES
dc.typeArticlees_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem