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ABSTRACT 
Context: Placental hypoxia alters production of angiogenic growth factors (AGFs), thought to be 
causally involved in the development of the pregnancy-specific disease preeclampsia (PE). 
Consistent with this, the incidence of PE is increased at high altitude (HA, >2700m). 
 
Objective. We tested the hypotheses that (1) circulating sFlt-1 is increased and free VEGF and  
PlGF decreased at HA, (2) circulating AGFs correlate with biomarkers of hypoxia, (3) peripheral 
circulating cells may contribute to hypoxia-associated alterations in AGFs, and (4) cord blood levels 
of AGFs are altered at HA or in PE. 
 
Design. A prospective, cross-sectional study of healthy and preeclamptic pregnancies at low 
(400m) vs. HA (3600m) in Bolivia. 
 
Participants. Subjects (170 normal, 39 PE) conceived, gestated and delivered at their altitude of 
residence. Healthy women had no conditions predisposing to preeclampsia. 
 
Methods: Blood was collected using standard techniques and those designed to inhibit platelet 
activation. Maternal and fetal AGFs were measured by ELISA and compared between altitudes, 
between normal and PE pregnancies and in relation to biomarkers of hypoxia. 
 
Results: AGFs did not differ between altitudes. >90% of circulating free VEGF, >30% of PlGF and >25% 
of sFlt-1 was secreted into samples as a consequence of hemostasis. Biomarkers of hypoxia did not 
correlate with the AGFs. PlGF was lower and sFlt-1 higher in PE. PlGF correlated with placental mass, 
whilst significantly more sFlt-1 derived from circulating peripheral cells in PE than normotensive 
patients. 
 
Conclusions. Chronic hypoxia does not alter circulating AGFs. Smaller placentas likely account for 
diminished PlGF in PE. Peripheral cell release of AGFs provoked by hemostasis is highly variable, hence 
clinical tests based AGFs are unlikely to have predictive value for diagnosis of PE.  
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INTRODUCTION 
Much attention has been focused on circulating angiogenic growth factors and their binding proteins 
as being causally related to the human-specific pregnancy disease preeclampsia (1-4). Such 
observations contribute to a long and continuing history of positing single or even a combination of 
circulating factors as causal agents in preeclampsia (5). 
Among the circulating angiogenic growth factors implicated in preeclampsia are free vascular 
endothelial growth factor (VEGF), placental growth factor (PlGF) and the soluble fms-like tyrosine 
kinase 1 (sFlt-1), a binding protein for VEGF and PlGF. The soluble form of Flt-1 can abolish growth 
factor-stimulated transactivation by sequestering VEGF and PlGF or by forming inactive heterodimers 
with the transmembrane receptors Flk and Flt-1 (6). The causal argument is that binding of free VEGF 
and PlGF by excess sFlt-1 in preeclampsia inhibits its beneficial actions on the vascular endothelium, 
thus permitting the damage that precipitates preeclampsia symptoms. Why sFlt-1 is elevated in 
preeclamptic pregnancy is not completely understood.  
However oxygen tension is a major regulator of the expression of VEGF, PlGF and sFlt-1 in the placenta 
(7-14). This has contributed to the current hypothesis that placental hypoxia due to underperfusion 
causes excess production of sFlt-1 and thus the decreases in PlGF and free VEGF reported in 
pregnancies complicated by preeclampsia. 
We directly test this hypothesis using the natural experiment afforded by human residence at high 
altitude (3600 m) in which maternal arterial PO2 is diminished by 40%, fetal PO2 by 10% and there is 
clear evidence of maternal, placental and fetal hypoxia (13, 15-17). By hypoxia in mother and fetus, 
we specifically refer to lowered blood oxygen tension (PO2), as opposed to blood oxygen content, 
which is greater at high altitude (18, 19). Epidemiological studies support the role of lowered oxygen 
tension: high altitude is associated with a 2-4 fold increased incidence of preeclampsia and of 
intrauterine growth restriction (20, 21). 
We prospectively tested four hypotheses. First, we predicted that we would find increased sFlt-1 and 
decreased free VEGF and PlGF in high-altitude pregnancy due to placental hypoxia (10, 11) consistent 
with the elevated risk of preeclampsia at elevations >2700 m. Second, we hypothesized that variation 
in these circulating angiogenic growth factors would correlate with biomarkers of maternal and/or 
fetal hypoxia, e.g. oxygen tension or erythropoietin concentrations. These questions together 
comprise a test of the hypothesis that imbalance in angiogenic growth factors causes preeclampsia. 
We would predict that high altitude pregnancies would favor the angiogenic profile observed in 
preeclampsia, albeit not as severe in pregnancies that remain normotensive. If Angiogenic growth 
factors in human pregnancy so, it can be argued that the increased incidence of preeclampsia at high 
altitude is due to an increased number of women being pushed over a “threshold” of imbalance in 
circulating angiogenic growth factors by hypoxia-mediated changes in the placental production of 
these factors. Third, we tested to what extent altered concentrations in angiogenic growth factors, if 
present, may be due to excess secretion by other cell types within the circulation (22). Finally, some 
reports suggest that fetal sFlt-1 and/or free VEGF are elevated under conditions such as IUGR, 
maternal preeclampsia and other conditions related to fetal distress (23-27). We therefore tested the 
fetal cord blood for the factors of interest and examined them in relationship to fetal indicators of 
oxygen status. 
 
METHODS 
Research design, subjects and sites: The data presented here stem from a sub-project within a cross-
sectional, prospective study design that was used to evaluate the effects of altitude and genetic 
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ancestry on uterine blood flow, maternal O2 delivery to the feto-placental unit and pregnancy 
outcome (16, 17). Genetic ancestry had no impact on the variables reported here and hence this 
report compares low (400 m n=90) with high altitude pregnancies (3600 m n= 80) with no 
differentiation by genetic ancestry. All participants gave written, informed consent to the protocols, 
which were approved by the collaborating Bolivian institution (Instituto Boliviano de Biología de 
Altura, Consejo Tecnico), the Bolivian National Bioethics Committee and the Institutional Review 
Board of the New Jersey Medical School. Inclusion criteria were good health (absence of chronic 
conditions that predispose to preeclampsia e.g. hypertension, renal disease, obesity), conception, 
gestation and delivery at the altitude of study, and delivery by elective cesarean section. The latter 
criteria was required to measure uterine and fetal blood flows as close to time of delivery as possible, 
and to avoid the confounding impact of labor on analyses of 
placental tissue planned as part of the larger study. Women were excluded for drug, alcohol or 
tobacco use, for gestational diabetes or a positive oral glucose tolerance test. A small subset of 
women were studied in the second trimester, term and >3 months post-partum so that gestational 
age-dependent changes in VEGF in relation to the non-pregnant values could be evaluated. 
Preeclampsia was defined according to NIH consensus guidelines (28). After exclusion of cases in 
which the relevant clinical data were insufficient for diagnosis there were 20 preeclamptic 
pregnancies at high altitude and 19 at low altitude. This sample size does not permit division into the 
most informative hierarchy, i. e. early onset preeclampsia with versus without IUGR and late onset 
preeclampsia with versus without IUGR. The data are therefore divided into cases in which there was 
early onset of symptoms and delivery at <35.9 weeks gestational age and late onset, cases in which 
the onset of symptoms and delivery occurred later than >36 weeks. 
Blood collection, measures of oxygen tension: 1-10 days prior to elective cesarean delivery, mothers 
completed a health screen and medical history. An arterialized blood sample (warmed hand vein) was 
drawn for measurement of blood gases as previously described (16). Prior to elective cesarean 
delivery, at the time that the anesthesiologist placed the maternal IV, a 15 ml blood sample was 
collected and samples intended for analyses of angiogenic growth factors were distributed into serum 
separator tubes and into tubes containing a mixture of sodium citrate, theophylline, adenosine and 
dipyridamole (hereafter called CTAD), which prevents in vitro platelet activation and release of 
platelet-derived factors into the plasma. Similar samples were obtained from the doubly clamped 
cord of the umbilical vein, from which umbilical venous and arterial blood gases were also measured 
(17). Samples were excluded from analyses if supplemental oxygen was used prior to maternal blood 
sampling or clamping of the umbilical 
cord. Serum samples were allowed to clot for 30 minutes at room temperature. The CTAD tubes were 
pre-chilled, placed on ice after blood collection, then immediately centrifuged for 10 minutes at 4000 
g at 4o C. The standard serum sample was similarly centrifuged but at room temperature. Both serum 
and CTAD samples were aliquotted, flash frozen in liquid nitrogen and stored at -80°C until analysis. 
The selection of the CTAD vacutainers was based on reports indicating that failure to control for 
clotting time invalidates the use of VEGF as an indicator of disease states (29-31). 
 
Assays: All ELISA kits were purchased from or donated by R&D systems (Minneapolis, MN). The kits 
used were the human sVEGF R1/Flt-1 Quantikine ELISA (DVR-100), the free VEGF Immunoassay kit 
(DVE00) and the human free PlGF ELISA (DPG00). A 4-parameter logistic curve-fit was used for the 
standard curve and subsequent calculation of the unknown (sample) values, per the manufacturer’s 
recommendations. 
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Validation studies: For each protein of interest we tested linearity by serial dilution of a pooled sample 
comprised of serum from healthy women who were a minimum of three months postpartum and a 
pooled sample from mid-pregnancy. For each assay, the serial dilutions were designed to test the 
dynamic range of the kit as reported by the manufacturer. Initial tests were performed reading at 
dual spectrophotometric wavelengths of 570 and 450 nm, with values obtained at 570 nm subtracted 
from those acquired at 450 nm, as recommended by the manufacturer to correct for optical 
imperfections in the plate. The intra-assay coefficient of variation was calculated for the duplicate 
samples within each plate and averaged across all plates used. Our inter-assay variation was 
calculated using the pooled samples mentioned above, loaded in triplicate on every plate. 
For VEGF, linearity in the serial dilutions correlated with predicted values (r2 = 0.83); divergence 
was at the upper end of the measurement scale. Linearity tests in the PlGF assay yielded an r2 of 0.96 
and for sFlt-1 the r2 was 0.98. 
Use of the dual wavelength correction for VEGF resulted in values that were 24±8% (mean ± SD) lower 
where positive values for VEGF were detected (n=42 samples). The r2 for the correlation between 
samples measured at 450 nm versus 570/450 nm was 0.99. This large variation using dual wavelength 
correction is due to the fact that most of the pregnancy samples had undetectable levels of free VEGF, 
and the remainder had very low values, yielding a small denominator when calculating percentages. 
For PlGF, 64 samples tested using dual wavelength correction resulted in values that were 4 ± 4% 
greater when measured at 450 nm alone, and the r2 for the correlation between the two measures 
was 0.99. For sFlt-1 subtracting values obtained at 570 nm from those made at 450 nm resulted in 
concentrations that were 5 ± 6% lower when measured at 450 nm alone (n=42 samples), with an r2 
for correlation between the two measures of 0.91. A review of the literature suggested that (where 
reported) most laboratories have used only the 450 nm wavelength. We therefore completed studies 
using the 450 nm wavelength only and those are the values reported in the results. 
Our intra-assay coefficients of variation (CV) are reported as mean ± SD. The CV for duplicate samples 
where VEGF concentrations were detectable at >5 pg/ml had a mean of 3.3 ± 32.8% (n=36 samples) 
and 16.2 ± 117.6% where values were lower than 5 pg/ml but above 0 (n= 29 samples). The remaining 
samples either had one value above and one value below 0 (these were considered non-detectable, 
as invariably the positive value was < 5 pg/ml). The high CV is due to the very low VEGF concentrations 
present. For PlGF the intra-assay CV was 3.6 ± 8.9 %. For sFlt-1 the CV was 3.2 ± 6.1%.The inter-assay 
coefficient of variation was 12 ± 21% for VEGF, 9 ± 8% for PlGF and 15 ± 10% for sFlt1.  
Free VEGF: The detection limit of the assay is reported as < 5.0 pg/ml. No dilution was necessary. 
Samples were analyzed from 71 mothers and umbilical venous cord blood from 40 neonates (20 from 
each altitude). We report here the means of positive values (>0) observed, the number and percent 
of samples that fell below the 5 pg/ml detection limit, and the number and percent that were non-
detectable.  
PlGF: The detection limit of the test is reported as < 7.0 pg/ml. A 4-fold dilution was determined as 
optimal and used for all samples. We measured a total of 151 maternal serum samples and 40 
matched CTAD plasma samples. All 39 preeclamptic mothers had paired serum and CTAD samples. 
All samples had detectable levels of PlGF and none were below 7 pg/ml. PlGF was not tested in the 
fetal cord blood due to limited volumes of serum and CTAD plasma. 
sFlt-1: Two different assays were used, the R&D Systems Quantikine human sVEGF R1 ELISA kit 
(DVR100, formulation prior to 2006) and the revised product (as of January 2006). The revised 
product yielded values ~ 6-fold higher than the older product; correlation between the values of 
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samples tested with the two kits was acceptable (r2 = 0.88); divergence was at the upper end of the 
range. The reported detection limit of the assay ranged from 1.5-13.3 pg/ml, with a mean of 3.5 
pg/ml. We measured serum and CTAD plasma samples from the 170 normal mothers and umbilical 
venous cord blood from 135 of their neonates and all 39 preeclamptic mothers and babies. With the 
old kit a 5-fold dilution was required; 80 maternal samples were assayed using the old kit, 40 from 
each altitude. With the new kit, a 20-fold dilution was required in the maternal samples, and a 5-fold 
dilution in the fetal samples. Values reported in table and figures 170 unless otherwise indicated are 
from the newer R&D formulation (the old kit was discontinued prior to assays completion). All serum 
samples had detectable levels of sFlt-1 and none were below 13.3 pg/ml. In the preeclamptic samples 
20-100 fold dilutions were required to obtain values within the range of the standards, and even then, 
the outliers indicated in the figures and tables fell outside of this range.  
Statistical analysis: For the matched serum versus CTAD plasma samples, a paired t-test was used to 
determine whether the conditions of blood collection influenced the results. Values for the 
angiogenic growth factors did not have a Gaussian distribution and were thus analyzed by the Mann 
Whitney U test to compare between altitudes. The data are presented as box and whiskers plots with 
the median indicated by the bar, the 25th and 75th centiles by the box, and the maximum and 
minimum by whiskers. Maternal and fetal demographic and clinical data are reported as the mean ± 
standard error of the mean. Serial data on free serum VEGF were log-transformed and analyzed using 
a repeated measures ANOVA followed by the Student Neuman-Keuls test for pair-wise differences 
(between trimesters and post-partum). Comparison between the normal and preeclamptic subject 
groups was by ANOVA. Categorical data (e.g. infant sex) was analyzed by chi square. Regression 
analyses were used to compare the relationship between angiogenic growth factor concentrations, 
birth or placental weight and maternal or fetal measures of oxygenation. Values were considered 
significant where p was less than 0.01, utilizing a Bonferroni correction based on the fact that the 
circulating factors of interest in normal women were tested three times, by altitude, compared with 
preeclampsia and by serum vs. CTAD blood collection procedures. 
 
RESULTS: 
Normotensive participants: Table 1 shows the characteristics of the healthy women and their 
neonates. Mothers were generally similar in their demographic characteristics, but birth weight was 
lower in the high-altitude pregnancies despite similarity in gestational age. Adjustment for variation 
in maternal height, body mass index, weight gain with pregnancy, parity and for neonatal gestational 
age and sex did not appreciably change the birth weights (Table 1). In short, demographic factors do 
not explain the altitude-associated decrement in birth weight, which is accompanied by reduced body 
length and abdominal circumference but preserved head circumference. Mothers at 3600 m were 
hypoxemic (p<0.0001), with an arterial PO2 of 54±1 mmHg (range 41-72) whilst at 400 m PaO2 was 
93±1 (range 79-115). The fetuses also had lower umbilical venous PO2 (27±1 at 3600 m, range 15-41 
vs 31±1 400 m, range 9-46, p<0.01) although the difference was much less than in the mothers (-10% 
fetal vs. -40% maternal). 
Free VEGF: Pregnancy substantially reduces the circulating levels of free VEGF (Figure 1A) at both low 
and high altitude and does not differ between mid- and late pregnancy. All women had greater levels 
of free VEGF postpartum, in most cases an order of magnitude higher than their pregnancy values. 
Serum VEGF concentrations were similar at high versus low altitude at all time points (Figure 1A). 
Amongst all pregnancy samples 38% of the mothers had non-detectable levels of free VEGF; values 
less than 5 pg/ml were detected in an additional 24%. We next examined the extent to which clotting 
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in serum separator tubes may provoke platelets or other circulating cells to release VEGF. We 
analyzed paired samples collected into serum separator versus those collected into CTAD in a subset 
of normal, term mothers at each altitude (Figure 1B, n=20 at each altitude) and in the umbilical 
venous cord blood of their neonates 
(Figure1C). CTAD-treatment diminished circulating levels of free VEGF in the mothers by more than 
90% at both altitudes. Nearly twice as many CTAD than serum samples had VEGF 215 concentrations 
that were undetectable (68%) or below the detection limit of 5 pg/ml (90% Figure 1B). While fetal 
cord blood serum concentrations of VEGF were >100 fold greater than in their mothers (Figure 1C), 
collection of fetal blood into CTAD vacutainers abolished free VEGF in 60% of the samples and 
lowered values to < 5 pg/ml in an additional 20%. The remaining positive values were decreased by 
more than 100-fold (Figure 1C). Maternal and fetal VEGF concentrations did not correlate with 
placental or birth weight. Fetal VEGF concentrations did not correlate with that of their mothers. 
Thus the presence of free VEGF in both maternal and fetal blood is largely an artifact of the method 
used for blood collection; the majority of samples do not show detectable levels of VEGF and those 
few that do are extremely low. PlGF: PlGF was similar at 400 and 3600 m, not decreased at high 
altitude as predicted (Figure 2A). The values obtained from CTAD samples also did not differ by 
altitude (Figure 2B). However CTAD treatment decreased PlGF by more than one-third relative to the 
paired serum samples (Figure 2B). At both altitudes, maternal PlGF concentrations were positively 
correlated with placental weight (Figure 2C).  
sFlt-1: An initial series of maternal serum samples (n=40 per altitude), using the original assay kit from 
R&D (pre January 2006) showed that altitude elevated maternal circulating sFlt-1 in serum samples 
(Figure 3A left panel p<0.01) replicating our results from a prior study with fewer mothers at a lower 
altitude (14). However when this assay was repeated using the new sFlt-1 assay on the same serum 
samples, the altitude-associated difference did not attain significance (Figure 3A right panel). The 
newer R&D formulation, designed to increase detection sensitivity, raised absolute sFlt-1 values by 
~6-fold, but associated with this was an increase in variability that eliminated the prior, statistically 
significant result at high altitude. Because the old kits were discontinued, comparison of serum with 
CTAD samples was completed with the new formulation only. Collection of blood into CTAD tubes 
reduced sFlt-1 concentrations in healthy pregnant women by 22±3% and 25±4% at 400 and 3600 m, 
respectively (Figure 3B). 
In fetal serum samples sFlt-1 values were lower than in the mothers, but did not differ between 
attitudes in either the serum or CTAD samples (Figure 3C). CTAD treatment decreased cord blood sFlt-
1 concentrations. The CTAD-associated decrease in sFlt-1 in cord blood tended to be greater at 400 
than 3600 m (-72±9 % vs. -44 ± 10%, p = 0.06, Figure 3C). sFlt-1 concentrations  were not related to 
birth or placental weight, nor were they correlated between mother and fetus. 
In summary, the results for these three angiogenic growth factors show that none differ by altitude 
in healthy, normal pregnancies. Moreover, essentially all circulating free VEGF, a third of circulating 
PlGF and a quarter of sFlt-1 in serum samples collected under standard clinical conditions is not 
derived from the placenta, but from other cells in the maternal and fetal circulation. The degree to 
which hemostasis alters growth factor concentrations is highly variable from individual to individual 
precluding any form of standard correction for hemostatic effects.Finally, PlGF shows a strong 
relationship with placental weight, suggesting that placental size is a primary determinant of maternal 
circulating concentrations of this growth factor. 
Participants with Preeclampsia: The characteristics of and clinical data pertinent to the mothers and 
infants in the preeclampsia samples are given in Table 3. As would be expected, gestational age at 
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delivery, birth and placental weights were lower than in normotensive women in both the early and 
the late-onset preeclamptic cohorts. The median and interquartile ranges for PlGF and sFlt-1 are also 
given in Table 3 for the early and late-onset patients, but as there was no significant difference 
between these groups, the data were consolidated for figures and statistical analyses. Maternal 
oxygen tension in preeclamptics was 93 ± 3 (range 80-114 mmHg) at 400 m and 59 ± 3 (range 44-75 
mmHg at 3600 m); these values are similar to those obtained in the normotensive controls within 
each altitude. Fetal PO2 was lower in the fetuses of preeclamptic women than controls at both 
altitudes (400 m, 24 ± 2, range 13-35 mmHg) (3600 m, 23 ± 2, range 10 – 31 mmHg).  
VEGF and PE: Our results show that free VEGF in human pregnancy is largely an artifact of blood 
collection. We therefore did not measure VEGF in the preeclamptic women. 
PlGF and PE: There were no altitude-associated differences in PlGF concentrations among the 
preeclamptic women, but preeclamptic women had lower PlGF concentrations than their 
normotensive counterparts (p<0.001), regardless of altitude (Figure 4A). Early vs. late onset 
preeclampsia did not differ in PlGF concentrations (Table 2). Collection into CTAD reduced the PlGF 
values in preeclamptics at each altitude (Figure 4B, p<0.001) by 25± 5 % at low altitude and by 32 ± 
4% at high altitude (p=0.72). The correlation between PlGF and placental weight was significant at 
both low and high altitude in preeclampsia (Figure 4C). The slopes of the relationship between 
placental weight and PlGF did not differ between the normotensive and preeclamptic groups 
(p=0.24). Lowered PlGF in preeclamptic pregnancy is possibly due to the smaller placental size 
associated with this pathology, rather than to differences in oxygenation or placental function. 
sFlt-1 and PE: Soluble Flt-1 serum levels did not differ in preeclamptic women at low vs. high altitude 
(Figure 5A). Collection into CTAD reduced sFlt-1 levels by 62 ± 11% at 400 m and 94 ± 15% at 3600 m 
(Figure 5B, p<0.005). While these values do not differ from each other, the CTAD-associated reduction 
in sFlt-1 is ~3-5 fold greater among preeclamptics than what was observed in the normotensive 
women (p<0.005). There was no difference in sFlt-1 levels in early versus late-onset preeclamptic 
women (Table 2), nor did the decrement in sFlt-1 vary by severity of disease, although the variability 
in early onset cases was much greater than late-onset (Figure 5B). 
Associations between variables: We tested the hypothesis that variation in maternal and fetal oxygen 
tension might be related to variation in the maternal or fetal circulating levels of angiogenic growth 
factors. We conducted regression analyses of maternal PO2, arterial O2 content and erythropoietin 
levels and of fetal umbilical venous, arterial PO2, O2 content and 290 erythropoietin (X axis) with PlGF 
and sFlt-1 concentrations (Y axis). These showed no meaningful associations, with the r2 values 
ranging from 0.00 – 0.12. This was true whether considered in relation to the entire sample, or within 
each altitude. The hypothesis that variation in circulating angiogenic growth factors might be related 
to differences in maternal or fetal oxygenation was thus rejected.  
 
DISCUSSION: 
None of the hypotheses tested were supported. Free VEGF, PLGF and their soluble binding protein, 
sFlt-1, did not differ in low vs. high altitude pregnancies despite maternal, fetal and placental hypoxia 
at 3600 m. Oxygen tension, content, and biomarkers of hypoxic stimulus like erythropoietin were not 
related to maternal or fetal circulating angiogenic growth factors. Hypoxemia, across the extended 
physiological range of 41 - >100 mmHg arterial PO2 in mothers and 9 - 46 mmHg in fetuses does not 
cause appreciable variation in circulating angiogenic growth factors. For the first time, we report that 
more than 90% of circulating free VEGF, >30% of PlGF and >25% of sFlt1 was secreted into the test 
samples as a consequence of hemostasis and is therefore an artifact of blood collection technique. 
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These growth factors are released by other cell types within the circulation and therefore their excess 
or insufficiency in pregnancy pathologies does not necessarily reflect changes in placental production. 
We report here, also for the first time, that there is greater release of sFlt-1 from these non-placental 
sources in preeclamptic than normotensive pregnant women. We found that PlGF is correlated with 
placental weight in both normotensive and preeclamptic pregnancy. This suggests that decrement in 
PlGF in preeclampsia might be a correlate of the smaller placental size characteristiocs of 
preeclamptic pregnancy rather than a diagnostic feature causally associated with the development 
of endothelial cell dysfunction. Studies suggesting that fetal compromise is reflected by elevated cord 
blood values for VEGF or sFlt-1 should be rejected; free VEGF is not present in the fetal circulation if 
hemostasis or platelet activation is avoided in blood collection. Fetal sFlt-1 levels, low already, are 
also very nearly abolished by similar precautions. Studies suggesting deficit in free VEGF in the 
maternal circulation is a causal factor in preeclampsia should be also rejected; free VEGF in the 
maternal circulation essentially does not exist, and we predict more recent studies arguing that PlGF 
and/or sENG are instead the causal culprits in preeclampsia (5, 32) will be equally discounted in 
future. We conclude from the discussion below and the data presented above that the role of 
angiogenic growth factors in preeclampsia is similar to that of numerous other circulating factors 
invoked now and in previous decades, a sequelae of the disease process, an artifact, or a correlate, 
but not a causal event. Such prior factors include, e.g., worms (33), coagulation factors (34, 35), 
thromboxane/prostaclyclin imbalance (36, 37), STBMs (38, 39), prooxidants (40, 41), uric acid (42, 
43), etc.  
Challenges to the interpretation of these results include differences between the collection sites, the 
combining of two different ethnic groups at each altitude, the variability in the assays themselves, 
and the recent discovery of additional splice variants of sFlt-1. Ambient temperature and barometric 
pressure were recorded as part of the blood gas measurement protocol. The 3600m site was cooler 
and had less annual temperature fluctuation than the 400 m site. If differences in ambient 
temperature were important this would be more apparent in serum samples as they were allowed to 
clot and were processed at room temperature whilst the CTAD samples were collected into pre-
chilled tubes, transported on ice and centrifuged at 4o C. We tested the serum values against ambient 
room temperature and found no correlation, nor was any relationship apparent when using cruder 
measures such as comparing values obtained during summer versus winter. Women of Native 
American (Andean) ancestry suffer less altitude-associated growth restriction than European 
migrants, and in theory this might be reflected in their circulating angiogenic growth factor profile. 
However, we found no evidence to support ancestry-associated differences in the circulating markers 
of interest. Finally, a close review of the literature suggests that the issue of variability in the assay 
results deserves closer attention. R&D systems, the manufacturer of the most widely used assay kits, 
reports their assay coefficients of variation (CVs) based on 20 and 40 replicates for intra- and inter-
assay variation, respectively. We recalculated R&D’s potential CV at their low, moderate and high 
standard concentrations, assuming only duplicates rather than 20-40 replicates were tested. (CV was 
calculated as ± 3 SDs of the mean subtracted from the reported mean and divided by that mean). The 
potential intra- assay CV is 14-20% for free VEGF, 17-26% for PlGF and 8-12% for sFlt-1. Even this 
estimate is minimal as R&D tested nonpregnant subjects, whose concentrations for VEGF which are 
10-100 fold higher and for sFlt-1 as much as 10-fold lower than values observed in pregnancy. The 
high CV we report for VEGF is due to the extremely low values measured. For PlGF and sFlt-1 the CVs 
we report of ~4 ± 9% and 3 ± 6% are acceptable, but the difference in statistical significance for the 
impact of altitude between the old vs. new formulation for the sFlt-1 assay highlights the issues 
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discussed above. In summary, variability in the assays themselves, the testing conditions, blood 
collection protocols, length of storage etc., are all likely to contribute to the heterogeneity in results 
reported in the relevant literature and may even have obscured our ability to detect hypoxia-
associated differences in the present study. Arguing against this is the lack of any correlation between 
our independent measures of hypoxia and the proteins tested. We are aware that additional splice 
variants of sFlt-1 have been discovered recently (44), are produced by the hypoxic placental 
trophoblast (45, 46) and that it is unknown whether current assays measuring sFlt-1 distinguish 
between these splice variants. Nonetheless we suspect that as the role of endothelial and monocyte 
secretion of these variants is researched, and further refinement of the mechanisms of interaction 
between sFlt-1 and activated or otherwise stressed edndothelial cells is accomplished, the argument 
we raise here against the causal role of agiogenic growth factors in the syndrome of preeclampsia will 
be supported. 
The high-altitude pregnancy model has been useful for testing causal hypotheses in preeclampsia, 
and for dissociation of normal physiological adaptation to lowered placental oxygen tension from 
pathological features of preeclampsia. Using the altitude model, we have shown that multiple 
proteins known to be up-regulated by hypoxia are increased in the high altitude placental tissue, 
including sFlt-1 (14) and total VEGF (15), observations also supported by in vitro studies (8, 12). 
We have further shown that global gene expression in the high altitude placenta closely parallels that 
observed in in vitro hypoxia and in preeclamptic placentae (13). VEGF and sFlt-1 are regulated, in part, 
by HIF-1a. Consistent with this we have shown that placental HIF-1a message and protein are elevated 
in high-altitude placentae and that protein levels are positively correlated with total VEGF and 
erythropoietin in the maternal circulation (15). However this similarity between the global profile of 
placental hypoxia at high altitude and in preeclampsia does not translate into increases in maternal 
circulating concentrations of angiogenic growth factors in normal high-altitude pregnancy. This 
contrasts with numerous other physiological parameters where we have shown that altitude values 
are intermediate between preeclampsia and normalpregnancy (reviewed in (19). 
The idea that deficit in free VEGF causes endothelial cell damage in pregnancy is counterintuitive. The 
normal adult levels of circulating free VEGF are ~100 pg/ml. Maynard and colleagues found that free 
VEGF was ~13 pg/ml in 11 normotensive women, and ~6 in the 21 preeclamptics studied. However, 
these values are at or close to the limit of detection and given our and others’ results some proportion 
of the samples must have had non-detectable VEGF. This and other widely cited reports do not 
indicate what proportion of values for free VEGF were below the detection limit of the assay, nor do 
they state how values less than the detection limit were analyzed (3, 4). A more interesting question 
is why is free VEGF abolished in both normal and preeclamptic pregnancy? In theory, lower free VEGF 
should be beneficial. Hypertension, glomerulosis, altered vascular reactivity and vascular leak are the 
hallmarks of preeclampsia. But circulating VEGF is elevated, not decreased in these conditions (47-
51). It is therefore an excess of free VEGF and not diminution which should contribute to development 
of preeclampsia. It has been claimed that exogenous administration of free VEGF rescues a 
preeclampsia-like phenotype 
in experimental animals exposed to an excess of sFlt1. However the dose of free VEGF administered 
was equivalent to what is present in the non-pregnant adult, not what is normal in pregnancy (3, 52). 
The model does not mimic human preeclampsia as the preeclamptic phenotype was present both in 
non-pregnant and pregnant animals. This might render the model useful for  studying glomerulosis, 
but this renal lesion is not necessarily pathognomic for preeclampsia (53). 
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Studies of genetic kidney disease reveal the lesion is due to excess free VEGF-A(165) (54). Since free 
VEGF is lower in the circulation of preeclamptic mothers it should protect against this lesion. Given 
that free VEGF is virtually abolished in pregnancy, it appears that the elevation in sFlt-1 and 
subsequent sequestration of free VEGF must, in general, be beneficial and part of normal pregnancy 
adaptation, rather than pathological. 
PlGF is a homologue of VEGF, differing in that it can bind only to the receptor tyrosine kinase VEGFR-
1 (Flt-1) and not the KDR/Flk 1 receptor. Normal adult female levels of PlGF are <50 pg/ml and rise 
~10 fold during pregnancy before falling in the third trimester (55). The rise in PlGF in the maternal 
circulation in the early second trimester is exponential, correlates with Doppler indicators of placental 
perfusion and likely reflects placental perfusion as well as increase in mass (56). An alternative 
interpretation is that the opening of the maternal intervillous space to blood flow, which occurs at 
approximately 10-12 weeks gestation, induces a rise in PlGF due to shear stress or stretch (57, 58). 
Either way, hypo-perfusion due to impaired development of the spiral arteries and/or failed growth 
of the placenta, common in severe preeclampsia, may account for the relatively lower levels of PlGF 
in preeclamptic pregnancy without necessarily having any impact on the maternal endothelium or on 
the development of symptoms. 
An excess of PlGF, like VEGF, is implicated in hypertension and vascular disease (59). Stretch, shear 
stress, hypoxia and pro-inflmammatory stimuli will induce PlGF expression (57, 58, 60-62). PlGF is an 
important modifier of VEGF’s interaction with endothelial cells, potentiating the mitogenic and 
permeabilizing effects of the VEGF family of proteins on endothelium (63-65). Human atherosclerotic 
lesions producing excess PlGF are associated with plaque inflammation and neovascular growth (66, 
67). In fact PlGF is known to stimulate monocyte production of proinflammatory cytokines (68), 
cytokines that are elevated in preeclampsia (69). Hence the evidence favors that preeclampsia should 
be accompanied by increased, not decreased PlGF. Again the question must be asked, what does a 
relative paucity of PlGF actually do to endothelial cell health in pregnancy? 
Soluble fms-like tyrosine kinase-1 (sFlt-1) is a splice variant of VEGF receptor 1. Its existence was 
hypothesized when the gene for VEGFR-1 was discovered (70), and the protein identified in umbilical 
vein endothelial cell supernatant in 1993 (71) Production by the placenta in was first reported in 1998 
(72) while elevation of sFlt-1 in preeclampsia and by hypoxia was reported as early as 2000 (2, 11). 
sFlt-1 levels are stable during the early and middle stages of gestation, increase until term (73), and 
decrease rapidly following delivery (3). In normal pregnancy rise in sFlt-1 correlates with the 3rd 
trimester rise in blood pressure (74). No such relation is observed in preeclampsia, nonetheless, 
antihypertensive therapy in preeclamptics reduces sFlt-1 levels (75). There appear to be multiple 
causes of the elevation in sFlt-1 in preeclampsia apart from hypoxia (14, 76, 77) and feedback 
relationships appear to exist with inflammation and oxidative stress (78, 79). Consistent with this 
report, but not quantified as to proportional representation in the maternal circulation, secretion of 
sFlt-1 by endothelial cells and monocytes was first reported in 2001 (80), and confirmed in 
preeclampsia more recently (22). Excess concentrations of angiogenic growth factors have been 
measured in platelet lysates from patients with hypertension (51), thus there is support for the idea 
that excess secretion of angiogenic growth factors by peripheral cells in preeclamptics may be 
secondary to hypertension, and not an initiating event in the disease process. Recent reports, 
consistent with this one, argue against hypoxia as contributing to excess circulating sFlt-1 and instead 
invoke inflammation (81). This is misleading as hypoxia, oxidative stress and inflammation are all 
related phenomenon. 
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As with VEGF and PlGF the damaging role claimed for elevated sFlt-1 in preeclamptic pregnancy is 
counter-intuitive. sFlt-1 is lower in hypertensive men, and elevated by therapies designed to 
ameliorate cardiovascular risk. Again, the high altitude model sheds some insight into these 
hypothetical causal relationships. We have shown an excess of pro-inflammatory cytokines in normal 
high altitude pregnancy (82) but less oxidative stress in high altitude placentae (83). The former 
should contribute to a an angiogenic profile favoring preeclampsia while the latter should favor the 
opposite, neither of which is reflected in the results reported here. 
To date no single, nor any combination of factors is definitively present in all cases of preeclampsia, 
no matter how narrowly the disease is defined (84) (35). Preeclampsia represents a spectrum of 
disease, with a variable degree of expression in the correlating biochemical markers, that appears to 
be modified by environment and individual susceptibility (85). Our results do not invalidate the 
hypothesis that circulating angiogenic growth factors may be involved in the endothelial dysfunction 
postulated as the proximate cause of the clinical symptoms of preeclampsia (86). However they do 
support the accumulating evidence in the literature that these proteins play a correlative rather than 
causal role. Some groups have shown changes in the mean values of maternal circulating angiogenic 
growth factors several weeks prior to the onset of symptoms (4, 87, 88), while others have not (89). 
Others have shown that the values obtained have low sensitivity and specificity (55, 90), are unrelated 
to markers of endothelial cell dysfunction (91) and that changes are due to increase in blood pressure 
rather than the reverse (74). We found that PlGF in preeclamptics fell within the range of 
normotensive women in 88% of the subjects at 400 m and 100% at 3600 m. Among preeclamptic 
subjects, sFlt-1 values were within the range of the normotensive women in 62% at 400 m and 35% 
at 3600 m. These significant overlaps combined with the variable change in the degree to which 
activation of peripheral cells contributes to the values measured ex vivo suggests that circulating 
values are unlikely to attain a sufficient degree of specificity and sensitivity for use as a reliable 
diagnostic test. Finally, our results argue against hypoxia as causally associated with changes in 
circulating angiogenic growth factors: lowered maternal or fetal PO2 do not appear to cause an 
increase in tissue production and release into the circulation of the 3 angiogenic growth factors tested 
here. Greater attention should be paid in future to alternative explanations for excess or deficit in 
biomarkers in a variety of disease states. In summary, much of the relationship between maternal 
circulating angiogenic growth factors and preeclampsia needs to be reconsidered. More fruitful 
research should focus on how cells in the peripheral circulation interact with the maternal 
endothelium and to what extent highly localized release of growth factors may influence endothelial 
function to protect against or exacerbate preeclampsia symptoms. 
 
Table 2. Maternal and infant characteristics in preeclamptic pregnancies 
 
 

Maternal 
characteristics  

400 m early 
onset PE 

(n=7)  

400 m late 
onset PE 
(n=12)  

3600 m 
early onset 
PE (n=10)  

3600 m late 
onset PE 
(n=10)  

p values, all PE 
relative to 

altitude-specific 
controls  

Age (years)  26 ± 2  25 ± 1  29 ± 2  27 ± 2  p<0.005  

Primiparous (n)  6/7  10/10  9/10  9/10  P<0.0001  
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Height (cm)  156 ± 3  160 ± 3  160 ± 2  160 ± 3  P = 0.39  

Non-pregnant 
weight (kg)  

62 ± 5  62 ± 3  66 ± 5  65 ± 4  p=0.18  

Non-pregnant Body 
Mass Index (kg/m 2)  

25.4 ± 1.8  24.2 ± 1.1  27.0 ± 1.7  25.4 ± 1.6  p=0.15  

Weight gain with 
pregnancy (kg)  

13.3 ± 3.9  16.8 ± 1.4  11.6 ± 2.5  8.9 ± 2.5  P=0.71  

Systolic BP*  138 ± 7  132 ± 5  135 ± 3  140 ± 3  P<0.0001  

Diastolic BP*  98 ± 5  92 ± 5  102 ± 5  96 ± 3  P<0.0001  

MAP*  125 ± 6  118 ± 5  124 ± 4  125 ± 3  P<0.0001  

Infant    

characteristics    

Birth weight (grams)  2236 ± 225  2895 ± 112  1680 ± 161  2437 ± 99  p <0.0001  

Placental weight (g)  269 ± 35  358 ± 27  316 ± 27  324 ± 35  p <0.0001  

Birth/placental 
weight ratio  

8.4 ± 0.5  8.3 ± 0.5  5.4 ± 0.4  8.1 ± 0.6  p < 0.0001  

Clinically assessed  34.3 ± 0.7  37.0 ± 0.5  33.8 ± 0.6  36.7 ± 0.3  p <0.0001  

gestational age wks)       

Sex ratio M/F  2/5  5/7  6/4  8/2   

Serum values    

(median, inter-quartile range)  
  

PlGF (pg/ml)  168 (121, 
221)  

176 (148, 
292)  

157 (94, 
266)  

142 (90, 
208)  

p<0.05 LA 
p<0.001 HA  

sFlt-1 (ng/ml)  84.4 [33.6, 
214.5]  

29.4 [8.1, 
88.4]  

57.8 [25.4, 
122.3]  

24.6 [6.1, 
86.0]  

p<0.001 LA 
p<0.001 HA  

 
** All women were taking anti-hypertensive medication, methyl-dopa, 500 mg/day, 485 
clinical standard of care in Bolivia 
 
Figure 1 
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A: In women studied at 20, 38 weeks 
of pregnancy and >3 months 
postpartum, free VEGF 
concentrations were reduced during 
pregnancy (p<0.0001). Values were 
similar in the second vs. third 
trimester. Values measured during 
pregnancy and postpartum did not 
differ between low (left panel) and 
high altitude (right panel). In both the 
pregnant and non-pregnant condition 
there were >10-fold differences 
between the highest and lowest 
values measured (pregnant range = 0 
– 82.0, non-pregnant range 30.5 – 
754.4 pg/ml). 
 
 
B: Collection of blood into CTAD (see 
methods) reduced values for maternal 
free VEGF by 98 ± 1% at 400 m 
(p<0.001 left panel) and by 87 ± 6% at 
3600 m (p<0.001 right panel) The 
magnitude of the decrease was similar 
at both altitudes (p=0.11). 
 
 
C: Umbilical venous blood 
concentrations of VEGF were >10 fold 
greater in the fetuses than in their 
mothers, and did not differ at low (left 
panel) versus high altitude (right 
panel). Collection into CTAD reduced 
the free VEGF concentrations by 98±1% at 400 m and by 92±4% at high altitude (p<0.0001). Nil values 
and those below the detection limit of the kit occurred in 80% of the samples. The decrement in VEGF 
concentrations attributable to CTAD treatment did not differ between altitudes (p=0.09). 
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Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: PlGF concentrations were similar at low versus high altitude (p=0.93). 
B: CTAD treatment decreased PlGF by 32±3% at 400 m and 26± 13% at 3600 m (p<0.0001 at each 
altitude). Elimination of the one sample at each altitude that showed 0 greater PlGF concentration in 
CTAD than serum samples (which could potentially be due to mislabeled tubes) yielded a decline in 
PlGF concentrations of 36 ± 2% at 400 m and 38 ± 3% at 3600 m, (range 11-78%). This decrement did 
not differ between altitudes (p=0.59). 
C: The serum values for PlGF were positively correlated with placental weight (400 m Y= -92.3 + 0.82x, 
r2 = 0.19, p<0.0001; 3600 m Y = -68.9 + 0.76x, r2 = 0.19, p<0.0001). The slopes (p=0.64) and intercepts 
(p=0.81) did not differ. 
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Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: When measured using the R&D kit formulated prior to January 2006, sFlt-1 concentrations were 
greater at high than low altitude (left panel). Using the newer formulation with the same samples 
increased sFlt1, but this increase was highly variable, ranging from 89% - >1000%. This variability 
eliminated the statistically significant found using the prior formulation on the same samples (right 
panel p=0.21).  
B: Collection of blood into CTAD decreased PlGF concentrations (p<0.0001 each altitude). The 
decrement was similar at low (left panel) versus high altitude (right panel p=0.47) 
C: The cord blood levels of sFlt1 were lower than in the mothers. Fetal serum sFlt1 did not differ 
between altitudes in either serum (p=0.47) or CTAD samples (p=0.29). Reduction in sFlt1 attributable 
to treatment with CTAD tended to be greater at 400 m (72 ± 8%) than 3600 m (52 ± 10%, p=0.02). 
FIGURA 4 
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A: PlGF values were lower in preeclamptic than normotensive women at both low and high altitude, 
but there was no altitude-associated difference in the values for PlGF in preeclamptics. 
B: Collection of samples into CTAD reduced values for PlGF in preeclamptic women at both 400 m 
(right panel) and 3600 m (left panel). 
C: As with normotensive women, PlGF concentrations in preeclamptics correlated with placental 
weight  
 
FIGURA 5 
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A: Soluble Flt-1 serum levels were greater than in normotensive women at each altitide, but did not 
differ in preeclamptic women at low (43, [16, 99] vs. high altitude (66 [38, 133] (p=0.33). 
B: Collection into CTAD reduced sFlt-1 levels by 36 ± 5% at 400 m and 42 ± 5% at 3600m (Figure 5B, 
p<0.005). While these values do not differ from each other, the CTADassociated reduction in sFlt1 is 
significantly greater among preeclamptics than what was observed in the normotensive women (22 
± 3% at 400 m and 25 ± 4% at 3600 m, p<0.005). 
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