UNIVERSIDAD MAYOR DE SAN ANDRES FACULTAD DE TECNOLOGIA CARRERA DE GEODESIA TOPOGRAFIA Y GEOMATICA

PROYECTO DE GRADO NIVEL LICENCIATURA

SUPERVISIÓN TÉCNICA DEL PROYECTO CARRETERO TRAMO VILLA GRANADO - PUENTE TAPERAS EN EL DEPARTAMENTO DE COCHABAMBA

POSTULANTE: Constantino Vargas Flores

TUTOR: Lic. Jaime Silva Mollinedo

La Paz - Bolivia 2021

AGRADECIMIENTO.

A Dios por darme la vida y salud, a mis padres (Constancio y Segundina) y hermanos (Roberto, Dionicio, Virginia, Eva y Gaby) por brindarme su apoyo incondicional, a los docentes de la carrera de Topografía y Geodesia a mi querida Universidad Mayor de San Andrés por abrirme las puertas de la superación personal y ser mi segundo hogar.

DEDICATORIA

En especial a mi Familia por el apoyo incondicional para culminar mi carrera profecional y tambien a alquien muy especial en mi vida mi pareja Ayda.

INDICE GENERAL

Contenido	Pagina
RESUMEN	1
CAPITULO I	2
ASPECTOS GENERALES	2
1.1. Introducción	2
1.2. Antecedentes	3
1.3. Planteamiento del Problema	3
1.3.1. Formulación del Problema	3
1.4. Objetivos	4
1.4.1. Objetivo General	4
1.4.2. Objetivos Específicos	4
1.5. Justificación	4
1.6. Alcance de Proyecto	4
1.7. Hipótesis	5
1.7.1. Hipótesis Inicial (Hi)	
1.7.2. Hipótesis Alternativa (Ha)	5
1.8. Importancia	5
1.8.1. Importancia Social	5
1.8.2. Importancia Regional	
1.8.3. Importancia Local	
1.8.4. Importancia Nacional	
1.8.5. Importancia Académica	
1.8.6. Importancia Técnica	
1.9. Ubicación y Descripción del Proyecto	
1.9.1. Ubicación Geográfica del Proyecto	8
1.9.2. División Político Administrativa	_
1.9.3. Clima	
1.9.4. Aspectos ambientales.	
1.9.5. Recursos hídricos:	
CAPITULO II	
MARCO TEORICO	
2.1. Topografía	
2.1.2. Nivelación	
2.1.2.1. La Cota Absoluta de un Punto	17

2.1.3. Nivelación Geométrica	18
2.1.4. Control de Nivelaciones	19
2.1.4.1. Error de Cierre	19
2.1.4.2. Tolerancia del Error de Cierre	20
2.2. Geodesia	21
2.2.1. Coordenadas Geográficas	22
2.3. Sistema Global de Navegación Satelital GNSS	24
2.3.1. Tipos de Posicionamiento	26
2.3.1.1. Posicionamiento Puntual o Absoluto	26
2.3.1.2. Posicionamiento Diferencial, Diferido o Relativo	27
2.3.2. Técnicas de Medición	27
2.3.2.1. Método Estático	28
2.3.2.2. Método Estático Rápido	28
2.3.2.3. Método Cinemático	29
2.3.2.4. Método en Tiempo Real Cinemática (RTK)	30
2.4. Cartografía	30
2.4.1. Sistema De Proyección TM	34
2.4.2. Sistema de Coordenadas Universal Transversal de Mercator	35
2.4.3. Escala Gráfica	37
2.5. Supervisión	38
2.5.1. Supervisión Técnica	38
CAPITULO III	39
MARCO METODOLOGICO	39
3.1. Metodología	39
3.1.1. Etapa Inicial	40
3.1.2. Etapa de Control Final	42
3.2. Equipos Empleados	43
CAPITULO IV	45
DESARROLLO DEL TRABAJO	45
4.1. Etapa Inicial	45
4.1.1. Recopilación de la Información Técnica del Proyecto	45
4.1.2. Inspección	46
4.1.3. Control Horizontal	48
4.1.4. Control Vertical	54
4.1.5. Reposición de Puntos de Control Horizontal y Vertical	56

4.2. Etapa de Control Final	60
4.2.1. Control Geométrico	60
4.2.2. Secciones Transversales	61
4.2.3. Control y Seguimiento de Obras de Arte	63
4.2.4. Control de Ejecución de Obras de Arte	65
4.2.5. Nivelación Geométrica	67
4.2.6. Control Geométrico Capa Sub-Base	67
4.2.7. Control Geométrico Capa Base	68
4.2.8. Actividades De La Supervisión En Obra	69
CAPITULO V	71
ANALISIS Y RESULTADOS	71
5.1 Análisis de los Resultados Obtenidos	71
5.2. Análisis de Control Geométrico y Seguimiento de obras de arte	74
CAPITULO VI	75
CONCLUSIONES Y RECOMENDACIONES	75
5.1. Conclusiones	75
5.2. Recomendaciones	75
5.3. Aporte Académico	76
Ribliografía	77

INDICE DE FIGURAS

Contenido	Pagina
Figura No. 1 - Imagen Satelital de Puente Taperas	8
Figura No. 2 - Ubicación geográfica del tramo Villa Granado-Puente Taperas.	9
Figura No. 3 – Plano General del tramo Villa Granado-Puente Taperas	9
Figura No. 4 - Esquema de una poligonal abierta	15
Figura No. 5 - Esquema de una poligonal cerrada	16
Figura No. 6 - Esquema de una poligonal con enlace	16
Figura No. 7 - Elevación o altitud de un punto	17
Figura No. 8 - Representación de las superficies del geoide y el elipsoide	17
Figura No. 9 - Plano horizontal de un punto sobre la superficie de la tierra	18
Figura No. 10 - Nivelación Geométrica Simple	19
Figura No. 11 - Nivelación de enlace	20
Figura No. 12 - La geodesia y las formas de la tierra	21
Figura No. 13 - Superficies de referencia	22
Figura No. 14 - Descripción de las coordenadas geodésicas	
Figura No. 15 - Segmentos sistema GNSS	24
Figura No. 16 - Segmentos espacial del sistema GNSS	25
Figura No. 17 - Posicionamiento absoluto GNSS	26
Figura No. 18 - Posicionamiento diferencial GNSS	27
Figura No. 19 - Esquema del cilindro y líneas loxodrómicas	31
Figura No. 20 - Proyección transversal de Mercator (Gauss Kruger)	34
Figura No. 21 - Descripción de Sistema de proyección U.T.M	35
Figura No. 22 - Zonas del sistema de proyección U.T.M.	36
Figura No. 23 - Zonas U.T.M. que cubren Bolivia	37
Figura No. 24 - Etapas del desarrollo de trabajo	39
Figura No. 25 - Metodología del control Horizontal	40
Figura No. 26 - Metodología del control Vertical	41
Figura No. 27 - Metodología de reposición e implementación de puntos de co	ntrol 42
Figura No. 28 - Metodología para trabajos de la etapa de control final	42
Figura No. 29 - Información técnica recopilada	45
Figura No. 30 - Inspección en campo	46
Figura No. 31 - Identificación de mojones en campo	46
Figura No. 32 - Monumentación de mojones en campo	47
Figura No. 33 - Características de mojones en campo	48

Figura No. 34 - Puntos de control vinculados a Red Sirgas48
Figura No. 36 - Instalación de Base en modo RTK en el punto AITP-23A49
Figura No. 37 - Mediciones GNSS RTK con base en el punto AITP-07A50
Figura No. 38 - Mediciones GNSS RTK con base en el punto AITP-13B50
Figura No. 39 - Mediciones GNSS RTK con base en puntos AITP-18A y AITP-23A50
Figura No. 40 - Mediciones GNSS RTK de pares geodésicos51
Figura No. 41 - Mediciones con Estación Total de pares geodésicos52
Figura No. 42 - Esquema de nivelación geométrica de pares geodésicos y BM´s54
Figura No. 43 - Control de nivelación geométrica de Pares Geodésicos y BM´s55
Figura No. 44 - Punto de referencia base para mediciones RTK57
Figura No. 45 - Mensura de puntos de control horizontal
Figura No. 46 - Nivelación geométrica de puntos de control vertical58
Figura No. 47 - Nivelación geométrica de puntos de control vertical de ida y vuelta 59
Figura No. 48 - Replanteo topográfico para el control geométrico60
Figura No. 49 - Control geométrico en progresiva 62+68062
Figura No. 50 - Seguimiento de la ejecución de los trabajos de construcción64
Figura No. 51 - Liberación Topográfica en alcantarilla progresiva 76+56966
Figura No. 52 - Alcantarilla cajón 3x2m, progresiva 50+48466
Figura No. 53 - Liberación de capa Sub Base68
Figura No. 54 - Análisis de los resultados de los trabajos de inspección71
Figura No. 55 - Análisis de los resultados del control horizontal72
Figura No. 56 - Análisis de los resultados del control vertical en BM's72
Figura No. 57 - Análisis de los resultados del control vertical en pares geodésicos 73

INDICE DE TABLAS

Contenido	Pagina
Tabla No. 1 - División político administrativa del proyecto	10
Tabla No. 2 - Evolución de la TM	34
Tabla No. 3 - Características del equipo topográfico	43
Tabla No. 4 - Características del equipo GNSS	43
Tabla No. 5 - Características del equipo de nivelación	44
Tabla No. 6 - Equipos de apoyo	44
Tabla No. 7 - Herramientas empleadas	44
Tabla No. 8 - Planilla de mojones con observaciones	47
Tabla No. 9 - Planilla tolerancias con respecto a distancia Base-Punto	53
Tabla No. 10 - Planilla de pares geodésicos con observaciones	53
Tabla No. 11 - Planilla tolerancias con respecto a distancia Partida-Llegada.	55
Tabla No. 12 - Planilla de pares geodésicos y BM's con observaciones	56
Tabla No. 13 - Características de las medicines GNSS en modo RTK	57
Tabla No. 14 – Sección Transversal de la Plataforma	61
Tabla No. 15 - Resultados del control geométrico	63
Tabla No. 16 - Detalles de los levantamientos topográficos	63
Tabla No. 17 - Resultados del control y seguimiento de ejecución	65
Tabla No. 18 - Cuadro de actividades del mes de noviembre de 2017	70
Tabla No. 19 - Planilla de diferencias de cotas observadas de BM's	73
Tabla No. 20 - Planilla de diferencias de cotas observadas de GPS's	74

ANEXOS

Anexo No. 1: Planilla de Coordenadas Iniciales.

Anexo No. 2: Planilla de Coordenadas Finales.

Anexo No. 3: Planillas de Nivelación.

Anexo No. 4: Poligonal Base.

Anexo No. 5: Sección típica.

Anexo No. 6: Planilla de Replanteo.

Anexo No. 7: Liberación de Paquete Estructural (Capa Sub-Rasante, Capa Sub-

Base y Capa Base).

Anexo No. 8: Especificaciones Técnicas.

RESUMEN

El presente proyecto de grado contiene toda la documentación elaborada respecto a

la realización del Proyecto de Grado "Supervisión Técnica del Proyecto carretero

tramo Villa Granado - Puente Taperas" ubicado en la ciudad de Cochabamba Bolivia.

La supervisión técnica y construcción de una carretera involucra la acción directa de

profesionales de distintas áreas de formación, involucrando los conocimientos de

distintas ciencias.

En el proyecto carretero Villa Granado-Puente Taperas Ruta N5 de la red fundamental

del Sistema Vial Nacional de Carreteras, nos enfocaremos a generar la información

topográfica para el control del proyecto carretero, en base a la recopilación de datos

proporcionados por la entidad contratante ABC (Administradora Boliviana de

Carreteras). Estableciendo una serie de poligonales de control determinando

coordenadas en Este, Norte y Cota de cada uno de los puntos de las poligonales.

Todas las actividades desarrolladas en campo de la supervisión técnica son:

implementar un documento base con el cual se pueda realizar el control geométrico,

dar cumplimiento a las tolerancias requeridas en el proyecto, verificación de los

diferentes trabajos topográficos (replanteo, control de cabeceras de talud, movimiento

de tierra y otros) de acuerdo a las especificaciones técnicas del proyecto.

La revisión y complementación topográfica está dirigido a la realización de los trabajos

de reposición de mojones faltantes (monumentación), verificación (medición),

nivelación geométrica de los puntos de control horizontal y vertical (Poligonal Base y

Bancos de Nivel) y relevamiento taquimétrico complementario.

Los trabajos topográficos para el presente Proyecto se realizaron con sumo cuidado

y responsabilidad utilizando equipos de medición precisos y sistemas computarizados

de proceso de datos ya que los avances tecnológicos y las precisiones exigidas así

lo requieren.

CAPITULO I ASPECTOS GENERALES

1.1. Introducción

El presente proyecto forma parte de los diferentes trabajos desarrollados que enmarca la Administradora Boliviana de Carreteras (ABC), que tiene como función principal la Administración de la Red Vial Fundamental que vincula las principales capitales de departamentos, así como las rutas internacionales para posibilitar la integración nacional e incentivar el crecimiento de la economía boliviana.

El tramo carretero Villa Granado - Puente Taperas se considera como parte de la ruta No. 5 de la red fundamental del Sistema Vial Nacional de Carreteras que vincula las ciudades de Sucre y Santa Cruz de la Sierra, pasando por el departamento de Cochabamba y el ramal del Corredor de Integración Este - Oeste, es considerado como prioridad nacional dentro del Plan Vial de mejoramiento por la Administradora Boliviana de Carreteras (ABC).

La amplitud del trabajo y las obligaciones de la supervisión están de acuerdo a las necesidades de la labor a realizarse de acuerdo al ente contratante (ABC), donde se marcan los parámetros que deberán seguir los trabajos topográficos y geodésicos y estar dentro de las tolerancias establecidas por el ente contratante.

La metodología que se emplea, pasa por realizar varios trabajos de supervisión técnica, que vienen desde realizar las tareas de recopilación de la información del proyecto (Información técnica relacionada a los trabajos de topografía y geodesia realizadas con anterioridad para los trabajos de diseño), efectuar trabajos de inspección en campo (control de mojones de puntos de control), realizar controles de tanto horizontal y vertical de los trabajos topográficos, verificar los trabajos de levantamientos topográficos, hasta realizar los controles de movimiento de tierras y seguimiento de la ejecución durante todo el trabajo de construcción de dicha carretera.

1.2. Antecedentes

Mediante Licitación Pública Internacional LPI 003/2015 - CBBA - CUCE 15-0291-00-573293-1-1, la Administradora Boliviana de Carreteras convocó a Empresas Consultoras interesadas en prestar Servicios para la Supervisión Técnica, Ambiental y Social del Proyecto, efectuado el análisis y evaluación de las propuestas, emitió el Informe Final de Calificación recomendando la Contratación de la Empresa PROINTEC S.A. Sucursal Bolivia, por haber cumplido la propuesta con todos los requisitos de la Convocatoria y ser la más conveniente a los intereses del Estado Plurinacional de Bolivia. Esta adjudicación fue aprobada mediante resolución administrativa ABC/GCB/RPC/027/2015 de fecha 03 de agosto de 2015, proceso realizado bajo las normas y regulaciones de contratación establecidas en el marco de las Normas Básicas del Sistema de Administración de Bienes y Servicios (NB-SABS).

En fecha 25 de noviembre de 2015, mediante CITE: FIS-TR-Km-30-VG-PT-03/2015 la Fiscalización emitió la Orden de Proceder a PROINTEC S.A. Sucursal Bolivia para iniciar los Servicios de Supervisión Técnica, Ambiental y Social al Proyecto.

1.3. Planteamiento del Problema

En el Municipio de Aiquile existe una necesidad por contar con una carretera que, de la posibilidad de permitir un transporte fluido y seguro de productos agrícolas y pecuarios, que se disponen en la zona de influencia del proyecto hacia los mercados de la Ciudad de Santa Cruz, Cochabamba y Sucre. A partir de ello, el problema surge en la necesidad de contar con un ente supervisor que garantice el cumplimiento de la ejecución de los trabajos de construcción de la carretera y de verificar aspectos técnicos que exige la institución fiscalizadora, la Administradora Boliviana de Carreteras (ABC).

1.3.1. Formulación del Problema

A partir de la supervisión técnica del proyecto carretero del tramo Villa Granado -Puente Taperas, en el departamento de Cochabamba, ¿Será posible garantizar el cumplimiento de los aspectos técnicos especificados por la Administradora Boliviana de Carreteras durante la ejecución de los trabajos de construcción de la carretera?

1.4. Objetivos

1.4.1. Objetivo General

Realizar los trabajos de supervisión técnica del proyecto carretero tramo Villa
 Granado - Puente Taperas, efectuados en el departamento de Cochabamba.

1.4.2. Objetivos Específicos

- Revisar toda la documentación presentada por el estudio técnico referente al diseño final de la carretera, para su evaluación.
- Efectuar los trabajos de inspección en campo.
- Realizar el control horizontal y el control vertical de los trabajos topográficos.
- Efectuar los trabajos de reposición y corrección de puntos de control horizontal y vertical del proyecto.
- Desarrollar un control geométrico del tramo carretero en construcción.
- Realizar los trabajos técnicos de control y seguimiento de las Obras de arte.

1.5. Justificación

La Carretera Villa Granado - Puente Taperas, permitirá que el transporte sea más fluido beneficiando el crecimiento de productos agrícolas y pecuarios, que dispone la zona de influencia, esto influirá de manera directa la provisión a los mercados de las ciudades de Santa Cruz, Cochabamba y Sucre, considerando que la mencionada carretera contará con las características de una ruta importante porque forma parte de la ruta No. 5 de la red fundamental del Sistema Vial Nacional de Carreteras del país.

1.6. Alcance de Proyecto

En un proyecto de camino o carretera, la supervisión técnica es importante ya que a través de ella se garantiza la óptima información topográfica para la construcción y

ejecución del proyecto carretero, el cual es de gran magnitud ya que involucra a instituciones estatales como la Administradora Boliviana de Carreteras ABC, al Gobierno Departamental de Cochabamba y el Municipio de Aiquile.

También involucra a las empresas, Supervisora Prointec S.A. SUC. Bolivia, que hará el control y seguimiento del avance físico, como también a la empresa Contratista VILLACRECES ANDRADE SUC. BOLIVIA, encargada de la ejecución física del Proyecto, Tramo VILLA GRANADO-PUNTE TAPERAS.

Con los diferentes trabajos realizados por la Supervisión, se logrará generar una información topográfica base (Poligonal Base), que permitirá representar en forma óptima las características del relieve de terreno. El cual facilita los trabajos de campo en el tramo de manera más confiable y correcta, para la aplicación de las Especificaciones Técnicas, Diseños, Planos y demás que exige la institución fiscalizadora, Administradora Boliviana de Carreteras (ABC).

1.7. Hipótesis

1.7.1. Hipótesis Inicial (Hi)

Con la supervisión técnica, se podrá lograr la óptima ejecución técnica del proyecto construcción de la Carretera VILLA GRANADO-PUENTE TAPERAS, en aplicación a las especificaciones técnicas, diseños y planos.

1.7.2. Hipótesis Alternativa (Ha)

Al realizar la supervisión técnica, se reduce el error en la ejecución de la construcción de la Carretera VILLA GRANADO-PUENTE TAPERAS, empleando las especificaciones técnicas, diseños y planos.

1.8. Importancia

1.8.1. Importancia Social

Los trabajos de supervisión técnica, son la garantía de los resultados de un trabajo de calidad en la construcción de una carretera el cual sienta una base de importancia social que permite contar con la fluidez de un sistema de transporte rápido, confiable

y seguro; contribuyendo así importantes beneficios sociales y económicos para los departamentos de Santa Cruz, Cochabamba y Chuquisaca tales como:

- Permitir que el tráfico vehicular sea fluido y seguro por la vía durante todas las épocas del año.
- Reducir los costos de operación y de mantenimiento de los vehículos y usuarios.
- Reducir sustancialmente el tiempo de recorrido por la vía. Permitiendo que el transporte de productos perecederos se garantice y las condiciones sean económicamente más favorables. Este aspecto dará lugar a la viabilidad de producir productos, que en la actualidad no son rentables por la inseguridad en el transporte hacia los mercados de consumo.
- Crear fuentes de trabajo inmediatas para la población local, durante la etapa de construcción de la vía.
- Fomentar actividades de servicios durante la ejecución de las obras, para atender los requerimientos del personal y equipo destinados a los trabajos.
- Desarrollar el comercio internacional de exportaciones e importaciones por la conexión hacia los corredores de integración que se constituyen en ejes de comunicación nacional e internacional, ampliando así el campo de influencia hacia los. Países vecinos.

1.8.2. Importancia Regional

Como una consecuencia del proyecto vial, se espera una mayor integración de los departamentos de Chuquisaca, Cochabamba y Santa Cruz, lo que redundará en el desarrollo e impulso de la actividad productiva, comercial y turística de la zona para elevar el nivel de vida de la población asentada en el área de influencia de la vía, en la región y en el país.

1.8.3. Importancia Local

La Carretera Puente Arce - Alquile - Puente Taperas - La Palizada, permitirá que el transporte sea más fluido y creciente de productos agrícolas y pecuarios, que dispone la zona de influencia, provea a los mercados de las ciudades de Santa Cruz,

Cochabamba y Sucre, considerando que la mencionada carretera contará con las características de una ruta importante porque forma parte de la Red Vial Fundamental

del país.

1.8.4. Importancia Nacional

A nivel nacional ejerce una fuerte influencia en el desarrollo de ciudades intermedias

a donde permite atraer grandes movimientos económicos reduciendo la presión que

existente actualmente sobre las capitales departamentales con referencia a los

niveles de migración (campo - ciudad), además de impulsar un desarrollo más

armónico del país.

1.8.5. Importancia Académica

La carrera de Topografía y Geodesia como parte de la Facultad de Tecnología de la

Universidad Mayor de San Andrés, tiene como fin ser una entidad formadora de

profesionales con capacidad de analizar, calcular, coordinar, planear, administrar y

dirigir proyectos aplicados a todo tipo de obras civiles y otros campos que tengan

competencia al área.

El presente proyecto por su contenido y visión, no solo es desenvuelta de forma

técnica basada en la experiencia de campo, sino también acorde a la formación

académica, ya que esta es una base importante que pondera la práctica y la teoría

académica dando soluciones bajo el concepto un perfil profesional dentro del área de

la topografía y geodesia.

1.8.6. Importancia Técnica

Construir una carretera que permita contar con una infraestructura adecuada, cuyas

características geométricas, tengan un buen sistema de drenaje, taludes estables,

superficie de rodadura pavimentada que garantice la transitabilidad segura durante

todo el año al tráfico vehicular, considerando el uso adecuado de los recursos

económicos.

1.9. Ubicación y Descripción del Proyecto

1.9.1. Ubicación Geográfica del Proyecto

El municipio de Aiquile y Puente Taperas se encuentran ubicados geográficamente entre las siguientes coordenadas.

MUNICIPIO DE AIQUILE

$$\varphi = 18^{0}11' \text{ S}$$

$$\lambda = 65^{0}10' \text{ W}$$

PUENTE TAPERAS

$$\varphi = 18^{0}5' \text{ S}$$

$$\lambda = 64^{0}41' \text{ W}$$

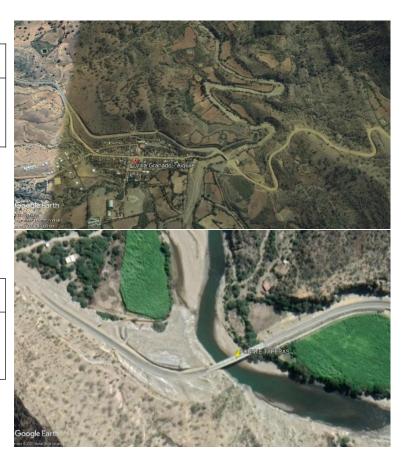


Figura No. 1 - Imagen Satelital de Puente Taperas.

Fuente: Google Earth

1.9.2. División Político Administrativa

La carretera Villa Granado-Puente Taperas se encuentra localizado en la región central del país en los departamentos de Cochabamba (provincia Campero - municipio de Aiquile) y termina en el Puente Taperas al límite Departamental entre Cochabamba y Santa Cruz y forma parte de la Red Vial Fundamental RF-5, pasando

por las poblaciones de Callejones, Peña Colorada, Calera, Perereta, Amaya, Pérez, Pantoja y Taperas.

Figura No. 2 - Ubicación geográfica del tramo Villa Granado-Puente Taperas. Fuente: Elaboración propia

Figura No. 3 – Plano General del tramo Villa Granado-Puente Taperas. Fuente: Elaboración propia

División politico administrativa del Proyecto		
País	Bolivia	
Departamento	Cochabamba	
Provincia	Campero	
Municipio	Aiquile	
Población	Aiquile: 7800 habitantes	
Superficie	2500 km2	

Tabla No. 1 - División político administrativa del proyecto Fuente. Elaboración propia

El clima varía según las alturas, así el sector del km 30 (Villa Granado) se encuentra a 2189 m.s.n.m. con clima cálido y Puente Taperas se encuentra a 1415 m.s.n.m. con clima templado de Valle.

Desde la población de Peña Colorada, y con rumbo Noreste - Este hasta la estancia Pantoja (1380 m.) la carretera va por el margen Sur del río Mizque, cortando en forma transversal serranías y valles con lineamientos Noroeste-Sureste y pasando localidades como Perereta (1640 m.) y Pérez (1500 m.)

Zonas Onduladas:

Sector: Villa Granado – Estancia Callejones

Zona Montañosa:

Sector: Peña Colorada – Puente Taperas

Zona Muy Montañosa:

Sector: Estancia Callejones – Peña Colorada

1.9.3. Clima

El municipio de Aiquile el clima es semiárido, mesotermico (templado), con poca o ninguna demasía de agua y una eficiencia térmica normal para el clima.

En Aiquile, los veranos son cortos, caliente y mayormente nublados y los inviernos son cortos, frescos, secos y parcialmente nublados. Durante el transcurso del año, la temperatura generalmente varía de 4 °C a 27 °C y rara vez baja a menos de 1 °C o sube a más de 31 °C.

1.9.4. Aspectos ambientales.

En el municipio de Aiquile se identifica los diferentes pisos ecológicos o zonas de vida que son:

Bosque húmedo montañoso templado

El clima es muy variado, en la parte Norte y las cordilleras es muy húmedo y los suelos están expuesto a los vientos.

Bosque seco templado

Esta zona se distingue por zonas tropicales y subtropicales con climas bajas y escarchas para la producción de plantas de origen templado.

Monte espinoso templado

Este paisaje está dominado por un amplio pasaje de valle joven, susceptible a alargamiento y profundización. Los suelos son de textura arenosa, excesivamente lavados y con poca capacidad de retención de humedad.

1.9.5. Recursos hídricos:

Las principales fuentes de abastecimiento de agua del municipio de Aiquile provienen de vertientes ubicadas en la zona los cuales son utilizados tanto para consumo humano como para riego.

De acuerdo a sus condiciones Hidrográficas, en el municipio de Aiquile se han identificado dos sistemas que son:

- Sistema de cuencas del Rio Mizque
- Sistema de cuencas del Rio Grande

El sistema de cuencas del Rio Misque dispone de cinco ríos principales y otros de menor consideración, alcanzando una superficie de 94.286 has. Que representan el 37.35% del total municipal.

La cuenca del Rio Grande está formada por ocho ríos importantes entre otros menores, con una superficie total de 158.114 has. Alcanza el 62.66% de la representatividad a nivel municipalidad.

CAPITULO II MARCO TEORICO

2.1. Topografía

Es la Ciencia, Arte y Tecnología que tiene por objeto la medición de pequeñas superficies terrestres el cual es considerado como plana, además de representar los mismos con todos sus accidentes, particularidades naturales o artificiales de su superficie y tiene una longitud aproximada de limite que es de 25 km o 625 km2. La Topografía deriva del griego Topos (lugar) y Graphein (describir) y procede del vocablo "topo-grafos", se puede traducir como la descripción exacta y minuciosa de un lugar, con todos los detalles naturales y artificiales¹.

Las mediciones en la Topografía se realizan mediante las medidas lineales y angulares, necesarias para la confección de los planos y mapas, actualmente se encuentra ligado a la Geodesia. Se debe tomar en cuenta las siguientes hipótesis sobre la diferencia de la Topografía con respecto a la Geodesia.

- La línea que une dos puntos sobre la superficie de la tierra es una línea recta.
- Las direcciones de la plomada, en dos puntos cuales quiera son paralelos.
- La superficie imaginaria de referencia, respecto a la cual se toman las alturas es una superficie plana.
- El ángulo formado por la intersección de dos líneas sobre la superficie terrestre es un ángulo plano y no esférico.

La Topografía se divide en dos grandes aspectos, en sentido de la representación de la superficie de la tierra y se refiere a los siguientes:

Planimetría: Parte de Topografía, que estudia los métodos y procedimientos que nos servirán para conseguir la representación a escala sobre un plano, de todos los detalles topográficos artificiales y naturales, prescindiendo del relieve.

_

¹ Nociones de Topografía - Enciclopedia Libre Wikipedia

Altimetría: En esta parte de Topografía, se estudia los métodos que sirven para definir las posiciones relativas o absolutas, de los puntos sobre la superficie terrestre (tercera dimensión), proyectados sobre el plano vertical, mediante un procedimiento fundamental conocido como la nivelación, que nos sirve para determinar diferencias de elevaciones entre diferentes puntos de la tierra.

El levantamiento topográfico, es un conjunto de operaciones ejecutadas sobre una parte de la superficie de la tierra, con los instrumentos adecuados para poder confeccionar una correcta representación gráfica de un plano, el cual es prescindible para ejecutar cualquier proyecto u obra de ingeniería ya sea en la etapa de planificación, ejecución o supervisión, que se desee llevar acabo, además la posición de estos levantamientos en la actualidad deben ser realizadas en su posición georreferenciada (X,Y,Z).

La realización de un levantamiento topográfico en cualquier parte de la superficie de la tierra, constituye una de las actividades principales de la labor cotidiana de los topógrafos, donde han de utilizarse los diferentes métodos fundamentales de la topografía.

Anteriormente se lo realizaban con instrumentos como ser los teodolitos y taquímetros, por medio de las lecturas de ángulos horizontales, verticales y las lecturas a los (hilos medio, superior e inferior), para posterior cálculo de las distancias y coordenadas por medio de las planillas taquimétricas, todo esto de forma manual óptica y mecánica.

En la actualidad para los levantamientos topográficos se los utiliza las Estaciones Totales, que es una combinación de un teodolito y un instrumento EDM, junto a un equipo que tiene la capacidad de realizar diferentes cálculos. Estos equipos miden de forma electrónica los ángulos horizontales y verticales, distancias inclinadas, calculan los componentes horizontales y verticales de esas distancias, determinando las coordenadas de forma automática y al instante de todos los puntos observados.

Una poligonal es una serie de operaciones que se tiene que realizar para poder determinar la posición relativa o absoluta de un punto, por medio de una serie de líneas consecutivas que son conectados mediante la medición de ángulos y distancias.

Estas poligonales pueden ser realizadas mediante las mediciones de diferentes formas y con diferentes equipos y estos se clasifican en:

- Poligonal Abierta.
- Poligonal Cerrada.
- Poligonal Amarrada o de enlace.

Poligonal Abierta: Una poligonal abierta es cuando las líneas o las mediciones no regresan al punto de partida ni cierran a un punto con igual o mayor orden de exactitud, estas mediciones deben evitarse porque no ofrecen medio alguno de verificación por errores y equivocaciones.

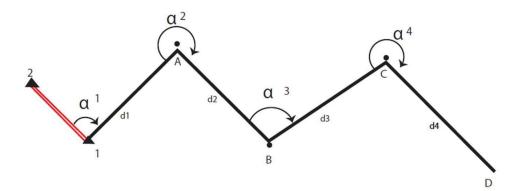


Figura No. 4 - Esquema de una poligonal abierta Fuente: Enciclopedia libre Wikipedia

Poligonal Cerrada: Una poligonal cerrada es cuando las líneas o las mediciones regresan al punto de partida, formándose así un polígono geométrico y analíticamente cerrado bajo condiciones de cierre angular 180*(n±2). En este caso los puntos de partida y de cierre deben ser observados dos veces de tal manera que será posible a ser verificados el cierre angular.

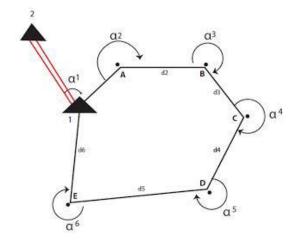


Figura No. 5 - Esquema de una poligonal cerrada Fuente: Enciclopedia libre Wikipedia

Poligonal Amarrada o de Enlace: Una poligonal de enlace o amarrada es cuando el trazo de la poligonal está sujeta a dos pares de puntos geodésicos o puntos de control conocidos, los cuales tienen un azimut y sus coordenadas (x, y, z) bien definidas que permiten la verificación e identificación de los errores y es el más usado en las carreteras.

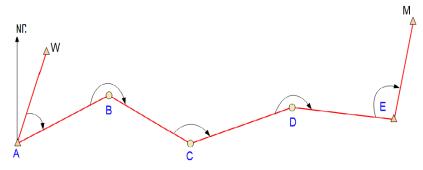


Figura No. 6 - Esquema de una poligonal con enlace Fuente: Enciclopedia libre Wikipedia

2.1.2. Nivelación

La nivelación es el proceso de medición de elevaciones o altitudes de puntos sobre la superficie de la tierra. La elevación o altitud es la distancia vertical medida desde la superficie de referencia hasta el punto considerado. La distancia vertical debe ser medida a lo largo de una línea vertical definida como la línea que sigue la dirección de la gravedad o dirección de la plomada (figura No. 7).

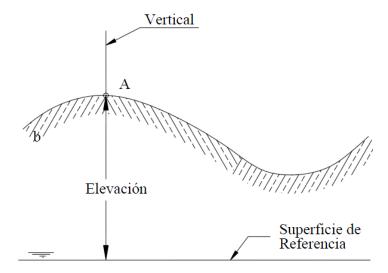


Figura No. 7 - Elevación o altitud de un punto Fuente: Leonardo Casanova M.

2.1.2.1. La Cota Absoluta de un Punto

Es la distancia vertical entre la superficie equipotencial que pasa por dicho punto y la superficie equipotencial de referencia o superficie del elipsoide.

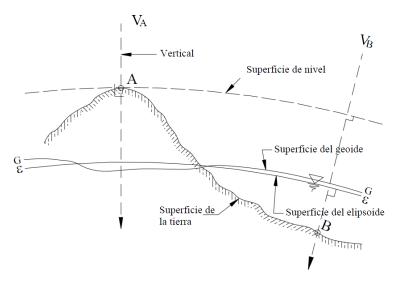
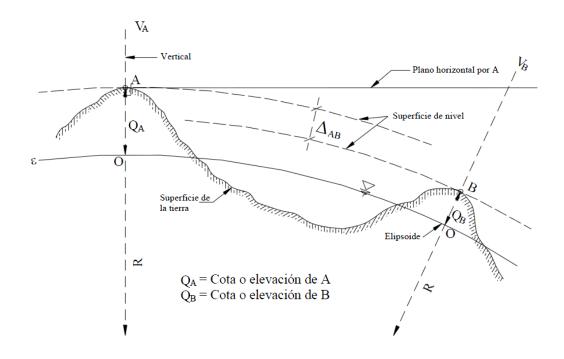
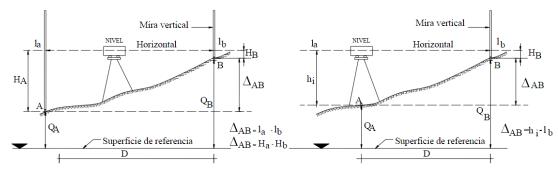


Figura No. 8 - Representación de las superficies del geoide y el elipsoide Fuente: Leonardo Casanova M.




Figura No. 9 - Plano horizontal de un punto sobre la superficie de la tierra Fuente Leonardo Casanova M.

2.1.3. Nivelación Geométrica

La nivelación geométrica o nivelación diferencial es el procedimiento topográfico que nos permite determinar el desnivel entre dos puntos mediante el uso del nivel y la mira vertical.

La nivelación geométrica mide la diferencia de nivel entre dos puntos a partir de la visual horizontal lanzada desde el nivel hacia las miras colocadas en dichos puntos (figura 10).

Cuando los puntos a nivelar están dentro de los límites del campo topográfico altimétrico y el desnivel entre dichos puntos se puede estimar con una sola estación, la nivelación recibe el nombre de nivelación geométrica simple (figura 10). Cuando los puntos están separados a una distancia mayor que el límite del campo topográfico, o que el alcance de la visual, es necesario la colocación de estaciones intermedias y se dice que es una nivelación compuesta (figura No. 11).

a. Nivelación desde el medio

b. Nivelación desde el extremo

Figura No. 10 - Nivelación Geométrica Simple Fuente Leonardo Casanova M.

2.1.4. Control de Nivelaciones

Para poder determinar el error de cierre de una nivelación, es necesario realizar una nivelación cerrada (de ida y vuelta) o una nivelación de enlace con puntos de control (BM) al inicio y al final de la nivelación.

2.1.4.1. Error de Cierre

El error de cierre de una nivelación depende de la precisión de los instrumentos utilizados, del número de estaciones y de puntos de cambio y del cuidado puesto en las lecturas y colocación de la mira.

En una nivelación cerrada, en donde el punto de llegada es el mismo punto de partida, la cota del punto inicial debe ser igual a la cota del punto final, es decir: la suma de los desniveles debe ser igual a cero, tal y como se muestra en la figura 6.10.

La diferencia entre la cota final y la inicial nos proporciona el error de cierre de la nivelación

$$En = Qf - Qi$$

El error de cierre también puede ser calculado por medio del desnivel total como:

$$E_n = \Sigma L_{AT} - \Sigma L_{AD}$$

La nivelación cerrada se puede realizar levantando los mismos puntos de ida y vuelta, o, preferiblemente, por caminos distintos, retornando siempre al punto inicial.

En una nivelación de enlace los puntos extremos forman parte de una red de nivelación de precisión, por lo que la cota o elevación de sus puntos son conocidas.

En este tipo de nivelación, la diferencia entre el desnivel medido y el desnivel real nos proporciona el error de cierre.

El desnivel medido se calcula por la siguiente ecuación

$$\Delta AB = \Sigma LAT - \Sigma LAD$$

y el desnivel real reemplazando los valores de las cotas conocidas en la ecuación, luego el error de cierre será:

$$En = (\Sigma LAT - \Sigma LAD) - (QB - QA)$$

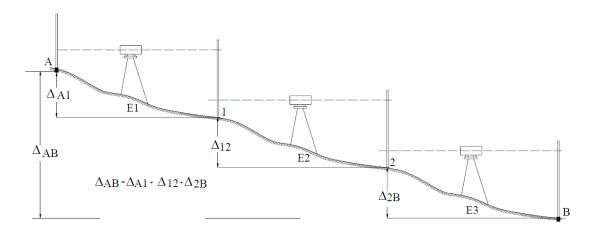


Figura No. 11 - Nivelación de enlace Fuente: Leonardo Casanova M.

2.1.4.2. Tolerancia del Error de Cierre

La tolerancia del error de cierre depende de la importancia del trabajo, de la precisión de los instrumentos a utilizar y de las normativas existentes.

Las nivelaciones se pueden clasificar en nivelaciones de primer, segundo y tercer orden, siendo las de tercer orden las de uso común en los trabajos de ingeniería. La tolerancia de cierre generalmente se expresa mediante la siguiente ecuación:

$$T_n = m \sqrt{K}$$

Donde:

 T_n = Tolerancia para el error de cierre en mm

m = Valor dependiente de los instrumentos, método y tipo de nivelación requerida

K = Longitud total de la nivelación en Km

Para nivelaciones de tercer orden se recomienda un valor de m entre 12 y 15 mm

2.2. Geodesia

La geodesia es una ciencia que estudia y se encarga de establecer la forma, figura, dimensiones, campo de la gravedad externo de la tierra y otros cuerpos celestes, en función del tiempo; al igual que, determinar el elipsoide terrestre medio a partir de parámetros observados sobre y exteriormente a la superficie de la tierra. La Geodesia nos sirve para el Control Horizontal, antiguamente se los hacía por medio de los Sistemas Locales (PSAD-56), pero en la actualidad los controles Horizontales y Verticales se lo determinan por medio de los Sistemas Globales (WGS-84) y el uso de las Tecnologías GNSS que nos arrojan datos o coordenadas tridimensionales (X, Y, Z).

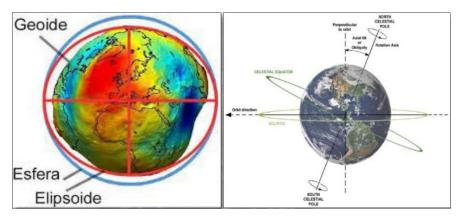


Figura No. 12 - La geodesia y las formas de la tierra Fuente: Revistas Interna MundoGeo

Superficie Topográfica: Superficie en donde el hombre realiza sus labores cotidianas (levantamientos planimétricos, altimétricos, topográficos y catastrales)

Superficie Física: Superficie equipotencial o de nivel del campo gravitatorio terrestre (Origen de las alturas ortométricas). Por razones de conveniencia el Nivel Medio del Mar es tomado como la superficie que mejor se aproxima al geoide, idealmente extendida bajo los continentes, de modo que la dirección de las líneas verticales cruce perpendicularmente esta superficie en todos los puntos.

Superficie Matemática: Superficie que más se aproxima al Geoide y donde se realizan los cálculos matemáticos que permiten obtener las coordenadas Geodésicas (Longitud y Latitud), de los diferentes puntos sobre la superficie topográfica.

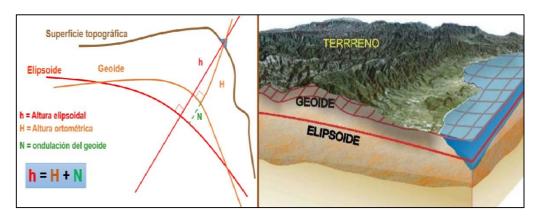


Figura No. 13 - Superficies de referencia Fuente. Revistas Interna MundoGeo

2.2.1. Coordenadas Geográficas

Sobre el elipsoide se define un sistema de coordenadas para establecer la posición de un punto sobre la superficie terrestre. La situación de un punto sobre el elipsoide terrestre queda determinada por la intersección de un meridiano y un paralelo, constituyendo sus coordenadas geográficas **Longitud y Latitud**.

- Meridianos: secciones elípticas producidas por la intersección del elipsoide por cualquier plano que contiene el eje de revolución de La Tierra.
- Paralelos: secciones circulares producidas por la intersección del elipsoide con planos perpendiculares al eje de revolución.
- Latitud (φ): valor angular que forma el plano del Ecuador con la normal del elipsoide en el punto considerado.
- Longitud (λ): valor angular entre dos planos meridianos (Greenwich). Las longitudes se miden de 0º a 180º a uno y otro lado del meridiano origen, añadiendo la denominación Este o positiva u Oeste o negativa, según se cuente en uno u otro sentido.

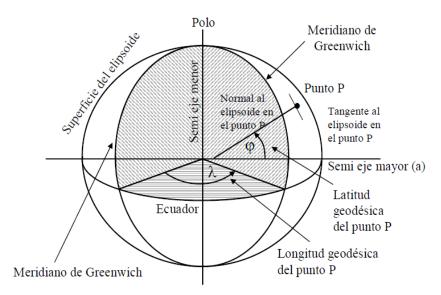


Figura No. 14 - Descripción de las coordenadas geodésicas Fuente: Guzmán Gallardo 2007

Ya que el planeta Tierra es un cuerpo que posee una rotación alrededor de su eje, resulta obvio usar su eje de rotación como datum para definir su geometría. Este eje interseca la superficie del globo en dos puntos, los cuales son los polos de un gran círculo primario cuyo plano es perpendicular al eje. El gran círculo primario es el ecuador y sus polos geográficos son el polo norte y el polo sur. Los círculos secundarios al ecuador están conformados por dos semicírculos, uno de los cuales

recibe el nombre de meridiano, y su complementario el de antimeridiano. Para medir distancias sobre la superficie de la esfera, se utiliza un sistema de coordenadas polares tridimensionales cuyo origen se encuentra en el centro de la esfera.

Latitud: La latitud de un punto es el ángulo medido desde centro de La Tierra, entre el plano del ecuador y el radio trazado por dicho punto. Se denota con la letra griega φ .

Longitud: La longitud de un punto es el ángulo medido en el plano del ecuador entre el plano del meridiano que contiene el punto y otro meridiano tomado como datum. Generalmente este meridiano de referencia es el meridiano de Greenwich. Se denota con la letra griega λ .

2.3. Sistema Global de Navegación Satelital GNSS

El acrónimo en inglés es Global Navigation Satellite System, es hoy en día el término que reemplaza al tan usado y conocido GNSS. En rigor es lo mismo, pero este nuevo término generaliza a todos los sistemas que hoy y en el futuro estarán disponibles para realizar mediciones como por ej.: GNSS (Sistema Norteamericano), GLONASS (Sistema Ruso), GALILEO (Sistema Europeo) y COMPASS (Sistema Chino). Esta constelación de satélites que transmite rangos de señales que se utilizan para el posicionamiento en cualquier parte de la tierra, nos permiten determinar las coordenadas geográficas y la altitud de un punto respecto de un elipsoide de referencia.

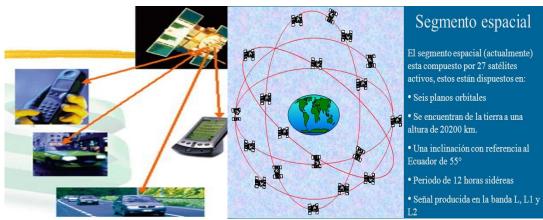


Figura No. 15 - Segmentos sistema GNSS

Fuente, Guzmán Gallardo 2007

El sistema GNSS está compuesto por el segmento espacial conformado por los satélites, el Segmento de Control conformado por una serie de estaciones de control y el Segmento del Usuario conformado por los receptores GNSS, donde interactúan entre sí para determinar la posición. El segmento de control está conformado por 5 estaciones de rastreo en todo el mundo, monitoreadas por el ministerio de Defensa de los Estados Unidos de Norte América².

El segmento espacial está compuesto por 24 satélites activos y tres de reserva en constelación a una altura de 20.200 Km. aproximadamente, distribuidos en 6 planos orbitales separados cada 60 grados, cuatro satélites están por cada plano, 3 de ellos funcionan y uno queda como repuesto.

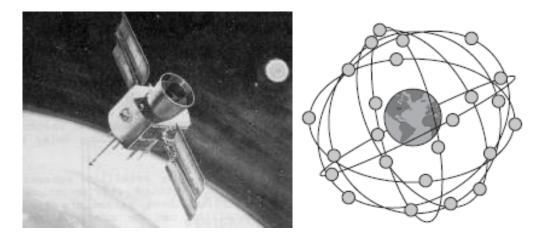


Figura No. 16 - Segmentos espacial del sistema GNSS Fuente: Guzmán Gallardo 2007

Su órbita es circular de 26560 Km de radio y poseen un periodo de 12 horas promedio. Al ser el periodo de rotación de la tierra de 23h y 56 min., por lo tanto, su velocidad de rotación casi la mitad que la de un satélite GNSS, este recorre en 24 horas dos veces su órbita espacial. La señal que emiten los satélites es libre y cualquier persona que posea un GNSS puede captarla y así determinar una posición geográfica, ya sea en tierra, mar o aire sin ningún costo y bajo diferentes condiciones atmosféricas, es

_

² Guzmán Gallardo Javier 2007 Principios y Aplicaciones de Geodesia Satelitaria Leonardo Casanova M. Sistema de Posicionamiento Global

decir no es afectada por el viento, lluvias u otros fenómenos, tanto en el día como en la noche.³

2.3.1. Tipos de Posicionamiento

Debido a sus numerosas ventajas en materia de precisión, rapidez y productividad, el sistema GNSS se está empleando cada vez más en topografía. No obstante, debe tenerse en cuenta que las técnicas empleadas son muy diferentes a los de métodos clásicos. Se pueden citar los siguientes tipos de posicionamiento:

2.3.1.1. Posicionamiento Puntual o Absoluto

Un posicionamiento es absoluto, cuando se calcula la posición del punto utilizando las medidas de seudo-distancia ya sea procedentes del código C/A, o código P.

Dependiendo del código que utilicemos y de la disponibilidad selectiva obtendremos una precisión que variará de 15 a 100 m. Este tipo de posicionamiento es utilizado por los equipos llamados navegadores.

Gracias a los últimos avances tecnológicos, y la desaparición de la disponibilidad selectiva, existen en el mercado receptores que alcanzan precisiones de 3-5 m en tiempo real.

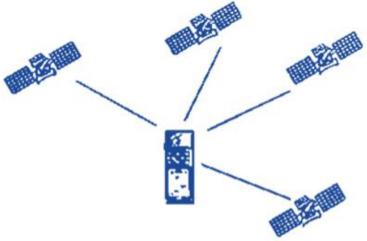


Figura No. 17 - Posicionamiento absoluto GNSS Fuente. Leonardo Casanova

-

³ Leonardo Casanova M. Sistema de Posicionamiento Global

2.3.1.2. Posicionamiento Diferencial, Diferido o Relativo

Este método involucra dos o más instrumentos GNSS, con el fin de eliminar los errores propios del sistema GNSS, calculando los incrementos de coordenadas desde el equipo de referencia al móvil.

Este incremento de coordenadas vendrá dado en el sistema geocéntrico de coordenadas. La gran ventaja de este método es que los errores de posicionamiento muy similar o común en ambos puntos, no tienen ninguna influencia en los incrementos de coordenadas.4

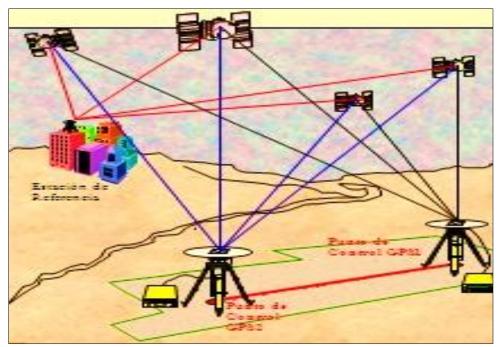


Figura No. 18 - Posicionamiento diferencial GNSS Fuente, Leonardo Casanova

2.3.2. Técnicas de Medición

Existen diferentes técnicas de medición que pueden ser utilizadas por la mayoría de receptores topográficos GNSS.

⁴ Guzmán Gallardo Javier 2006 Principios y Aplicaciones de Geodesia Satelitaria Leonardo Casanova M. Sistema de Posicionamiento Global

2.3.2.1. Método Estático

Este fue el primer método en ser desarrollado para levantamientos con GNSS. Puede ser utilizado para la medición de líneas bases largas (generalmente 20km -16 millas - o más). Se coloca un receptor en un punto cuyas coordenadas son conocidas con precisión en el sistema de coordenadas WGS84. Este es conocido como el Receptor de Referencia. El otro receptor es colocado en el otro extremo de la línea base y es conocido como el Receptor Móvil. Los datos son registrados en ambas estaciones en forma simultánea. Es importante que los datos sean registrados con la misma frecuencia en cada estación. El intervalo de registro de datos puede ser establecido en 15, 30 o 60 segundos.

Los receptores deben registrar datos durante un cierto periodo de tiempo. El tiempo de observación dependerá de la longitud de la línea, el número de satélites observados y la geometría (Dilución de la Precisión o DOP). Como regla general, el tiempo de observación deberá ser por lo menos de una hora para una línea de 20km. con 5 satélites y un GDOP prevaleciente de 8. Líneas más largas requieren tiempos de observación más largos. Una vez que se ha registrado suficiente información, los receptores se apagan. El Móvil se puede desplazar para medir la siguiente línea base y volver a comenzar la medición.⁵

Aplicaciones:

- Control Geodésico.
- Redes Nacionales e internacionales.
- Control de movimientos tectónicos.
- Control de deformaciones en diques y estructuras.

2.3.2.2. Método Estático Rápido

Este método es muy similar al método estático, tanto en el levantamiento como en su procesamiento, solo se puede realizar con equipos GNSS de doble frecuencia (con código P). La segunda variante es que el tiempo de posicionamiento varía

Proyecto de Grado de: Constantino Vargas Flores

⁵ Guzmán Gallardo Javier 2006 Principios y Aplicaciones de Geodesia Satelitaria

dependiendo de la línea base que no podrá ser mayor a 10 Km y con un tiempo de observación de 10 a 20 minutos.

Aplicaciones:

- Levantamientos de control, densificación.
- Sustituye al método clásico de poligonales.
- Determinación de puntos de control, ingeniería civil, bases de replanteo.
- Levantamiento de detalles y deslindes.
- Cualquier trabajo que requiera la determinación rápida de un elevado número de puntos.
- Apoyos fotogramétricos.

Ventajas:

- Sencillo, rápido y eficiente comparado con los métodos clásicos
- No requiere mantener el contacto con los satélites entre estaciones.
- Se apaga y se lleva al siguiente punto.
- Reducido consumo de energía.
- Ideal para un control local.
- No existe transmisión de errores ya que cada punto se mide independientemente.

2.3.2.3. Método Cinemático

El método cinemático es el más rápido en los levantamientos con equipo GNSS, pero al mismo tiempo el más exigente en cuanto a la colecta de datos y procesamiento, por lo que debe ser extremadamente cuidadoso al realizar el levantamiento, para evitar la pérdida de la señal de los satélites enganchados. Los tiempos de posicionamiento será de dos minutos por lo menos⁶.

Proyecto de Grado de: Constantino Vargas Flores

⁶ Guzmán Gallardo Javier 2006 Principios y Aplicaciones de Geodesia Satelitaria

Aplicaciones:

- Determinación de la trayectoria de objetos en movimiento.
- Levantamientos de ejes de carreteras y ferrocarriles.
- Medición de perfiles transversales.
- Levantamientos hidrográficos, Batimetría.

2.3.2.4. Método en Tiempo Real Cinemática (RTK)

Este método tiene gran utilidad en el replanteo, los equipos requieren estar conectados a un radio MODEM, el cual transmite las correcciones de error que se presentan al captar la señal de los satélites, estos errores son transmitidos por el radio MODEM al Rover y este compensa y corrige, realizándose esta simultáneamente, los equipos deben ser capaces de trabajar en esta modalidad y el radio MODEM tiene un alcance de 10 Km. Como máximo además que debe tener línea de vista entre la estación y el Rover, por el radio MODEM⁷.

2.4. Cartografía

Desde los albores de la humanidad como especie nómada, el hombre ha sentido la necesidad de representar los accidentes naturales (Hidrografía y orografía), sobre la superficie terrestre, para poder desplazarse (migrar, navegar), de manera segura, en busca de mejores niveles de subsistencia. Con el tiempo, el objetivo de estos primeros trazos era el de servir de apoyo al traslado o navegación, e indicaban las direcciones (rumbos), necesarios para ir de un lugar a otro.

Al verse la importancia de la navegación, una vez que la humanidad dominó los mares, la exactitud en la representación de las tierras emergidas se consideraba accesoria, siendo lo fundamental la exactitud en rumbos y distancias entre los primeros puertos; sin embargo, con el tiempo ya no bastaba con poder llegar a puerto, sino que había que medir distancias y superficies sobre los nuevos territorios para conseguir mayor poderío sobre estos. Por otro lado, "se hizo necesario representar

-

Guzmán Gallardo Javier 2005 Principios y Aplicaciones de Geodesia Satelitaria Leonardo Casanova M. Sistema de Posicionamiento Global

los diversos elementos, recursos y factores de la superficie terrestre para conseguir una mejor visión de la distribución de los fenómenos naturales y asentamientos humanos sobre la superficie terrestre". 8

El año 1512, año nace en Rupelmonde, (Flandes), **Gerhard Kremer**, más conocido como **Mercator**. Famoso por su habilidad en la creación de mapas y globos, por ser el primero en utilizar la palabra "atlas" para describir la colección de mapas en un volumen, por su caligrafía y por nombrar a Norte América como tal en un mapa de 1538. Se interesó por el gran problema de la navegación de la época, recorrer largas distancias a través del océano, siguiendo una trayectoria de rumbo constante bajo una carta náutica donde esta trayectoria aparezca representada de manera sencilla e inmediata. En 1541 dibujó por primera vez sobre la esfera las loxodrómicas o líneas de rumbo constante (cortan a los meridianos con ángulo constante). La gran utilidad de esta proyección es que las loxodrómicas son, sobre la tierra, curvas que van cortando con un ángulo constante a los meridianos, y por lo tanto fácilmente navegable al mantenerse fijo el rumbo, queda representado en la carta como una recta. Sin embargo, la distancia más corta entre dos puntos en la Tierra no es la loxodrómica, sino la ortodrómica, proyectada en la carta como una curva.

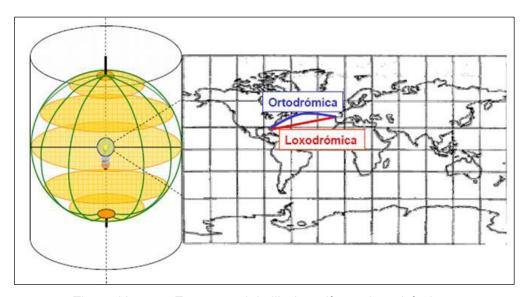


Figura No. 19 - Esquema del cilindro y líneas loxodrómicas Fuente. Coppel, Alonso

•

⁸ Coppel, Alonso, pag.30

En 1569 realizó un mapa titulado: " Nova et Aucta Orbis Terrae Descriptio ad Usum

Navigantium Emendate Accommodate". (Nueva y Aumentada descripción de la Tierra

con Correcciones para uso de la Navegación).

A la vez publicó su famoso Atlas bajo su nueva proyección cilíndrica. El título de esta

obra dio origen a la denominación de atlas a toda colección de mapas que

representen la Tierra. Mas tarde, Edward Wright (1558-1615) de Inglaterra, desarrolló

la proyección matemáticamente y en 1559 publicó tablas de secantes acumulativas,

indicando el espaciado desde el Ecuador.

Mercator demostró que un sistema de proyección geométrico, junto con un sistema

de localización basado en coordenadas cartesianas, es decir basadas en un par de

ejes ortonormales. (X, Y), formando una cuadrícula, mejoraba la fiabilidad de

distancias, áreas o ángulos medidos sobre los mapas, tiempo después su sistema se

denominó, proyección Transversal de Mercator (TM).

Describió en latín la naturaleza de la proyección en su mapa de América: "...En este

mapa del mundo hemos querido proyectar la superficie del globo en un plano de tal

forma que los lugares estén propiamente localizados, no sólo con respecto a su

dirección y distancia de unos a otros, sino también en concordancia con sus latitudes

y longitudes, y más, que la forma de los países tal como aparecen en el globo, sea

preservada tanto como posible. Para ello fue necesario una nueva ordenación de

meridianos, haciéndolos paralelos, pues los mapas con meridianos curvos producidos

por los geógrafos no sirven para la navegación. Tomando esto en consideración,

hemos aumentado los grados de la latitud hacia el polo en proporción al aumento de

la razón de los paralelos con el Ecuador."9

En este sistema, se emplea una superficie desarrollable intermedia como es el

Cilindro, siendo esta proyección tangente a la línea del ecuador y directa, es decir el

eje del cilindro coincide con el eje de la Tierra. La proyección cuya solución es

matemática, aunque tiene origen cilíndrico horizontal, considera la Tierra encerrada

en un cilindro transverso conforme cuyo eje orientado paralelo al plano ecuatorial,

⁹ Coppel, Alonzo, pág. 33.

tangente al elipsoide de referencia a lo largo de un meridiano origen. Los puntos de la superficie son proyectados por rayos de proyección sobre el cilindro, que al cortarlo y desarrollarlo se obtiene un plano en que los paralelos y meridianos quedando representados por líneas curvas complejas que se cortan en ángulo recto. A lo largo de los años, el trabajo de Mercator aportó a la solución cartográfica de los grandes viajes transoceánicos en plena era de los descubrimientos. Murió en 1595 sin sospechar la importancia que tendría posteriormente su proyección. La versión esférica de esta proyección fue presentada por el cartógrafo y matemático alsaciano Johann Heinrich Lambert (1728-1777). La gran diferencia entre esta representación y la originaria de Mercator radica en que el cilindro no se coloca en posición directa (tangente al ecuador), sino en posición transversa (tangente a un meridiano).

Lambert, publicó en 1772 un volumen con siete proyecciones (acimutal equivalente, cónica conforme, cilíndrica equivalente, etc.) siendo una de ellas la Transversa de Mercator. Los trabajos de Lambert continuaron hasta dar una tabla de coordenadas y un mapa de las Américas en esta proyección. El desarrollo paralelo de las ciencias matemáticas permitió la creación de tablas de transformación y el tratamiento del mapa como el resultado de la aplicación de unas determinadas leyes matemáticas. Pero hasta 1822 la proyección Transversa de Mercator no recibió un tratamiento matemáticamente preciso, donde la Tierra fuese considerada elipsódica.¹⁰

Carl Fiedrich Gauss (1777-1855), analizó la proyección de Lambert y refinó las fórmulas para que se adecuasen al nuevo modelo matemático terrestre. Es autor de numerosos teoremas y desarrollos que han contribuido en gran medida al progreso de la ciencia y la técnica. Su conocimiento y talento matemáticos los aplicó a diferentes ramas de la ciencia, como la astronomía donde ideó un sistema para el cálculo de las orbitas de los cuerpos celestes, o en la física donde investigó el magnetismo (de hecho, la unidad de inducción magnética lleva su nombre).¹¹

Al finalizar el siglo XVIII, los estados europeos habían alcanzado el grado de organización suficiente como para establecer sociedades geográficas. ¹² En 1912

¹⁰ Coppel, Alonso, pág. 35

¹¹ Vera M, 2008, pág. 29

¹² Coppel, Alonso, pág. 38

Krüger publicó una serie de fórmulas relativas al elipsoide en las que se detallaba la transformación elipsoide-plano para puntos del elipsoide, por ello en Europa a la proyección se la conoce con el nombre de proyección de Gauss- Krüger, mientras que en EEUU se la denomina Transversa Mercator.

Figura No. 20 - Proyección transversal de Mercator (Gauss Kruger) Fuente. Vera M. 2008

La proyección se empleó en Europa, fundamentalmente en Alemania y Rusia. Varios países Latino americanos la adoptaron para su cartografía base, como Argentina, Brasil, Chile, Uruguay, entre otros. Era una proyección regional o propia de cada país.

2.4.1. Sistema De Proyección TM

En el siguiente cuadro (1) se resume la evolución del sistema.

GERHARDUS	EDWARD	JOHANN	CARL	L.KRUGER
MERCATOR	WRIGHT	LAMBERT	GAUSS	
Crea la proyección cilíndrica.	Desarrolla la proyección de Mercator, matemáticamente	Resuelve el problema de pérdida de escala, colocando el cilindro transversal al eje del mundo.	Desarrolla analíticamente la proyección TM.	Pública las fórmulas referidas al elipsoide

Tabla No. 2 - Evolución de la TM

Fuente: Tapia M.

2.4.2. Sistema de Coordenadas Universal Transversal de Mercator

El sistema de coordenadas UTM fue desarrollado por el Cuerpo de Ingenieros del Ejército de los Estados Unidos en la década de 1940. El sistema se basó en un modelo elipsoidal de la Tierra. Se usó el elipsoide de Clarke de 1866 para el territorio de los 48 estados contiguos. Para el resto del mundo –incluidos Alaska y Hawái– se usó el Elipsoide Internacional. Actualmente se usa el elipsoide WGS84 como modelo de base para el sistema de coordenadas UTM. La UTM es una proyección cilíndrica conforme. El factor de escala en la dirección del paralelo y en la dirección del meridiano son iguales (h = k). Las líneas loxodrómicas se representan como líneas rectas sobre el plano (mapa). Los meridianos se proyectan sobre el plano con una separación proporcional a la del modelo, así hay equidistancia entre ellos. Sin embargo los paralelos se van separando a medida que nos alejamos del Ecuador, por lo que al llegar al polo las deformaciones serán infinitas. Por eso sólo se representa la región entre los paralelos 84ºN y 80ºS. Además, es una proyección compuesta; la esfera se representa en trozos, no entera. Para ello se divide la Tierra en husos de 6º de longitud cada uno, mediante el artificio de Tyson .

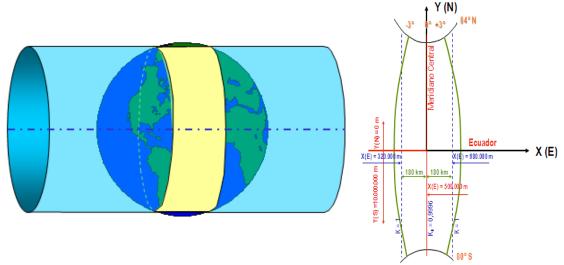


Figura No. 21 - Descripción de Sistema de proyección U.T.M. Fuente. Guzmán Gallardo 2007

La proyección UTM tiene la ventaja de que ningún punto está demasiado alejado del meridiano central de su zona, por lo que las distorsiones son pequeñas. Pero esto se consigue al coste de la discontinuidad: un punto en el límite de la zona se proyecta

en coordenadas distintas propias de cada Huso. Para evitar estas discontinuidades, a veces se extienden las zonas, para que el meridiano tangente sea el mismo. Esto permite mapas continuos casi compatibles con el estándar. Sin embargo, en los límites de esas zonas, las distorsiones son mayores que en las zonas estándar.

El origen de longitudes se toma con respecto al meridiano central de cada huso. Como valor de la abscisa X en dicho meridiano se toma X = 500.000 metros, con el fin de evitar valores negativos en las coordenadas.

El origen de latitudes se toma referido al Ecuador. Para el hemisferio norte, el valor de la ordenada en el Ecuador Y = 10.000.000 m., a fin de evitar valores negativos.

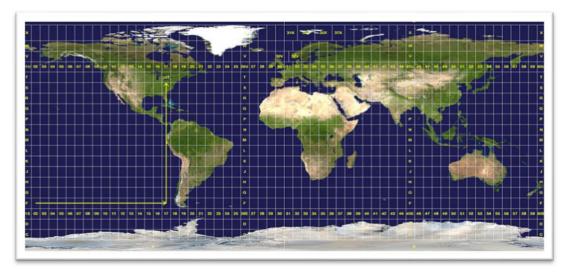


Figura No. 22 - Zonas del sistema de proyección U.T.M. Fuente. Guzmán Gallardo 2007

Husos UTM: Se divide la Tierra en 60 husos de 6° de longitud, la zona de proyección UTM se define entre los paralelos 80° S y 84° N. Cada huso se numera con un número entre el 1 y el 60, estando el primer huso limitado entre las longitudes 180° y 174° W y centrado en el meridiano 177° W. Cada huso tiene asignado un meridiano central, que es donde se sitúa el origen de coordenadas, junto con el ecuador. Los husos se numeran en orden ascendente hacia el este. Por ejemplo, la Península Ibérica está situada en los husos 29, 30 y 31, y Canarias está situada en el huso 28. En el sistema de coordenadas geográfico las longitudes se representan tradicionalmente con

valores que van desde los -180° hasta casi 180° (intervalo -180° \rightarrow 0° \rightarrow 180°); el valor de longitud 180° se corresponde con el valor -180°, pues ambos son el mismo.

Cada cuadrícula UTM se define mediante el número del huso y la letra de la zona; por ejemplo, la ciudad La Paz Bolivia se encuentra en la cuadrícula 16S, 68W

Zona	Meridiano Central	Meridiano Limite De Zona
19	69°	66°W a 72°W
20	63°	60°W a 66°W
21	57°	54°W a 57°W

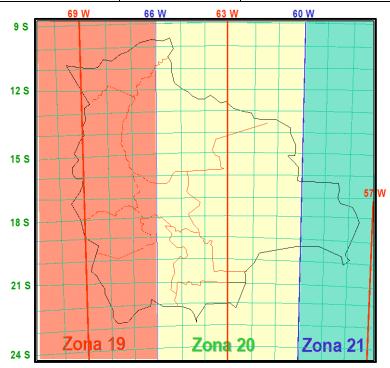


Figura No. 23 - Zonas U.T.M. que cubren Bolivia Fuente. Guzmán Gallardo 2007

2.4.3. Escala Gráfica

La escala gráfica es la representación en un plano de la escala geométrica. (Doménech) Esta escala permite tomar mediciones directamente del plano mediante el uso de un compás. La escala gráfica se dibuja al pie del plano y se divide en segmentos cuyo valor depende de la escala numérica del mismo¹³.

Proyecto de Grado de: Constantino Vargas Flores

¹³ http://es.wikipedia.org/wiki/Sistema_de_Coordenadas_Universal_Transversal_de_Mercator

2.5. Supervisión

La Supervisión, según la Etimología significa "mirar desde lo alto", lo cual induce la

idea de una visión global. Por otra parte, en su concepto más propio supervisión es

un proceso mediante el cual una persona procesadora de un caudal de conocimientos

y experiencias, asume la responsabilidad de dirigir a otras para obtener con ellos

resultados que les son comunes¹⁴.

Hoy más que nunca, se requiere en las empresas hombres pensantes, capaces de

producir con altos niveles de productividad en un ambiente altamente motivador hacia

sus colaboradores. Supervisar efectivamente requiere, planificar, organizar, dirigir,

ejecutar retroalimentar constantemente. Exige constancia, dedicación, perseverancia,

siendo necesario poseer características individuales en la persona que cumple esta

misión.

2.5.1. Supervisión Técnica

La supervisión es una actividad técnica y especializada que tiene como fin

fundamental utilizar racionalmente los factores que le hacen posible la realización de

los procesos de trabajo.

El supervisor es un elemento clave dentro de cualquier organización. De él depende

la calidad del trabajo, el rendimiento, la moral y el desarrollo de buenas actitudes por

parte de los trabajadores. El supervisor dirige y evalúa el trabajo.

¹⁴https://es.slideshare.net/sangabriel2005/supervisin-tcnica-de-obra

CAPITULO III MARCO METODOLOGICO

3.1. Metodología

Los trabajos de supervisión técnica están específicamente dirigidos a lograr la óptima ejecución técnica del Proyecto: "Construcción de la Carretera Tramo: Villa Granado - Puente Taperas", en aplicación a las especificaciones técnicas, diseños, planos, y demás documentos contractuales. Es por ello que la metodología empleada para cumplir con los objetivos planteados se desarrolla en dos etapas muy importantes, la etapa inicial y la etapa de control final, ver figura No. 24.

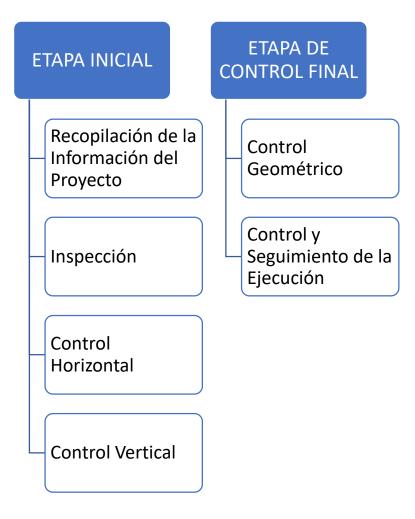


Figura No. 24 - Etapas del desarrollo de trabajo Fuente. Elaboración propia

3.1.1. Etapa Inicial

En esta primera etapa, la metodología de trabajo consiste en recopilar toda la información técnica, realizar inspecciones de campo (verificación de pares geodésicos, benchmark BM's), realizar la reposición de puntos de control en caso de pérdida, además de levantamientos topográficos de control. En resumen, la metodología de trabajo en la etapa inicial contempla las siguientes actividades:

- Recopilación de la Información del Proyecto
- Inspección
- Control Horizontal
- Control Vertical
- Reposición e implementación de puntos de control horizontal y vertical

La metodología aplicada para el control horizontal consiste en realizar la verificación de los puntos de control a través de mediciones GNSS en modo RTK y levantamientos taquimétricos, de acuerdo para que posteriormente la información obtenida sea tabulada en planillas de control para. La figura No. 25, muestra las características de la metodología de los trabajos de control horizontal.

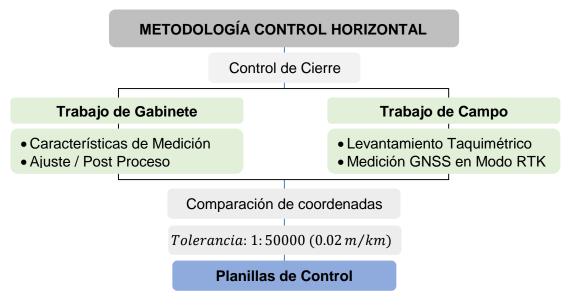


Figura No. 25 - Metodología del control Horizontal Fuente. Elaboración propia

Los trabajos de supervisión para el control vertical consisten en realizar la verificación del cumplimiento de las tolerancias establecidas por el ente fiscalizador (según ABC la nivelación deberá ser de segundo orden clase II con tolerancia de cierre de $8\sqrt{k}$ mm), la metodología de trabajo está basada en verificar la información presentada de los trabajos de nivelación en gabinete y campo para realizar una tabulación de todas las observaciones encontradas en una planilla de control. La figura No. 26, muestra las características de la metodología de los trabajos de control vertical.

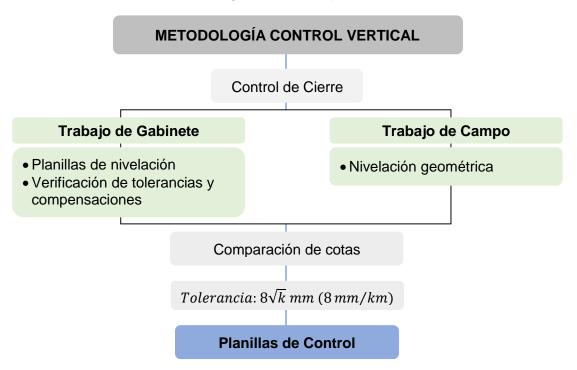


Figura No. 26 - Metodología del control Vertical Fuente. Elaboración propia

Como parte de los trabajos de supervisión y tras realizar las actividades de inspección en campo se debe realizar la reposición de los puntos de control horizontales y verticales que hayan sufrido remoción o en algunos casos la implementación de nuevos puntos en casos donde sea necesario. La figura No. 27, describe las características de la metodología aplicada para la reposición o implementación de los puntos de control horizontal y vertical.

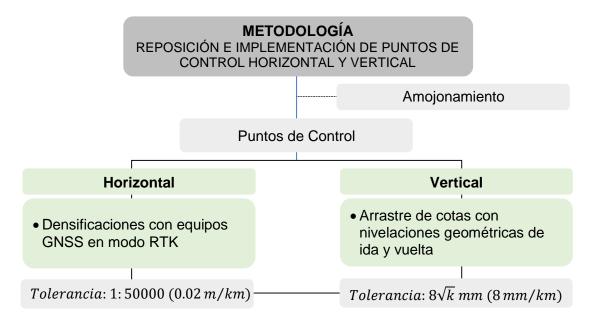


Figura No. 27 - Metodología de reposición e implementación de puntos de control Fuente. Elaboración propia

3.1.2. Etapa de Control Final

Los trabajos de control final son aquellos que están referidos al control geométrico con respecto al diseño del proyecto y el control de movimientos de tierras para la verificación de volúmenes. En la figura 28 se muestra las características de la metodología empleada.

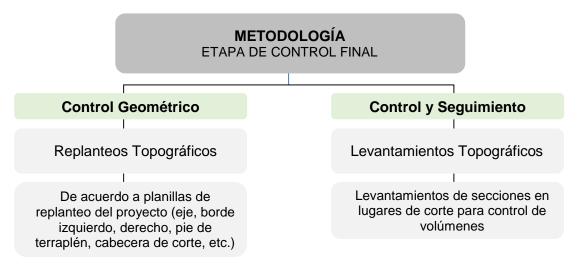


Figura No. 28 - Metodología para trabajos de la etapa de control final Fuente. Elaboración propia

3.2. Equipos Empleados

Luego de ver por conveniente emplear el método directo para la elaboración de la base cartográfica, es importante demarcar los materiales y herramientas necesarias. Todas las herramientas y los materiales empleados son descritos a continuación:

Estación Total				
Marca Sokkia				
Modelo Set530RK3				
Cantidad 1				
Detalles				

TELESCOPIO

- Aumento Óptico: 30X

- Distancia Mínima de Enfoque: 1.30 m.

MEDICIÓN DE DISTANCIAS

Sin Prisma: 350 m.Con Un Prisma: 5,000 m.MEDICIÓN DE ANGULO

- Precisión Angular: 5"

Tabla No. 3 - Características del equipo topográfico Fuente. Elaboración propia

Receptor GPS/GNSS			
Marca TopCon			
Modelo GR5			
Cantidad 2 receptores			
Detalles			

Detalles

- GNSS (GPS/GLONAS/Galileo/BeiDou SBAS)
- 226 canales
- Precisión en modo Estático
 H: 3mm +0.1 ppm / V: 3.5mm + 0.4 ppm
- Precisión en modo RTK
 H: 5mm + 0.5 ppm / V: 10mm + 0.8 ppm
- Mediciones Código, Fase, RTK.
- Comunicación RTK: UHF/FH915 integrado
- NTRIP: CDMA/HSPA integrada
- Almacenamiento: Tarjeta SD/SDHC extraíble

Tabla No. 4 - Características del equipo GNSS Fuente. Elaboración propia

Nivel Geométrico			
Marca Leica			
Modelo	Sprinter 250		
Cantidad	1		

Detalles

Longitud de Telescopio: 215 mm

• Aumento de Lente: 24 x

Precisión Desviación Estándar 1 Km: 1.5 mm

 Compensador de péndulo con sistema amortiguador magnético

Precisión de ajuste de compensador: ±10'

 Movimiento Horizontal sin sujeción, sin fin, mandos por ambos lados.

Protección: IP 55

Rango de medición electrónica de 2 - 100 m

Burbuja Circular: 8' / 2 mm

Tabla No. 5 - Características del equipo de nivelación Fuente. Elaboración propia

Otros				
1 GPS Navegador Marca Garmin, modelo Etrex 30x				
3 Radios de Comunicación	Handis de comunicación por radio marca Motorola			
1 Laptop	Laptop marca Toshiba			
Accesorios de campo	Trípodes, Jalones y Prismas			

Tabla No. 6 - Equipos de apoyo Fuente. Elaboración Propia

Software	Descripción		
Pro Link	Transferencia y Gestión de datos de equipo Sokkia		
Sprinter Data Loader	Gestión y descarga de datos del nivel electrónico Leica Sprinter		
Leica Geo Office	Post-proceso GNSS		
Autocad Civil 3D	Dibujo Topográfico		
Topcon Link	Transferencia y Gestión de datos de equipo GNSS GR5		
Microsoft Office	Gestión de Información alfanumérica		

Tabla No. 7 - Herramientas empleadas Fuente. Elaboración Propia

CAPITULO IV DESARROLLO DEL TRABAJO

4.1. Etapa Inicial

Los trabajos desarrollados durante esta etapa están dirigidos básicamente a la organización, recopilación de la información del proyecto, inspección en campo, revisión de los elementos de control horizontal y vertical del proyecto y la evaluación de la información topográfica presentada por parte de la empresa encargada de la construcción.

4.1.1. Recopilación de la Información Técnica del Proyecto

Para iniciar con los trabajos de supervisión es importante contar con toda la información técnica necesaria, esta información técnica debe ser presentada por la empresa encargada de la construcción. En la figura No. 29 se muestra un resumen de la información recopilada, ver Anexo No. 1.

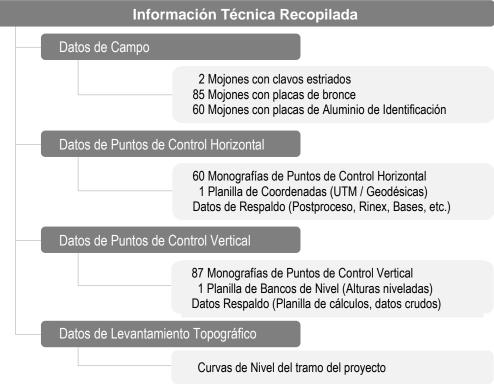


Figura No. 29 - Información técnica recopilada Fuente. Elaboración propia

4.1.2. Inspección

De acuerdo a la información técnica recopilada se tiene un total de 147 mojones entre pares geodésicos y bancos de nivel, es a partir de ello que se inicia con la búsqueda de los mismos empleando equipos GPS Navegadores para las ubicaciones aproximadas de acuerdo a especificaciones de cada monografía.

Figura No. 30 - Inspección en campo Fuente. Elaboración propia

Figura No. 31 - Identificación de mojones en campo Fuente. Elaboración propia

Se encontraron el 90% de los mojones materializados en campo, a partir de ello se procede con la elaboración de un inventario de mojones donde se señala que 15 mojones entre pares geodésicos y bancos de nivel no fueron hallados durante la inspección. En la tabla No. 8 se detallan los mojones con observaciones que deberán tener trabajos de reposición.

TIPO	Nombre	Observación		
-	GPS-AIPT-01A	Mojón no encontrado en inspección de campo		
onta	GPS-AIPT-01B	Mojón no encontrado en inspección de campo		
oriz	GPS-AIPT-02B	Mojón no encontrado en inspección de campo		
ol H	GPS-AIPT-05B	Mojón no encontrado en inspección de campo		
ontro	GPS-AIPT-07B	Mojón no encontrado en inspección de campo		
e C	GPS-AIPT-10B	Mojón no encontrado en inspección de campo		
Puntos de Control Horizontal	GPS-AIPT-22A	Mojón no encontrado en inspección de campo		
unte	GPS-AIPT-25A	Mojón con destrozos		
4	GPS-AIPT-27A	Mojón no encontrado en inspección de campo		
BM-01 Mojón no encontra		Mojón no encontrado en inspección de campo		
ntrc	BM-04	Mojón no encontrado en inspección de campo		
e Cc ical	BM-21	Mojón con destrozos		
Puntos de Control Vertical	BM-22	Mojón con destrozos		
	BM-23	Mojón no encontrado en inspección de campo		
Р	BM-24	Mojón no encontrado en inspección de campo		

Tabla No. 8 - Planilla de mojones con observaciones Fuente. Elaboración Propia

Como parte de los trabajos de supervisión se realiza la reposición de mojones, 9 como pares geodésicos y 6 como bancos de nivel para su posterior asignación de coordenadas y alturas niveladas. La monumentación se realiza con clavos estriados incrustados sobre los mojones de hormigón vaciados en sitio, en la figura No. 33 se describen las características de los mojones.

Figura No. 32 - Monumentación de mojones en campo Fuente. Elaboración propia

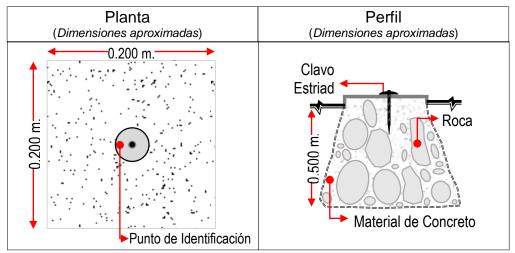


Figura No. 33 - Características de mojones en campo Fuente. Elaboración propia

4.1.3. Control Horizontal

La verificación de los pares geodésicos se realiza en primera instancia con la evaluación de la información digital en gabinete y posteriormente con los trabajos de revisión en campo de los puntos de control. Los trabajos de evaluación de la información digital en gabinete están referidos a la revisión de los procesos de ajuste GNSS, la metodología empleada, los puntos empleados como bases y la información proporcionada por las monografías de los puntos de control horizontal. De acuerdo a la revisión de la información obtenida los pares geodésicos en la figura No. 34 son parte de una red local vinculada con los puntos de estación permanente CBMA y SUCE de la Red Sirgas.

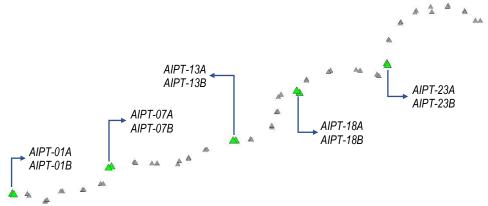


Figura No. 34 - Puntos de control vinculados a Red Sirgas Fuente. Informe Técnico PCA S.A. empresa encargada de la construcción

Tomando como referencia los puntos mencionados anteriormente, se consideran los siguientes puntos como bases de referencia: AIPT-07A, AIPT-13B, AIPT-18A y AIPT-23A, para el control horizontal empleado equipos GNSS en modo RTK.

Figura No. 35 - Instalación de Base en modo RTK en el punto AITP-07A Fuente. Elaboración propia

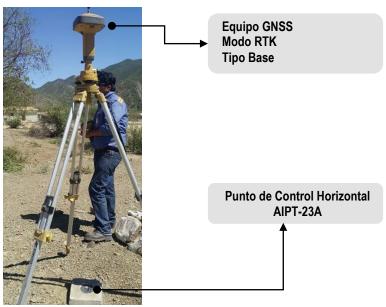


Figura No. 36 - Instalación de Base en modo RTK en el punto AITP-23A Fuente. Elaboración propia

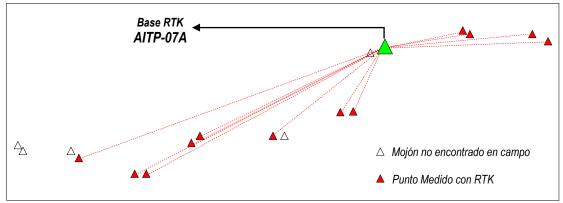


Figura No. 37 - Mediciones GNSS RTK con base en el punto AITP-07A Fuente. Elaboración propia

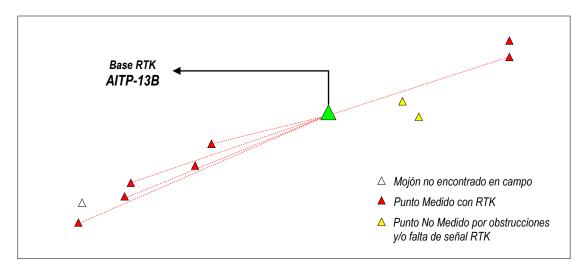


Figura No. 38 - Mediciones GNSS RTK con base en el punto AITP-13B Fuente. Elaboración propia



Figura No. 39 - Mediciones GNSS RTK con base en puntos AITP-18A y AITP-23A Fuente. Elaboración propia

La verificación de los pares geodésicos se realiza registrando lecturas de todos los mojones de la red materializadas en campo. Durante la colección de datos se tomó las siguientes consideraciones:

- Método de observación GNSS en modo RTK
- Tipo de solución de ambigüedades de fase: Todo FIJO (Fix)
- Registro de 10 a 15 datos de cada punto de control
- Mascara de elevación: 15º desde el horizonte
- PDOP GDOP menor a 4
- Seis satélites como mínimo durante las mediciones
- Registro de datos bajo el sistema de coordenadas WGS-84 UTM Z20 Sur

Figura No. 40 - Mediciones GNSS RTK de pares geodésicos Fuente. Elaboración propia

Durante parte de los procesos de verificación con los equipos GNSS en modo RTK en campo, se contó con la presencia de funcionarios de la fiscalización.

Durante los trabajos de control en campo con equipos GNSS en modo RTK, nueve puntos son omitidos por problemas de comunicación (Base - Rover), debido a obstrucciones naturales. Es por ello que la verificación de dichos puntos de control se realiza a través de levantamientos taquimétricos empleando una estación total, teniendo como puntos de partida las bases empleadas con los equipos GNSS en modo RTK. Durante la medición de datos se tomó las siguientes consideraciones:

- Medición de distancias con uso de prismas en modo IR.
- Correcciones Atmosféricas de acuerdo al cambio de temperaturas del lugar.
- Corrección por Escala, uso del factor combinado de acuerdo a cada punto de control usado como estación.

Figura No. 41 - Mediciones con Estación Total de pares geodésicos Fuente. Elaboración propia

Con la comparación de planillas de coordenadas de los puntos de control (pares geodésicos), por parte de los encargados del estudio topográfico y los encargados de la supervisión, se muestra un resumen de los puntos observados en la tabla No. 9, que resume una lista de los puntos que no cumplen con las tolerancias definidas por parte de la fiscalización (Administradora Boliviana de Carreteras).

Tolerancia Proyecto	Distancia (m) Base-Punto	Precisión Equipo (m) 5mm + 0.5 ppm	Tolerancia (m)
	1000	0,006	0,026
	2000	0,006	0,026
Control Horizontal GNSS	3000	0,007	0,027
Segundo Orden Clase I 1:50.000 (0,020 m.)	4000	0,007	0,027
	5000	0,008	0,028
	6000	0,008	0,028
	7000	0,009	0,029

Tabla No. 9 - Planilla tolerancias con respecto a distancia Base-Punto Fuente. Empresa de Supervisión Prointec S.A.

Tipo	Punto Base de Referencia	Punto	Distancia (m) Base-Punto	Diferencia Lineal con Respecto a Lecturas de Control
		GPS-AIPT-04B	4289,054	0,051 m.
	GPS-AIPT-07A	GPS-AIPT-08B	1841,705	0,039 m.
	GFS-AIFT-UTA	GPS-AIPT-09 ^a	3077,845	0,031 m.
(0		GPS-AIPT-09B	3470,783	0,029 m.
SS	GPS-AIPT-013B GPS-AIPT-13°		204,903	0,029 m.
GEODÉSICOS		GPS-AIPT-15°	3372,699	0,037 m.
		GPS-AIPT-17°	1417,896	0,030 m.
GE	GPS-AIPT-18A	GPS-AIPT-18B	279,279	0,028 m.
ES		GPS-AIPT-19B	1034,406	0,153 m.
PARES		GPS-AIPT-20B	2705,368	0,034 m.
		GPS-AIPT-21 ^a	2397,747	0,029 m.
	GPS-AIPT-23A	GPS-AIPT-21B	2112,246	0,037 m.
	GFS-AIPT-23A	GPS-AIPT-24°	1763,570	0,030 m.
		GPS-AIPT-27B	5145,178	0,042 m.

Tabla No. 10 - Planilla de pares geodésicos con observaciones Fuente. Elaboración Propia

4.1.4. Control Vertical

La verificación de cotas, se realiza a partir de la evaluación de la información digital en gabinete y posteriormente con los trabajos de revisión en campo. Los trabajos de control vertical, son realizados por nivelación geométrica de todos los pares geodésicos y bancos de nivel (51 pares geodésicos y 81 bancos de nivel), para ello se emplea un nivel electrónico (características del equipo ver tabla No. 5), realizando lecturas de ida y vuelta.

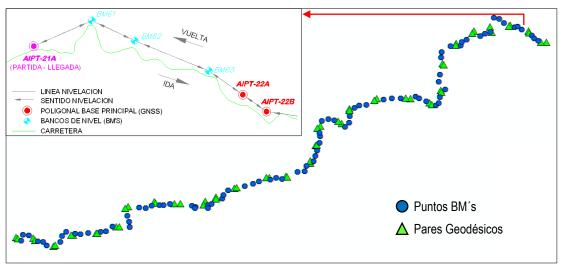


Figura No. 42 - Esquema de nivelación geométrica de pares geodésicos y BM´s Fuente. Elaboración Propia

La nivelación se realizó con una brigada de nivelación, en la cual se utilizó un nivel digital marca LEICA SPRINTER 250 m empleando el método de ida – vuelta.

El nivel digital toma lecturas con solo apuntar a la mira con código de barras y presionando un botón automáticamente se visualiza en la pantalla las lecturas de altura de la mira registrándose dichos datos en el mismo equipo, con este procedimiento se minimizan los errores de apreciación en las lecturas garantizando de esta manera la correcta obtención de datos.

El enlace a la red de nivelación nacional del Instituto Geográfico Militar, se realizó a través del punto BM-A49 = 2176.741 msnm ubicado a 2 km al este de la Población de Villa Granado.

Figura No. 43 - Control de nivelación geométrica de Pares Geodésicos y BM´s Fuente. Elaboración propia

Luego de obtener los desniveles para calcular las cotas de los puntos de control (pares geodésicos y BM's), se realiza una comparación de planillas de las alturas niveladas de los encargados del estudio topográfico y los encargados de la supervisión, se muestra un resumen de los puntos observados en la tabla No. 11, que resume una lista de los puntos que no cumplen con las tolerancias definidas por parte de la fiscalización (Administradora Boliviana de Carreteras).

Tolerancia Proyecto	Distancia (m) Partida-Llegada	Tolerancia Proyecto (m)	Precisión Equipo (m) 1 km: 1,5 mm	Tolerancia (m)
	100	0,0025	0,0002	0,0027
	200	0,0036	0,0003	0,0039
Control Vertical Nivelación	300	0,0044	0,0005	0,0048
Segundo Orden Clase II $8\sqrt{k}$ mm	400	0,0051	0,0006	0,0057
(0,0080 m/km)	500	0,0057	0,0008	0,0064
,	600	0,0062	0,0009	0,0071
	700	0,0067	0,0011	0,0077

Tabla No. 11 - Planilla tolerancias con respecto a distancia Partida-Llegada Fuente. Empresa de Supervisión Prointec S.A.

Tipo	Punto de Partida	Punto	Distancia (m) Partida-Llegada	Diferencia Vertical con Respecto a Lecturas de Control
	BM-06	BM-05	360,508	0,0235 m.
	GPS-AIPT-07A	BM-19	618,049	0,0091 m.
	BM-29	BM-30	355,911	0,0134 m.
	BM-43	BM-44	360,254	0,0115 m.
ВМ'ѕ	GPS-AIPT-20B	BM-57	594,725	0,0105 m.
BN	GPS-AIPT-21A	BM-61	390,578	0,0126 m.
	GPS-AIPT-25B	BM-73	321,118	0,0071 m.
	BM-76	BM-77	362,305	0,0068 m.
	BM-79	BM-80	372,967	0,0053 m.
	GPS-AIPT-29B	BM-85	251,186	0,0102 m.
40	GPS-AIPT-03A	GPS-AIPT-03B	171,738	0,0031 m.
SS	GPS-AIPT-08A	GPS-AIPT-08B	103,817	0,0039 m.
ZES SSC	BM-28	GPS-AIPT-10A	314,229	0,0051 m.
PARES ODÉSICOS	GPS-AIPT-17B	GPS-AIPT-17A	274,202	0,0030 m.
GEC	BM-57	GPS-AIPT-20B	594,725	0,0094 m.
	BM-75	GPS- AIPT-26B	563,371	0,0080 m.

Tabla No. 12 - Planilla de pares geodésicos y BM's con observaciones Fuente. Elaboración Propia

4.1.5. Reposición de Puntos de Control Horizontal y Vertical

Luego de un cómputo de los puntos de control horizontal y vertical vistos anteriormente, se tiene un total de 15 puntos de control (pares geodésicos y BM's), no encontrados en campo, 14 pares geodésicos observados en el control horizontal y 16 BM's y pares geodésicos observados en el control vertical. Como parte de los trabajos asignados a la supervisión, se realiza la reposición de dichos puntos de control.

La reposición de los puntos de control horizontal es establecida a través de mediciones con equipos GNSS en modo RTK, en la tabla No. 13 se describen las características de las mediciones en campo.

Método	Estático
Tiempo de Sesión	50 minutos
Solución de Ambigüedades de Fase	Fijo (Fix)
Número de Registro por Punto	Entre 10 a 15 registros por punto
Mascara de Elevación	15° desde el horizonte
PDOP - GDOP	Menor a 4
Satélites durante toma de datos	Mayor a 6
Sistema de Referencia	WGS-84
Proyección	UTM Zona 20 Sur

Tabla No. 13 - Características de las medicines GNSS en modo RTK Fuente. Elaboración Propia

Figura No. 44 - Punto de referencia base para mediciones RTK Fuente. Elaboración propia

Figura No. 45 - Mensura de puntos de control horizontal Fuente. Elaboración propia

Se tiene un total de 23 puntos de control horizontal (pares geodésicos), mensurados con equipos GNSS en modo RTK, donde 14 puntos son aquellos observados por no cumplir las tolerancias establecidas para el proyecto y 9 puntos de mojones renovados en campo. (planillas de coordenadas, ver anexo No.2).

La reposición de los puntos de control vertical se realiza por medio de trabajos de nivelación geométrica, la metodología empleada es a través de una nivelación geométrica compuesta donde el desnivel entre un punto de control y otro, está dado por la suma de los desniveles parciales. El control de calidad y determinación de la precisión es aplicado por medio de corridas de lda y Vuelta.

Figura No. 46 - Nivelación geométrica de puntos de control vertical Fuente. Elaboración propia

Figura No. 47 - Nivelación geométrica de puntos de control vertical de ida y vuelta Fuente. Elaboración propia

A la conclusión del trabajo de campo se procede al trabajo de gabinete de acuerdo a las siguientes tareas:

- Transferencia de datos del equipo de nivelación a la computadora
- Verificación de cierre de tramos de punto a punto de control entre las lecturas de ida y vuelta
- Calculo de cotas para cada punto de control vertical (BM's)

Los resultados de los trabajos de nivelación geométrica reflejan un total de 31 puntos de control vertical (BM's), donde se tiene; 9 pares geodésicos y 6 BM's nuevos (mojones repuestos en campo), 10 BM's y 6 pares geodésicos corregidos (Puntos con observaciones). Toda la información es resumida en planillas de nivelación, ver en Anexo No.3.

4.2. Etapa de Control Final

Luego de la etapa inicial donde se realizan trabajos de recopilación, verificación y reposición, inicia la etapa de supervisión técnica en el control final, donde las principales actividades están resumidas en la verificación geométrica y los trabajos de control y seguimiento de la ejecución de los trabajos de construcción.

4.2.1. Control Geométrico

El control geométrico es la revisión al proyecto con respecto al diseño aprobado por la fiscalización (ABC), esta actividad está orientada principalmente en identificar algún tipo de carencia o deficiencia durante los trabajos de construcción correspondientes al tramo del presente proyecto.

Los trabajos técnicos de control geométrico se realizan por medio de replanteos topográficos a partir del diseño general del proyecto (eje, borde izquierdo, derecho, pie de terraplén, cabecera de corte, etc.), sección típica ver Anexo No.5.

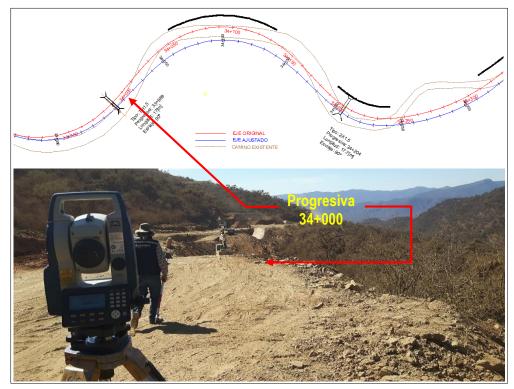


Figura No. 48 - Replanteo topográfico para el control geométrico Fuente. Elaboración propia

4.2.2. Secciones Transversales

Construir una carretera que permita contar con una infraestructura adecuada, cuyas características geométricas, tengan un buen sistema de drenaje, taludes estables, superficie de rodadura pavimentada que garantice la transítabilidad segura durante todo el año al tráfico vehicular.

Los parámetros adoptados para la sección transversal corresponden a las siguientes dimensiones:

Pendiente transversal de la superficie de rodadura: 2.5 %
Pendiente Transversal de la Bermas 2.5 %
Peralte Máximo 8.0%

Ancho de carril de circulación 7.00 m. (3.50 m. c/lado)

Ancho de Berma a cada lado 1.00 m. Taludes de Terraplenes H:V 2 : 1

Sobre Ancho de Plataforma (SAP) En corte no corresponde En terraplén 0.50 m a 0.80 m máximo

Contra taludes de corte: f (estabilidad)

Sección Transversal de la Plataforma		
Superficie de Rodadura (m)	7.00	
Ancho de Berma (m)	1.00	
Sobre ancho en Curvas (m)	Mínimo 0.50	
Gálibo Vertical Máximo (m)	5.50	
Derecho de Vía (m)	50.00	
Altura carpeta [cm]	7.00	
Altura base [cm]	22.00	
Altura subbase [cm]	24.00	

Tabla No. 14 – Sección Transversal de la Plataforma Fuente. Elaboración Propia

Para el control de las secciones transversales del proyecto se la efectuó en base a la planilla de replanteo, las cuales nos sirven tanto para la verificación de las cabeceras de Talud y pie de Terraplén, ver Anexo No 6.

Figura No. 49 - Control geométrico en progresiva 62+680 Fuente. Elaboración propia

Durante los trabajos de control geométrico, por medio de replanteos topográficos se logra identificar ciertos tipos de falencias en los trabajos de construcción con respecto al diseño, en la tabla No. 15, se resumen las observaciones realizadas por parte de los trabajos de supervisión realizados en campo.

RESULTADOS DEL CONTROL GEOMÉTRICO POR MEDIO DE REPLANTEOS TOPOGRÁFICOS		
PROGRESIVA		OBSERVACIONES
DE	Α	OBJERVACIONES
35+000	35+100	El pie de terraplén invade al lecho del rio y media plataforma se encuentra en terraplén
35+670	36+120	El pie de terraplén invade al lecho del rio y toda la plataforma se encuentra en terraplén causando el estrangulamiento al lecho del rio
57+300	57+900	Se tiene un corte cajón materializado se debe ajustar al corte debiendo reducir radios y mover tangentes

Universidad Mayor de San Andrés Facultad de Tecnología Carrera de Geodesia Topografía y Geomática

61+300	61+900	Se debe trabajar con el eje para que los muros proyectados no se encuentren volando y no exista sector complicado para emplazarlos
63+050	63+200	El corte proyectado se encuentra fuera del corte cajón construido y materializado
69+200	69+600	El corte proyectado se encuentra fuera del corte cajón construido y materializado
74+450	74+800	Se debe mover el eje de proyecto mismo que se encuentra sobre casas que están en lado derecho
76+000	77+200	Se debe evaluar el corte por sector con deslizamientos, con especialista de suelos
81+500	81+700	El pie de terraplén se encuentra en el lecho del rio, para el mismo se debe mover el eje a corte
81+850	82+250	El pie de terraplén se encuentra en el lecho del rio, para el mismo se debe mover el eje a corte

Tabla No. 15 - Resultados del control geométrico Fuente. Elaboración Propia

4.2.3. Control y Seguimiento de Obras de Arte

Los trabajos de control y seguimiento de la ejecución del proyecto de construcción son parte de una etapa de revisión constante del avance que se tiene en la ejecución del proyecto constructivo que se materializa en campo.

El seguimiento constante de los trabajos de ejecución se realiza a través de levantamientos topográficos donde, se viene revisando y observando los posibles ajustes que se pretenden realizar de manera conjunta con la empresa contratista.

Los detalles del levantamiento topográfico son descritos en la tabla No. 16, donde el propósito de este levantamiento.

Detalles de Medición					
Equipo Empleado	Estación Total / Sokkia Set530				
Método de Levantamiento	Radiación / Lectura Simple				
Tipo de Levantamiento	Por secciones				
Tipo de Orientación (Estación / Referencia)	Coordenadas Absolutas Sistema de Referencia WGS-84 / Proyección UTM Zona 20 Sur				
Corrección por Factor de Escala	Factor Combinado de Acuerdo a los Punto de Control				
Correcciones Atmosféricas	Temperatura y Presión de acuerdo al momento de trabajo				

Tabla No. 16 - Detalles de los levantamientos topográficos Fuente. Elaboración Propia

Figura No. 50 - Seguimiento de la ejecución de los trabajos de construcción Fuente. Elaboración propia

El producto de los trabajos de control y seguimiento a través de levantamiento topográficos logran visualizar posibles deterioros luego de los trabajos de construcción, entre ellos es posible encontrar sectores donde se tiene cortes elevados y no cuentan con sus banquinas respectivas, en la tabla No. 17, se resumen las observaciones realizadas por parte de los trabajos de supervisión realizados en campo.

RESULTAL	RESULTADOS DEL CONTROL Y SEGUIMIENTO DE EJECUCIÓN POR MEDIO DE LEVANTAMIENTOS TOPOGRÁFICOS					
PROGI	RESIVA	OBSERVACIONES				
DE	Α	OBSERVACIONES				
34+250	34+320	se proyecta corte de talud en la que no se considera banquinas ya que en este tramo existe alturas de hasta 50 metros de corte.				
35+520	35+580	se proyecta corte cajón, los taludes no tiene banquinas, ya que la altura de corte es de hasta 28 metros.				
44+500	44+550	los taludes del corte cajón no cuentan con banquinas.				
45+260	45+350	los taludes del corte cajón no cuentan con banquinas ya que existe una considerable altura de corte.				
46+740	46+830	se proyecta un corte cajón en la se tiene bastante carga en el talud mismo que se desestabilizaría por el corte propuesto. Asimismo, los taludes no cuentan con banquinas. Se debe mover el eje de manera de salirse de corte para no desestabilizar el cerro ya que tiene bastante carga.				
48+340	48+420	se proyecta cortes de la los taludes no cuentan con banquinas en alturas considerables.				

Universidad Mayor de San Andrés Facultad de Tecnología Carrera de Geodesia Topografía y Geomática

60+340	60+420	el corte proyectado se presenta una sola banquina y el talud superior tiene pendiente más pronunciada que el inferior. En el peor de los casos se recomienda mover el eje de manera de que tenga menor corte y los volúmenes estén dentro lo proyectado.
61+520	61+560	los cortes proyectados no cuentan con banquinas ya que la altura de corte llega hasta 28 metros.
64+340	64+420	se proyecta corte cajón en los taludes de corte no presentan banquinas.
68+480	68+520	se proyecta corte cajón, en los taludes de corte no presentan banquinas.
68+920	69+960	se proyecta corte donde los taludes no cuentan con banquinas.
76+600	76+960	se proyecta corte donde los taludes no cuentan con banquinas.
77+020	77+140	se proyecta corte donde los taludes no cuentan con banquinas.

Tabla No. 17 - Resultados del control y seguimiento de ejecución Fuente. Elaboración Propia

Como parte de la supervisión técnica, también se interviene en el control y seguimiento al cumplimiento de los trabajos de taludes, paquete estructural de la plataforma (capa sub-rasante, capa sub-base y capa base) y movimientos de tierra.

4.2.4. Control de Ejecución de Obras de Arte

Llamaremos obras de arte, a las obras menores que se ejecutan en el proyecto, en nuestro caso son las alcantarillas que se construyen a lo largo de todo el tramo, estas tienen la finalidad de evacuar las aguas superficiales.

Las obras de arte que se implementaron en el proyecto, se consideran el colocado de las alcantarillas que son segmentos de tubos de metal corrugado, así como la construcción del correspondiente cabezal de hormigón.

Previamente se evaluó el diseño de la alcantarilla, es decir: la ubicación, longitud, esviaje, cotas de solera de entrada y salida del tubo, y alguna indicación adicional.

Para esta actividad, inicialmente se realiza el replanteo del eje central y luego ubicar la progresiva exacta en la cual será colocada la alcantarilla; a partir de este punto se trazó la dirección que tendrá la alcantarilla, es decir si será perpendicular al eje central, o si por el contrario tendrá algún esviaje.

Para ello, se colocaron estacas que indicaban la cota solera de entrada y salida de la alcantarilla, de conformidad con los datos de diseño indicados en el proyecto.

Figura No. 51 - Liberación Topográfica en alcantarilla progresiva 76+569 Fuente. Elaboración propia

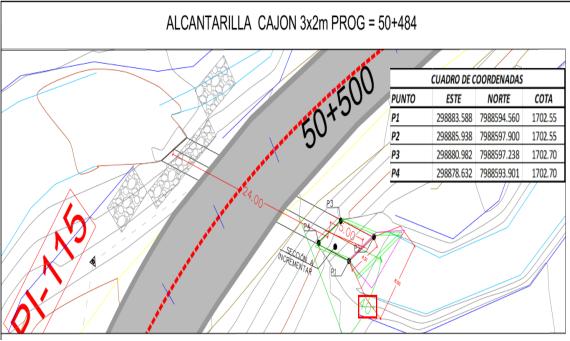


Figura No. 52 - Alcantarilla cajón 3x2m, progresiva 50+484 Fuente. Elaboración propia

4.2.5. Nivelación Geométrica

La nivelación geométrica fue llevada a cabo empleando un Nivel Digital marca LEICA SPRINTER 250 m, el cual ofrece gran precisión debido a que las lecturas se basan en un sistema electrónico de procesamiento de imagen, por lo que en cada medición se tiene información de elevación en la mira y distancia entre miras, al margen que todos los datos obtenidos son guardados en un módulo de memoria, con lo que la fuente de errores más frecuente en nivelaciones: errores de lectura, registro y trascripción, son eliminados.

4.2.6. Control Geométrico Capa Sub-Base

El control geométrico se realiza en conjunto tanto la Constructora y la Supervisión, mediante una nivelación geométrica, se verifica que el tramo cumpla con los requerimientos de diseño en relación a las cotas de proyecto y las Especificaciones Técnicas, ver Anexo No 8.

Concluida la compactación de la capa de sub base granular, se procederá al estacado de cada sección (5 estacas mínimo) para realizar el siguiente control geométrico, mediante nivelación de las secciones, admitiéndose las siguientes tolerancias:

 Variación máxima de cotas para el eje y para los bordes de (-) 2 cm con relación a las cotas de diseño, no admitiéndose variación en mas (+)

El procedimiento para hacer el control geométrico de la capa sub-base es el siguiente: se procede a instalar el Nivel Geométrico, se hace una lectura en la mira hacia el BM más cercano y se determina la altura del instrumento (Ai), conociendo este valor procedemos a hacer las lecturas correspondientes en cada uno de los puntos del tramo, normalmente estas lecturas se hacen en los puntos de estacado inicial, es decir en las que corresponden a las progresivas inicio y final de acuerdo a la Correspondencia de Campo, cada 20 m. en tangentes y cada 10 m. en tramos en curva, ver Anexo 6 - Planilla de replanteo.

Figura No. 53 - Liberación de capa Sub Base Fuente. Elaboración propia

4.2.7. Control Geométrico Capa Base

En cuanto al control geométrico de la capa base, se realizó de forma similar al de la capa sub-base, pero la diferencia es que las lecturas de cada sección se la realiza cada 10 m. tanto en rectas y curvas, de acuerdo a las Especificaciones Técnicas de proyecto, ver Anexo No 8.

Las tolerancias admisibles para la aprobación de la capa base son las siguientes:

Concluida la compactación de la capa base granular, se procederá al estacado de cada sección (5 estacas mínimo) para realizar el siguiente control geométrico, mediante nivelación de las secciones, admitiéndose las siguientes tolerancias:

Variación máxima de cotas para el eje y para los bordes de (+/-) 1 cm con relación a las cotas de diseño, no admitiéndose variación sistemática en menos (-)

Una vez realizado la verificación de las estacas de la plataforma (eje, bordes y cotas intermedias) y estando dentro de las tolerancias admisibles según lo indicado en las

Especificaciones Técnicas. La supervisión aprobara o rechazara el tramo indicado en la correspondencia de campo, ver Anexo No 7.

4.2.8. Actividades De La Supervisión En Obra

Dentro de las actividades desempeñadas por la brigada de Topografía de la Supervisión están las siguientes: Levantamiento topográfico y nivelación en el Rubro Movimiento de Tierras, Drenaje, Obras Complementarias y Medio Ambiente, que comprende los trabajos de control y seguimiento a la ejecución de Cortes, Terraplenes, emplazamiento de paquete estructural, Obras de Drenaje y Obras complementarias que se requieren en la Obra.

A continuación, se muestra un resumen de las actividades de la supervisión de la obra que es remitida a la entidad fiscalizadora (A.B.C).

D۲	01	nt	tec	
_				

ACTIVIDADES DE LA SUPERVISION EN LA OBRA TOPOGRAFIA

PRO	OGRESIVA	FECHA HORA		OBSERVACIONES	
INICIO	FINAL	FEGRA	пока	OBSERVACIONES	
30+000	82+000	01/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
40+540	40+830	02/11/2017	09:30	CAPA BASE	
30+000	82+000	03/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
74+280	0+000-0+062	04/11/2017	15:00	GAVION LIBERADO A HORAS 15:00:00	
40+840	41+160	05/11/2017	11:00	CAPA BASE	
30+000	82+000	06/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
30+000	82+000	07/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
41+170	41+540	08/11/2017	14:30	CAPA BASE	
50+040	50+095	08/11/2017	16:00	MURO	
30+000	82+000	09/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
30+000	82+000	10/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
30+000	82+000	11/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
41+550	41+830	12/11/2017	11:00	CAPA BASE	
53+180	53+620	12/11/2017	08:30	CAPA BASE 2da Solicitud	
30+000	82+000	13/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA	
53+630	54+000	14/11/2017	08:00	CAPA BASE 2da Solicitud	
30+640	30+940	15/11/2017	09:30	SUB RASANTE	
52+860	53+170	16/11/2017	09:30	CAPA BASE	

Universidad Mayor de San Andrés Facultad de Tecnología Carrera de Geodesia Topografía y Geomática

76+250	76+640	16/11/2017	10:00	TALUD IZQUIERDA
30+000	82+000	17/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
76+640	77+670	18/11/2017	14:30	TALUD IZQUIERDA
30+000	82+000	19/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
30+000	82+000	20/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
52+360	52+850	21/11/2017	08:30	CAPA BASE 2da Solicitud
30+000	82+000	22/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
52+060	52+340	23/11/2017	15:00	CAPA BASE
30+000	82+000	24/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
42+500	42+770	25/11/2017	16:30	CAPA BASE
30+000	82+000	26/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
70+640	70+880	27/11/2017	11:48	A - 20 CM
42+170	42+490	27/11/2017	16:00	CAPA BASE 1ra Solicitud fue RECHAZADO
30+000	82+000	28/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
30+000	82+000	29/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA
30+000	82+000	30/11/2017		SEGUIMIENTO A LAS ACTIVIDADES DE TOPOGRAFIA

Tabla No. 18 - Cuadro de actividades del mes de noviembre de 2017 Fuente. Prointec S.A.

CAPITULO V ANALISIS Y RESULTADOS

Con la conclusión de los trabajos técnicos realizados, es importante realizar un análisis de los resultados obtenidos durante el desarrollo de todo el proyecto.

5.1 Análisis de los Resultados Obtenidos

Con relación a los trabajos de inspección de campo se logra determinar la perdida de mojones, en algunos casos destrozos de los mismos, en la figura No.54 se grafica los resultados de la inspección de campo.

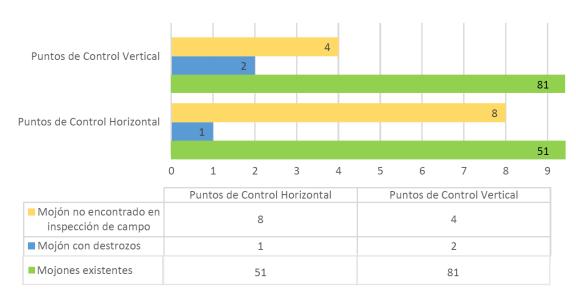


Figura No. 54 - Análisis de los resultados de los trabajos de inspección Fuente. Elaboración propia

Entre los mojones de los puntos de control vertical denominados BM´s, 4 no fueron encontrados y 2 presentaron destrozos, por otro lado, entre los mojones de los puntos de control horizontal denominados pares geodésicos, 8 no fueron encontrados y 1 presento destrozos.

Los trabajos de supervisión de los puntos de control horizontal, logran determinar 14 puntos observados (ver figura No. 55), que sobrepasan las tolerancias establecidas por ente fiscalizador (ABC).

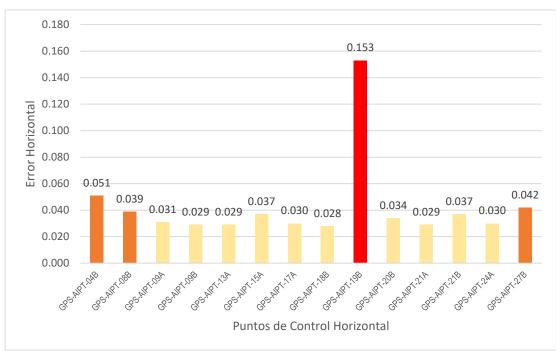


Figura No. 55 - Análisis de los resultados del control horizontal Fuente. Elaboración propia

Entre los 14 puntos de control horizontal denominados pares geodésicos, 1 presenta un error mayor a los 0.14 metros, 3 presentan un error mayor o igual a 0.04 metros y finalmente 10 presentan un error mayor a 0.02 metros.

En cuanto a la supervisión de las alturas de los puntos de control vertical se tiene entre Pares Geodésicos y BM's un total de 16 puntos observados que no cumplen con las tolerancias establecidas por el ente fiscalizador (ABC).

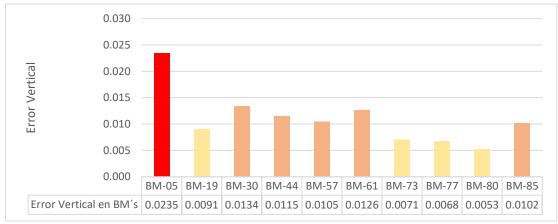


Figura No. 56 - Análisis de los resultados del control vertical en BM's Fuente. Elaboración propia

Dentro de los puntos de control vertical denominados BM's se tiene; 1 punto con error mayor a 0.02 metros, 5 puntos con errores mayor o igual a 0.01 metros y por último se tiene 4 con errores mayor o igual a 0.005 metros.

	Planilla de Diferencias de Cotas Observadas en BM's							
Punto	Punto Cota Diseño Cota Nivelada							
BM5	2193.794	2193.771	0.023					
BM19	1982.137	1982.128	0.009					
BM 30	1785.739	1785.725	0.013					
BM44	1548.130	1548.108	0.011					
BM 57 R	1486.864	1486.854	0.010					
BM 61	1586.595	1586.582	0.013					
BM 73	1471.230	1471.223	0.007					
BM 77	1461.391	1461.384	0.007					
BM 80	1457.637	1457.632	0.005					
BM 85	1412.813	1412.803	0.010					

Tabla No. 19 - Planilla de diferencias de cotas observadas de BM´s Fuente. Elaboración propia

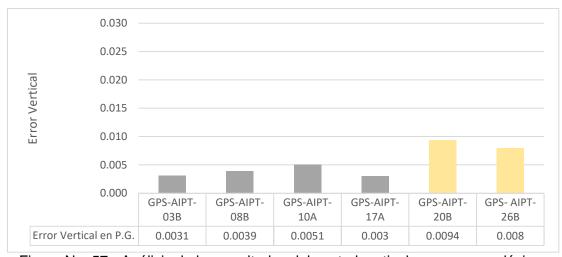


Figura No. 57 - Análisis de los resultados del control vertical en pares geodésicos Fuente. Elaboración propia

Mientras que dentro de los puntos de control horizontal denominados pares geodésicos se tiene; 2 puntos con errores mayor a 0.005 metros y 4 puntos con errores por debajo de 0.005 metros.

Universidad Mayor de San Andrés Facultad de Tecnología Carrera de Geodesia Topografía y Geomática

Planilla de Diferencias de Cotas Observadas en Puntos GPS								
Punto Cota Diseño Cota Nivelada Diferencia								
GPS-AIPT-03B	2210.649	2210.646	0.003					
GPS-AIPT-8B	2084.950	2084.946	0.004					
GPS-AIPT-10 A	1925.612	1925.607	0.005					
GPS-AIPT-17 A	1558.464	1558.461	0.003					
GPS-AIPT-20 B	1505.104	1505.095	0.009					
GPS-AIPT-26B	1458.782	1458.774	0.008					

Tabla No. 20 - Planilla de diferencias de cotas observadas de GPS's Fuente. Elaboración propia

5.2. Análisis de Control Geométrico y Seguimiento de obras de arte

Dentro de las actividades topográficas desempeñadas por la supervisión en la construcción de la carretera Villa Granado – Puente Taperas, se logró hacer cumplir las especificaciones técnicas del Proyecto en la cual indica: Las tolerancias de diseño, Variaciones máximas de diseño y demás.

En cuanto al control y seguimiento de obras de drenaje transversal (alcantarillas), el objetivo principal es hacer cumplir los Diseños del Sistema de Drenaje de la carretera Villa Granado – Puente Taperas, a fin de garantizar la evacuación pronta y segura del agua producto a las precipitaciones que llegue a la vía.

CAPITULO VI CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Tras efectuar los trabajos de supervisión técnica del proyecto carretero tramo villa granado - puente taperas con relación a la metodología empleada y el análisis de los resultados, se concluye con lo siguiente:

- A partir de la verificación de los mojones en campo, se restablecieron 15 mojones, 9 puntos de control horizontal y 6 puntos de control vertical.
- Se realizó el control horizontal y el control vertical de los trabajos topográficos donde se volvieron a procesar 14 puntos de control y 16 puntos de control vertical.
- Se logró desarrollar los controles geométricos del tramo carretero en construcción y los trabajos técnicos de seguimiento de las obras de arte

5.2. Recomendaciones

Dentro del marco de las actividades desarrolladas, es preciso señalar las siguientes recomendaciones:

- Tener un control constante de la información geográfica y alfanumérica durante el proceso técnico de supervisión, con el propósito de no generar desorden y confusión con la variada cantidad de datos que suele manejarse en este tipo de proyectos.
- Conocer de manera puntual el uso adecuado de los equipos topográficos empleados en campo y los parámetros necesarios que requieren dichos equipos (Estaciones totales), por ejemplo, las correcciones atmosféricas (Temperatura y presión) y las correcciones geométricas (Factor combinado), son de gran importancia durante la ejecución de los trabajos topográficos en campo.

Universidad Mayor de San Andrés Facultad de Tecnología Carrera de Geodesia Topografía y Geomática

5.3. Aporte Académico

La Carrera de Geodesia Topografía y Geomática, oferta al estudiante una formación académica destinada a dirigir, ejecutar y controlar los trabajos de campo y de gabinete referidos al control horizontal y vertical de los levantamientos topográficos y geodésicos, como base de los diversos trabajos de ingeniería.

Una carretera es una vía de dominio y uso público, proyectada y construida fundamentalmente para la circulación de vehículos. Las carreteras se distinguen porque están especialmente concebidas para la circulación de vehículos de transporte. Si bien su construcción es indispensable, se debe planear de manera respetuosa al medio ambiente, considerando todo el proyecto de manera integral. Al mismo tiempo este proceso constructivo requiere la participación multidisciplinaria de profesionales que contribuyan a la buena realización de este tipo de proyectos.

Universidad Mayor de San Andrés Facultad de Tecnología Carrera de Geodesia Topografía y Geomática

Bibliografía

- Asin, F. M. (1983). Geodesia y Cartografia Matematica. Madrid.
- Cartesia. (2010). Metodos Topograficos. Obtenido de http://www.cartesia.org
- Cartesia. (2014). Foro Cartesia. Obtenido de http://www.cartesia.org
- Casanova Matera, L. (2002). *Topografia Plana*. Merida, Venezuela: Taller de Publicaciones de Ingenieria ULA.
- Casanova, L. (2010). Sistema GPS/GNSS.
- Chile, C. (2015). CartografiaChile. Obtenido de http://www.cartografia.cl
- Clayton, F. (1974). Cartografia . Panama: Editorial Escuela Cartografica.
- F., A. C. (1998). Las Coordenadas Geograficas y la Proyeccion UTM. Madrid España: Cuerpo Geodesico.
- Fuentes, S. (2006). *Diagnostico del Uso de Proyecciones Transversales de Mercator* en Escalas Urbanas. Santiago de Chile: Universidad Tecnologia Metropolitana.
- Geomensor. (2005). *Topografia y Cartografia*. Obtenido de http://www.geomensor.com
- Gusman, J. (2007). Principios y Aplicaciones de Geodesia Satelitaria. La Paz.
- MundoGeo. (2014). Geodesia y Cartografia Actual. Mundo Geo.
- Ortiz, G. (2010). *Apuntes de Topografia y Geodesia*. Obtenido de http://www.gabrielortiz.org
- Vera, M. (2008). Geodesia Geometrica V2. Argentina: Escuela Militar de Ingenieria.
- Vera, M. (2008). *Introduccion a la Cartografia Matematica*. Argentina: Escuela Militar de Ingenieria.
- Wikipedia. (2010). *Enciclopedia Libre Wikipedia*. Obtenido de http://www.wikipedia.org

ANEXOS

ANEXO No. 1 PLANILLA DE COORDENADAS INICIALES

Coordenadas poligonal base principal tramo II

Tramoll: Aiguile - Puente Taperas								
		Coord	lenadas UTM (WC	•		das Geográficas (WGS-8	4)	
Tipo	Descripción PB	Norte	Este	Cota nivel	Latitud	Longitud	Altura Elipsoidal	
Enlace	GPS-AIPT-01A	7985799.162	284969.437	2141.33875	18 12 22.62753 S	65 01 59.71644 O	2181.202	
cada 10 km	GPS-AIPT-01B	7985727.788	285089.446	2123.37836	18 12 24.99174 S	65 01 55.66010 O	2163.249	
	GPS-AIPT-02A	7985758.682	286101.026	2169.86800	18 12 24.35095 S	65 01 21.22964 O	2209.641	
	GPS-AIPT-02B	7985598.474	286245.142	2166.71907	18 12 29.61230 S	65 01 16.38622 O	2206.460	
	GPS-AIPT-03A	7985188.679	287463.253	2202.56624	18 12 43.37369 S	65 00 35.09246 O	2242.236	
	GPS-AIPT-03B	7985291.649	287600.698	2210.64929	18 12 40.07428 S	65 00 30.37733 O	2250.297	
Principal	GPS-AIPT-04A	7985959.789	288760.301	2152.10019	18 12 18.75950 S	64 59 50.67272 O	2191.602	
cada 2 km	GPS-AIPT-04B	7985936.636	288640.100	2156.99774	18 12 19.46980 S	64 59 54.77116 O	2196.512	
	GPS-AIPT-05A	7986056.306	290306.040	2061.68507	18 12 16.16657 S	64 58 58.04296 O	2101.032	
	GPS-AIPT-05B	7986059.644	290393.952	2059.83510	18 12 16.08893 S	64 58 55.05050 O	2099.165	
	GPS-AIPT-06A	7986515.192	291667.682	1998.71269	18 12 01.72137 S	64 58 11.54473 O	2037.879	
	GPS-AIPT-06B	7986509.334	291859.262	1980.89985	18 12 01.97876 S	64 58 05.02840 O	2020.046	
Enlace	GPS-AIPT-07A	7987842.394	292482.504	1972.60087	18 11 18.84584 S	64 57 43.33747 O	2011.680	
km	GPS-AIPT-07B	7987736.084	292259.098	1982.78608	18 11 22.22523 S	64 57 50.97705 O	2021.895	
	GPS-AIPT-08A	7988157.359	294217.104	2077.46665	18 11 09.20397 S	64 56 44.20786 O	2116.390	
	GPS-AIPT-08B	7988103.161	294305.651	2084.94983	18 11 10.99699 S	64 56 41.21482 O	2123.902	
	GPS-AIPT-09A	7988045.639	295553.631	2137.22954	18 11 13.29641 S	64 55 58.77579 O	2176.048	
	GPS-AIPT-09B	7988067.799	295945.960	2127.68159	18 11 12.71004 S	64 55 45.41967 O	2166.469	
Principal	GPS-AIPT-10A	7988232.135	297627.076	1925.61219	18 11 07.93821 S	64 54 48.16452 O	1964.157	
cada 2 km	GPS-AIPT-10B	7987977.692	297516.806	1948.36689	18 11 16.17535 S	64 54 52.00655 O	1986.938	
	GPS-AIPT-11A	7988498.640	298338.481	1776.95586	18 10 59.51216 S	64 54 23.86611 O	1815.383	
	GPS-AIPT-11B	7988382.929	298333.174	1783.87215	18 11 03.27333 S	64 54 24.08757 O	1822.305	
	GPS-AIPT-12A	7989070.220	299586.113	1697.35804	18 10 41.34422 S	64 53 41.21739 O	1735.626	
	GPS-AIPT-12B	7989111.214	299719.606	1689.85391	18 10 40.05586 S	64 53 36.66131 O	1728.096	
Red SIRGAS	GPS-AIPT-13A	7989793.880	301914.676	1609.50645	18 10 18.58707 S	64 52 21.74344 O	1647.539	
CONTINUA	GPS-AIPT-13B	7989805.149	301710.083	1608.18588	18 10 18.15271 S	64 52 28.70001 O	1646.160	
	GPS-AIPT-14A	7989883.373	303035.760	1611.05465	18 10 16.04737 S	64 51 43.57184 O	1648.990	
	GPS-AIPT-14B	7989836.591	303108.339	1617.19204	18 10 17.59270 S	64 51 41.11874 O	1655.125	
	GPS-AIPT-15A	7990764.578	304652.861	1601.16176	18 09 47.92024 S	64 50 48.25439 O	1638.951	
Principal	GPS-AIPT-15B	7990913.293	304641.612	1601.25847	18 09 43.08012 S	64 50 48.58623 O	1639.038	
cada 2 km	GPS-AIPT-16A	7991940.799	305011.616	1525.52907	18 09 09.78476 S	64 50 35.64821 O	1563.242	
	GPS-AIPT-16B	7991977.286	305103.500	1520.63714	18 09 08.62810 S	64 50 32.51005 O	1558.343	
	GPS-AIPT-17A	7993263.989	305341.302	1558.46362	18 08 26.85973 S	64 50 23.98255 O	1596.120	
Fulses	GPS-AIPT-17B	7993077.918	305139.896 306752.247	1559.61351 1582.49142	18 08 32.84553 S	64 50 30.89691 0	1597.295	
Enlace cada 10 km	GPS-AIPT-18A GPS-AIPT-18B	7993404.215			18 08 22.75661 S	64 49 35.94056 O	1620.095	
Caua 10 Kili		7993577.345 7994409.498	306533.105 307275.753	1586.16164 1507.14820	18 08 17.05528 S 18 07 50.23150 S	64 49 43.33632 0	1623.777 1544.658	
	GPS-AIPT-19A GPS-AIPT-19B	7994299.806	307269.849	1514.22150	18 07 53.79702 S	64 49 17.79453 O 64 49 18.03228 O	1551.733	
	GPS-AIPT-20A	7995085.855	309093.915	1501.50519	18 07 28.81717 S	64 48 15.72540 O	1538.898	
Principal	GPS-AIPT-20B	7994977.218	308953.310	1505.10439	18 07 32.30548 S	64 48 20.54409 O	1542.520	
cada 2 km	GPS-AIPT-21A	7995084.130	311336.216	1566.71479	18 07 29.58375 S	64 46 59.45728 O	1604.022	
cada 2 KIII	GPS-AIPT-21A	7995126.161	311031.636	1550.01567	18 07 28.12077 S	64 47 09.80333 O	1587.332	
	GPS-AIPT-22A	7994786.253	312622.328	1655.20077	18 07 39.67534 S	64 46 15.80903 O	1692.470	
	GPS-AIPT-22B	7994683.079	312767.615	1645.51225	18 07 43.07632 S	64 46 10.90089 O	1682.780	
Enlace	GPS-AIPT-23A	7995646.138	313372.323	1544.26775	18 07 11.94334 S	64 45 50.01803 O	1581.389	
cada 10 km	GPS-AIPT-23B	7995521.962	313423.688	1556.80709	18 07 15.99794 S	64 45 48.31138 O	1593.999	
cada 10 km	GPS-AIPT-24A	7997406.058	313485.734	1470.18468	18 06 14.74035 S	64 45 45.58787 O	1507.266	
	GPS-AIPT-24B	7997340.974	313577.168	1490.52174	18 06 16.88553 S	64 45 42.49934 O	1527.604	
	GPS-AIPT-25A	7998753.012	314416.729	1449.68051	18 05 31.22160 S	64 45 13.48877 O	1486.674	
	GPS-AIPT-25B	7998630.816	314391.368	1466.11695	18 05 35.18799 S	64 45 14.39077 O	1503.113	
Principal	GPS-AIPT-26A	7999598.384	315586.380	1451.68842	18 05 04.08757 S	64 44 33.43958 O	1488.561	
cada 2 km	GPS-AIPT-26B	7999457.649	315500.884	1458.78208	18 05 08.63852 S	64 44 36.39224 O	1495.674	
	GPS-AIPT-27A	7999888.521	316691.006	1449.40832	18 04 54.98947 S	64 43 55.78210 O	1486.272	
	GPS-AIPT-27B	7999503.809	316776.912	1459.18474	18 05 07.52802 S	64 43 52.98350 O	1496.044	
-								

	TramoII: Aiquile - Puente Taperas									
		Coord	lenadas UTM (WO	GS-84)	Coordenadas Geográficas (WGS-84)					
Tipo	Descripción PB	Norte	Este	Cota nivel	Latitud	Longitud	Altura Elipsoidal			
	GPS-AIPT-28B	7999904.391	317958.952	1475.25603	18 04 54.85905 S	64 43 12.65858 O	1512.067			
	GPS-AIPT-29A	7999585.095	319265.116	1413.89517	18 05 05.63849 S	64 42 28.34064 O	1450.576			
	GPS-AIPT-29B	7999487.979	319289.165	1416.74475	18 05 08.80435 S	64 42 27.55336 O	1453.439			
Enlace	GPS-PTLP-01A	7998836.873	320452.522	1423.08794	18 05 30.33029 S	64 41 48.19387 O	1459.758			
cada 10 km	GPS-PTLP-01B	7998854.847	320083.920	1403.54095	18 05 29.63531 S	64 42 00.72400 O	1440.225			

Coordenadas y elevaciones bancos de nivel tramo II

Tramo II: Aiguile - Puente Taperas							
December of the DAA	Coord	lenadas UTM (Wo	GS-84)	Coordenadas Geográficas (WGS-84)			
Descripción BM	Norte	Este	Cota Nivel	Latitud	Longitud		
BM-01	7985573.440	285315.667	2141.15110	18 12 30.09232 S	65 01 48.02115 O		
BM-02	7985970.246	285451.217	2155.25138	18 12 17.23782 S	65 01 43.25962 O		
BM-03	7985938.350	285820.928	2183.91382	18 12 18.40794 S	65 01 30.69240 O		
BM-04	7985551.703	286428.223	2169.11274	18 12 31.19882 S	65 01 10.17438 O		
BM-05	7985502.696	286785.385	2193.79354	18 12 32.92030 S	65 00 58.04014 O		
BM-06	7985280.209	287039.803	2186.18837	18 12 40.24613 S	65 00 49.46662 O		
BM-07	7985497.383	287927.165	2225.04853	18 12 33.50041 S	65 00 19.19234 O		
BM-08	7985907.869	288070.654	2203.63290	18 12 20.20310 S	65 00 14.15731 O		
BM-09	7986190.221	288348.056	2175.60704	18 12 11.12000 S	65 00 04.61380 O		
BM-10	7986049.458	288951.753	2135.12631	18 12 15.91140 S	64 59 44.12532 O		
BM-11	7986045.010	289300.271	2119.62166	18 12 16.17931 S	64 59 32.26862 O		
BM-12	7986105.363	289786.144	2098.16510	18 12 14.38821 S	64 59 15.71445 O		
BM-13	7986195.125	290622.679	2039.89455	18 12 11.76361 S	64 58 47.21821 O		
BM-14	7986232.049	291009.885	2018.25219	18 12 10.69872 S	64 58 34.02992 O		
BM-15	7986561.463	291413.809	1995.00452	18 12 00.12794 S	64 58 20.16576 O		
BM-16	7986514.839	292594.129	1961.47070	18 12 02.05578 S	64 57 40.02261 O		
BM-17	7986857.600	292529.065	1961.99431	18 11 50.88682 S	64 57 42.11165 O		
BM-18	7987266.287	292432.128	1970.60539	18 11 37.56290 S	64 57 45.26108 O		
BM-19	7987832.457	293200.484	1982.13673	18 11 19.41822 S	64 57 18.91345 O		
BM-20	7987775.953	293656.899	1997.08191	18 11 21.41370 S	64 57 03.40535 O		
BM-21	7987925.576	294034.836	2040.74109	18 11 16.67859 S	64 56 50.49275 O		
BM-22	7987984.463	294558.384	2100.02086	18 11 14.94406 S	64 56 32.65894 O		
BM-23	7987980.941	294836.425	2115.58909	18 11 15.15425 S	64 56 23.20045 O		
BM-24	7988041.156	295300.205	2156.71760	18 11 13.35532 S	64 56 07.39969 O		
BM-25	7987944.147	296739.398	2065.64778	18 11 17.00196 S	64 55 18.46855 O		
BM-26	7987861.606	296994.804	2009.81192	18 11 19.77314 S	64 55 09.80815 O		
BM-27	7987760.278	296946.211	1975.44862	18 11 23.05181 S	64 55 11.49753 O		
BM-28	7987965.645	297793.579	1865.10614	18 11 16.66097 S	64 54 42.59404 O		
BM-29	7987772.162	297823.591	1821.23537	18 11 22.96325 S	64 54 41.64151 O		
BM-30	7988043.185	298054.283	1785.73879	18 11 14.22762 S	64 54 33.69651 O		
BM-31	7988426.937	298764.173	1731.20172	18 11 01.98763 S	64 54 09.40818 O		
BM-32	7988639.869	298865.563	1711.70423	18 10 55.09716 S	64 54 05.88354 O		
BM-33	7988968.642	299172.492	1694.41873	18 10 44.50862 S	64 53 55.32532 O		
BM-34	7989238.747	300278.469	1673.76590	18 10 36.09557 S	64 53 17.60306 O		
BM-35	7989408.054	300828.650	1656.39856	18 10 30.77332 S	64 52 58.82580 O		
BM-36	7989549.018	301254.469	1640.41751	18 10 26.33091 S	64 52 44.28965 O		
BM-37	7989669.327	302007.644	1574.57613	18 10 22.66849 S	64 52 18.62375 O		
BM-38	7989787.220	302379.680	1564.08072	18 10 18.95768 S	64 52 05.92574 O		
BM-39	7989737.459	302796.583	1574.35035	18 10 20.71375 S	64 51 51.75933 O		
BM-40	7990183.609	303797.502	1647.06474	18 10 06.53396 S	64 51 17.55322 O		
BM-41	7990246.922	304285.169	1638.32593	18 10 04.63488 S	64 51 00.94064 O		
BM-42	7990604.186	304427.566	1631.57768	18 09 53.06274 S	64 50 55.97384 O		
BM-43	7990909.021	304897.624	1556.37646	18 09 43.30268 S	64 50 39.87822 O		
BM-44	7991254.402	305000.067	1548.12966	18 09 32.10376 S	64 50 36.27526 O		

	1		uile - Puente Tap		
Descripción BM		lenadas UTM (WO	Coordenadas Geo	<u> </u>	
	Norte	Este	Latitud	Longitud	
BM-45	7991614.431	305131.620	1528.75067	18 09 20.43791 S	64 50 31.67716 O
BM-46	7992153.290	305288.386	1520.69301	18 09 02.96437 S	64 50 26.16066 O
BM-47	7992576.577	305305.639	1519.00534	18 08 49.20397 S	64 50 25.42963 O
BM-48	7992815.920	305291.878	1523.46444	18 08 41.41564 S	64 50 25.81626 O
BM-49	7993596.226	305458.688	1554.10490	18 08 16.09296 S	64 50 19.87661 O
BM-50	7993711.569	305892.230	1560.66843	18 08 12.48256 S	64 50 05.09043 O
BM-51	7993652.147	306272.425	1583.49818	18 08 14.53825 S	64 49 52.17815 O
BM-52	7993226.518	306984.685	1556.09191	18 08 28.61069 S	64 49 28.09393 O
BM-53	7993496.212	307253.605	1536.88791	18 08 19.92636 S	64 49 18.85544 O
BM-54	7993909.298	307312.097	1529.63194	18 08 06.51077 S	64 49 16.72669 O
BM-55	7994485.311	307611.367	1498.02203	18 07 47.87383 S	64 49 06.35340 O
BM-56	7994638.125	307956.117	1494.30436	18 07 43.01464 S	64 48 54.57577 O
BM-57	7994686.558	308434.451	1488.84797	18 07 41.59269 S	64 48 38.28952 O
BM-58	7995048.407	309555.499	1501.36655	18 07 30.18201 S	64 48 00.03781 O
BM-59	7995123.997	310137.985	1555.37218	18 07 27.90855 S	64 47 40.20032 O
BM-60	7995120.901	310703.295	1558.75921	18 07 28.18816 S	64 47 20.97314 O
BM-61	7995241.808	311693.552	1586.59532	18 07 24.56805 S	64 46 47.25107 O
BM-62	7995118.215	311956.955	1601.83975	18 07 28.67041 S	64 46 38.33236 O
BM-63	7994932.546	312413.332	1614.08580	18 07 34.85202 S	64 46 22.87001 O
BM-64	7994638.979	313064.300	1633.35100	18 07 44.60328 S	64 46 00.82361 O
BM-65	7994797.573	313252.808	1608.65049	18 07 39.50412 S	64 45 54.35980 O
BM-66	7995194.245	313337.117	1574.26299	18 07 26.62937 S	64 45 51.36276 O
BM-67	7995727.640	313693.423	1489.73864	18 07 09.39257 S	64 45 39.06987 O
BM-68	7996210.465	313248.034	1478.22378	18 06 53.55090 S	64 45 54.06156 O
BM-69	7996715.596	313358.824	1464.85915	18 06 37.15693 S	64 45 50.12886 O
BM-70	7997845.615	313412.074	1461.24183	18 06 00.42161 S	64 45 47.95006 O
BM-71	7998227.016	313455.576	1454.89280	18 05 48.03073 S	64 45 46.34657 O
BM-72	7998617.104	314051.185	1467.00157	18 05 35.52864 S	64 45 25.96421 O
BM-73	7998640.186	314717.373	1471.23028	18 05 34.98399 S	64 45 03.30089 O
BM-74	7998883.377	314807.084	1492.63850	18 05 27.10226 S	64 45 00.17150 O
BM-75	7999042.829	315119.687	1498.60838	18 05 22.01269 S	64 44 49.48917 O
BM-76	7999266.587	316035.968	1460.04959	18 05 15.01678 S	64 44 18.25684 O
BM-77	7999434.805	316356.854	1461.39105	18 05 09.64394 S	64 44 07.29052 O
BM-78	7999546.594	316700.001	1445.06835	18 05 06.11301 S	64 43 55.58536 O
BM-79	8000526.029	316959.856	1431.38848	18 04 34.33722 S	64 43 46.43631 O
BM-80	8000417.256	317316.610	1457.63702	18 04 37.98355 S	64 43 34.33933 O
BM-81	8000175.402	317643.506	1463.18351	18 04 45.94896 S	64 43 23.29978 O
BM-82	7999882.345	318338.184	1477.54477	18 04 55.69093 S	64 42 59.76912 O
BM-83	7999918.225	318526.621	1459.95069	18 04 54.58094 S	64 42 53.34965 O
BM-84	7999706.276	318832.363	1431.94313	18 05 01.56674 S	64 42 43.01921 O
BM-85	7999320.279	319476.171	1412.81323	18 05 14.31495 S	64 42 21.24645 O
BM-86	7999128.889	319670.072	1412.55771	18 05 20.59806 S	64 42 14.71240 O
BM-87	7998955.573	319922.649	1409.49620	18 05 26.31089 S	64 42 06.17704 O

ANEXO No. 2 PLANILLA DE COORDENADAS FINALES

PUNTO	NORTE	ESTE	Alt. Ellipsoidal	DESCRIPCION
1	7985799.162	284969.437	2141,339	GPS-AIPT-01A
2	7985727.788	285089.446	2123,378	GPS-AIPT-01B
3	7985758.668	286101.014	2169,868	GPS-AIPT-02A
4	7985598.479	286245.150	2166,719	GPS-AIPT-02B
5	7985188.678	287463.278	2202,566	GPS-AIPT-03A
6	7985291.639	287600.727	2210,649	GPS-AIPT-03B
7	7985959.829	288760.334	2152,100	GPS-AIPT-04A
8	7985936.683	288640.121	2156,998	GPS-AIPT-04B
9	7986056.310	290306.049	2061,685	GPS-AIPT-05A
10	7986059.654	290393.970	2059,835	GPS-AIPT-05B
11	7986515.206	291667.682	1998,713	GPS-AIPT-06A
12	7986509.342	291859.261	1980,900	GPS-AIPT-06B
13	7987842.394	292482.507	1972,601	GPS-AIPT-07A
14	7987736.089	292259.099	1982,786	GPS-AIPT-07B
15	7988157.362	294217.119	2077,467	GPS-AIPT-08A
16	7988103.176	294305.688	2084,950	GPS-AIPT-08B
17	7988045.661	295553.653	2137,230	GPS-AIPT-09A
18	7988067.821	295945.972	2127,682	GPS-AIPT-09B
19	7988232.135	297627.075	1925,612	GPS-AIPT-10A
20	7987977.698	297516.809	1948,367	GPS-AIPT-10B
21	7988498.638	298338.493	1776,956	GPS-AIPT-11A
22	7988382.937	298333.179	1783,872	GPS-AIPT-11B
23	7989070.236	299586.127	1697,358	GPS-AIPT-12A
24	7989111.225	299719.620	1689,854	GPS-AIPT-12B
25	7989793.896	301914.698	1609,506	GPS-AIPT-13A
26	7989805.169	301710.104	1608,186	GPS-AIPT-13B
27	7989836.589	303108.339	1611,055	GPS-AIPT-14A
28	7989883.380	303035.763	1617,192	GPS-AIPT-14B
29	7990764.553	304652.871	1601,162	GPS-AIPT-15A
30	7990913.294	304641.608	1601,259	GPS-AIPT-15B
31	7991940.817	305011.636	1525,529	GPS-AIPT-16A
32	7991977.291	305103.491	1520,637	GPS-AIPT-16B
33	7993264.019	305341.300	1558,464	GPS-AIPT-17A
34	7993077.942	305139.885	1559,614	GPS-AIPT-17B
35	7993404.215	306752.247	1582,491	GPS-AIPT-18A
36	7993577.345	306533.105	1586,162	GPS-AIPT-18B

37	7994409.502	307275.765	1507,148	GPS-AIPT-19A
38	7994314.157	307286.817	1514,222	GPS-AIPT-19B
39	7995085.875	309093.937	1501,505	GPS-AIPT-20A
40	7994977.237	308953.339	1505,104	GPS-AIPT-20B
41	7995084.119	311336.233	1566,715	GPS-AIPT-21A
42	7995126.181	311031.667	1550,016	GPS-AIPT-21B
43	7994786.259	312622.330	1655,201	GPS-AIPT-22A
44	7994683.069	312767.623	1645,512	GPS-AIPT-22B
45	7995646.127	313372.342	1544,268	GPS-AIPT-23A
46	7995521.962	313423.711	1556,807	GPS-AIPT-23B
47	7997406.077	313485.745	1470,185	GPS-AIPT-24A
48	7997340.998	313577.181	1490,522	GPS-AIPT-24B
49	7998753.019	314416.731	1449,681	GPS-AIPT-25A
50	7998630.837	314391.357	1466,117	GPS-AIPT-25B
51	7999457.646	315500.898	1451,688	GPS-AIPT-26A
52	7999598.387	315586.386	1458,782	GPS-AIPT-26B
53	7999888.530	316691.010	1449,408	GPS-AIPT-27A
54	7999503.787	316776.913	1459,185	GPS-AIPT-27B
55	7999992.113	318008.741	1474,215	GPS-AIPT-28A
56	7999904.385	317958.969	1475,256	GPS-AIPT-28B
57	7999585.089	319265.128	1413,895	GPS-AIPT-29A
58	7999487.972	319289.166	1416,745	GPS-AIPT-29B
59	7998836.871	320452.526	1423,088	GPS-PTLP-01A
60	7998854.839	320083.949	1403,541	GPS-PTLP-01B

ANEXO No. 3 PLANILLA DE NIVELACION

TOPOGRAFIA Y GEODESIA

PROYECTO: SUPERVISION TECNICA, AMBIENTAL Y SOCIAL DE LA CONSTRUCCION DE LA CARRETERA

PUENTE ARCE-AIQUILE-LA PALIZADA

TRAMO KILOMETRO 30 (VILLA GRANADO) - PUENTE TAPERAS

SUPERVISION: PROINTEC. S.A. SUC. BOLIVIA

PUNTO	BM	DESNI\	/EL	DESNIVEL	COTA	OBSERVACIONES				
PONTO	DIVI	IDA	VUELTA	PROMEDIO	COTA	OBSERVACIONES				
	BM - A49				2176,741	CIABOL				
BM 49A - APT-2A	APT-2A -6,872		6,873	-6,873	2169,868	MOJON ANTIGUO				
APT-2A - APT-2B	APT-2B	-3,149	3,149	-3,149	2166,719	MOJON ANTIGUO				
APT-2B - BM 5	BM - 5	27,074	-27,075	27,075	2193,794	MOJON ANTIGUO				
BM 5-6	BM - 6	-7,605	7,606	-7,606	2186,188	MOJON ANTIGUO				
BM 6 - APT-3A	APT-3A	16,378	-16,377	16,378	2202,566	MOJON ANTIGUO				
APT-3A -APT-3B	APT-3B	8,083	-8,084	8,083	2210,649	MOJON ANTIGUO				
APT-3B - BM 7	BM - 7	14,400	-14,401	14,400	2225,049	MOJON ANTIGUO				
BM 7-8	BM- 8	-21,415	21,416	-21,416	2203,633	MOJON ANTIGUO				
BM 8-9	BM - 9	-28,025	28,026	-28,026	2175,607	MOJON ANTIGUO				
BM 9 - APT-4B	APT-4B	-18,610	18,612	-18,610	2156,997	MOJON ANTIGUO				
APT-4B - APT-4A	APT-4A	-4,898	4,897	-4,897	2152,100	MOJON ANTIGUO				
APT-4A - BM-10	BM - 10	-16,973	16,974	-16,974	2135,126	MOJON ANTIGUO				
BM 10 - 11	BM - 11	-15,504	15,504	-15,504	2119,622	MOJON ANTIGUO				
BM 11 - 12	BM - 12	-21,456	21,458	-21,457	2098,165	MOJON ANTIGUO				
BM 13 - APT-5A	APT - 5A	-36,481	36,480	-36,480	2061,685	MOJON ANTIGUO				
APT-5A - APT-5B	APT - 5B	-1,853	1,851	-1,852	2059,835	MOJON ANTIGUO				
APT-5B - BM-13	BM - 13	-19,941	19,940	-19,940	2039,895	MOJON ANTIGUO				
BM 13 - 14	BM - 14	-21,642	21,644	-21,643	2018,252	MOJON ANTIGUO				
BM 14 - 15	BM - 15	-23,245	23,248	-23,247	1995,005	MOJON ANTIGUO				
BM 15 - APT-6A	APT - 6A	3,707	-3,707	3,707	1998,712	MOJON ANTIGUO				
APT-6A - APT-6B	APT - 6B	-17,812	17,811	-17,813	1980,899	MOJON ANTIGUO				
APT-6B - BM-16R	BM - 16R	-19,440	19,439	-19,439	1961,460	MOJON NUEVO				
BM 16R - 17	BM - 17	0,534	-0,534	0,534	1961,994	MOJON ANTIGUO				
BM 17 - 18	BM - 18	8,611	-8,610	8,611	1970,605	MOJON ANTIGUO				
BM 18- APT-7B	APT - 7B	12,180	-12,182	12,181	1982,786	MOJON ANTIGUO				
APT-7B - APT-7A	APT - 7A	-10,184	10,186	-10,186	1972,600	MOJON ANTIGUO				
APT-7B - BM-19	BM - 19	9,537	-9,537	9,537	1982,137	MOJON ANTIGUO				
BM 19 - 20	BM - 20	14,944	-14,946	14,945	1997,082	MOJON ANTIGUO				
BM 20 - 21	BM - 21	43,659	-43,660	43,659	2040,741	MOJON ANTIGUO				
BM 20 - APT-8A	APT - 8A	36,724	-36,726	36,725	2077,466	MOJON ANTIGUO				

	1		1		I	<u> </u>
APT-8A - APT-8B	APT - 8B	7,483	-7,483	7,483	2084,949	MOJON ANTIGUO
APT-8B - BM -22	BM - 22	15,071	-15,072	15,072	2100,021	MOJON ANTIGUO
BM 22 - 23	BM - 23	15,567	-15,569	15,568	2115,589	MOJON ANTIGUO
BM 23 - 24	BM - 24	41,129	-41,129	41,130	2156,718	MOJON ANTIGUO
BM 24 - APT-9A	APT - 9A	-19,490	19,489	-19,489	2137,229	MOJON ANTIGUO
APT-9A - APT-9B	APT - 9B	-9,550	9,548	-9,548	2127,681	MOJON ANTIGUO
APT-9B - BM-25	BM - 25	-62,032	62,035	-62,033	2065,648	MOJON ANTIGUO
BM 25 - 26	BM - 26	-55,837	55,839	-55,838	2009,812	MOJON ANTIGUO
BM 26 - 27	BM - 27	-34,362	34,365	-34,363	1975,449	MOJON ANTIGUO
BM 27 - APT-10B	APT - 10B	-27,082	27,084	-27,083	1948,366	MOJON ANTIGUO
APT-10B - APT-10A	APT - 10A	-22,753	22,754	-22,754	1925,612	MOJON ANTIGUO
APT - 10A - BM-28	BM - 28	-60,504	60,506	-60,506	1865,106	MOJON ANTIGUO
BM 28 - 29	BM - 29	-43,869	43,872	-43,871	1821,235	MOJON ANTIGUO
BM 29 - 30	BM - 30	-35,495	35,497	-35,496	1785,739	MOJON ANTIGUO
BM 30 - APT-11B	APT - 11B	-1,868	1,8690	-1,868	1783,871	MOJON ANTIGUO
APT - 11B - ATP-11A	APT - 11A	-6,917	6,917	-6,917	1776,955	MOJON ANTIGUO
APT - 11A - BM-31R	BM - 31R	-55,817	55,820	-55,819	1721,136	MOJON ANTIGUO
BM 31R - 32	BM - 32	-9,430	9,433	-9,432	1711,704	MOJON ANTIGUO
BM 32 - 33	BM - 33	-17,285	17,284	-17,285	1694,419	MOJON ANTIGUO
BM 33 - APT-12B	APT - 12A	2,939	-2,939	2,939	1697,358	MOJON ANTIGUO
APT - 12A - ATP-12B	APT - 12B	-7,506	7,504	-7,505	1689,853	MOJON ANTIGUO
APT - 12B - BM-34	BM - 34	-16,089	16,087	-16,087	1673,766	MOJON ANTIGUO
BM 34 - 35	BM - 35	-17,367	17,367	-17,367	1656,399	MOJON ANTIGUO
BM 35 - 36	BM - 36	-15,980	15,981	-15,981	1640,418	MOJON ANTIGUO
BM 36 - APT-13B	APT - 13B	-32,232	32,234	-32,233	1608,185	MOJON ANTIGUO
APT - 13B - ATP-13A	APT - 13A	1,319	-1,319	1,319	1609,506	MOJON ANTIGUO
APT - 13B - BM-37	BM - 37	-34,928	34,931	-34,930	1574,576	MOJON ANTIGUO
BM 37 - 38	BM - 38	-10,494	10,496	-10,495	1564,081	MOJON ANTIGUO
BM 38 - 39	BM - 39	10,268	-10,270	10,269	1574,350	MOJON ANTIGUO
BM 39 - APT-14B	APT - 14A	36,704	-36,705	36,704	1611,054	MOJON ANTIGUO
APT - 14A - ATP-14B	APT - 14B	6,138	-6,138	6,138	1617,192	MOJON ANTIGUO
APT - 14B - BM-40	BM - 40	29,873	-29,874	29,874	1647,065	MOJON ANTIGUO
BM 40 - 41	BM - 41	-8,737	8,740	-8,739	1638,326	MOJON ANTIGUO
BM 41 - 42	BM - 42	-6,748	6,748	-6,748	1631,578	MOJON ANTIGUO
BM 42 - APT-15B	APT - 15B	-30,318	30,321	-30,320	1601,258	MOJON ANTIGUO
APT - 15B - ATP-15A	APT - 15A	-0,097	0,097	-0,097	1601,161	MOJON ANTIGUO
APT - 15B - BM-43	BM - 43	-44,783	44,786	-44,785	1556,376	MOJON ANTIGUO
BM 43 - 44	BM - 44	-8,246	8,246	-8,246	1548,130	MOJON ANTIGUO
BM 44 - 45	BM - 45	-19,378	19,379	-19,379	1528,751	MOJON ANTIGUO
BM 45 - APT-16A	APT - 16A	-3,224	3,222	-3,222	1525,529	MOJON ANTIGUO

	1		1	1	1	T
APT - 16A - ATP-16B	APT - 16B	-4,892	4,892	-4,892	1520,637	MOJON ANTIGUO
APT - 16B - BM-46	BM - 46	0,055	-0,0557	0,0556	1520,693	MOJON ANTIGUO
BM 46 - 47	BM - 47	-1,688	1,689	-1,688	1519,005	MOJON ANTIGUO
BM 47 - 48	BM - 48	4,459	-4,459	4,459	1523,464	MOJON ANTIGUO
BM 48 - APT-17B	APT - 17B	36,148	-36,150	36,149	1559,613	MOJON ANTIGUO
APT - 17B - ATP-17A	APT - 17A	-1,151	1,151	-1,150	1558,463	MOJON ANTIGUO
APT - 17B - BM-49	BM - 49	-4,357	4,360	-4,358	1554,105	MOJON ANTIGUO
BM 49 - 50	BM - 50	6,562	-6,563	6,563	1560,668	MOJON ANTIGUO
BM 50 - 51	BM - 51	22,830	-22,830	22,830	1583,498	MOJON ANTIGUO
BM 51 - APT-18B	APT - 18B	2,661	-2,663	2,663	1586,161	MOJON ANTIGUO
APT - 18B - ATP-18A	APT - 18A	-3,669	3,670	-3,670	1582,491	MOJON ANTIGUO
APT - 18A - BM-52	BM - 52	-26,399	26,401	-26,400	1556,092	MOJON ANTIGUO
BM 52 - 53	BM - 53	-19,204	19,204	-19,204	1536,888	MOJON ANTIGUO
BM 53 - 54	BM - 54	-7,256	7,2255	-7,256	1529,632	MOJON ANTIGUO
DM 54 ADT 40D D	APT - 19B- R	-15,877	15,879	-15,878	1513,754	MOJON NUEVO
BM 54 - APT-19B-R APT - 19BR - ATP-	K	-10,011	15,079	-10,070	1313,734	MOJON NUEVO
19A	APT - 19A	-6,606	6,606	-6,606	1507,148	MOJON ANTIGUO
APT - 19B - BM-55	BM - 55	-9,125	9,127	-9,126	1498,022	MOJON ANTIGUO
BM 55 - 56 R	BM - 56 R	-2,495	2,492	-2,494	1495,528	MOJON NUEVO
BM 56 - 57- R	BM - 57-R	-8,673	8,680	-8,676	1486,852	MOJON NUEVO
BM 57-R - APT-20B	APT - 20B	18,183	-18,187	18,1850	1505,104	MOJON ANTIGUO
APT - 20B - ATP-20A	APT - 20A	-3,532	3,532	-3,532	1501,505	MOJON ANTIGUO
APT - 20B - BM-58	BM - 58	-0,137	0,140	-0,138	1501,367	MOJON ANTIGUO
BM 58 - 59	BM - 59	54,006	-55,006	54,005	1555,372	MOJON ANTIGUO
BM 59 - 60	BM - 60	3,387	-3,389	3,388	1558,759	MOJON ANTIGUO
BM 60 - APT-21B	APT - 21B	-8,744	8,777	-8,744	1550,015	MOJON ANTIGUO
APT - 21B - ATP-21A	APT - 21A	16,700	-16,698	16,699	1566,714	MOJON ANTIGUO
APT - 21A - BM-61	BM - 61	19,883	-19,880	19,881	1586,595	MOJON ANTIGUO
BM 61 - 62	BM - 62	15,245	-15,245	15,245	1601,840	MOJON ANTIGUO
BM 62 - 63	BM - 63	12,245	-12,247	12,246	1614,086	MOJON ANTIGUO
BM 63 - APT-22B	APT - 22A	41,116	-41,114	41,114	1655,200	MOJON ANTIGUO
APT - 22A - ATP-22B	APT - 22B	-9,690	9,692	-9,691	1645,509	MOJON ANTIGUO
APT - 22B - BM-64	BM - 64	-12,158	12,161	-12,161	1633,351	MOJON ANTIGUO
BM 64 - 65	BM - 65	-24,700	24,702	-24,700	1608,651	MOJON ANTIGUO
BM 65 - 66	BM - 66	-34,389	34,388	-34,388	1574,263	MOJON ANTIGUO
BM 66 - APT-23B	APT - 23B	-17,456	17,455	-17,456	1556,807	MOJON ANTIGUO
APT - 23B - ATP-23A	APT - 23A	-12,541	12,540	-12,541	1544,266	MOJON ANTIGUO
APT - 23A - BM-67	BM - 67	-54,527	54,528	-54,527	1489,739	MOJON ANTIGUO
BM 67 - 68	BM - 68	-11,520	11,517	-11,518	1478,223	MOJON ANTIGUO
BM 68 - 69-R	BM - 69-R	-10,372	10,376	-10,374	1467,849	MOJON NUEVO

	1	ı		1		
BM 69-R - APT-24B	APT - 24B	22,679	-22,674	22,675	1490,524	MOJON ANTIGUO
APT - 24B - ATP-24A	APT - 24A	-20,340	20,340	-20,340	1470,184	MOJON ANTIGUO
APT - 24A - BM-70	BM - 70	-8,945	8,945	-8,945	1461,239	MOJON ANTIGUO
BM 70 - 71	BM - 71	-6,348	6,350	-6,349	1454,892	MOJON ANTIGUO
BM 71 - 72	BM - 72	12,110	-12,110	12,110	1467,003	MOJON ANTIGUO
BM 70 - APT-25A	APT - 25A	-17,343	17,344	-17,343	1449,660	MOJON ANTIGUO
APT - 25A - ATP-25B	APT - 25B	16,459	-16,455	16,457	1466,117	MOJON ANTIGUO
APT - 25B - BM-73	BM - 73	5,113	-5,113	5,113	1471,230	MOJON ANTIGUO
BM 73 - 74	BM - 74	21,408	-21,409	21,409	1492,639	MOJON ANTIGUO
BM 74 - 75	BM - 75	5,975	-5,970	5,970	1498,609	MOJON ANTIGUO
BM 75 - APT-26B	APT - 26B	-39,826	39,829	-39,827	1458,781	MOJON ANTIGUO
APT - 26B - ATP-26A	APT - 26A	-7,099	7,095	-7,0971	1451,684	MOJON ANTIGUO
APT - 26A - BM-76	BM - 76	8,360	-8,362	8,361	1460,049	MOJON ANTIGUO
BM 76 - 77	BM - 77	1,341	-1,341	1,341	1461,391	MOJON ANTIGUO
BM 77 - 78	BM - 78	-16,323	16,323	-16,323	1445,068	MOJON ANTIGUO
BM 78- APT-27B	APT - 27B	14,118	-14,115	14,116	1459,184	MOJON ANTIGUO
APT - 27B - ATP-27A	APT - 27A	-9,776	9,776	-9,776	1449.408	MOJON ANTIGUO
APT - 27A - BM-79	BM - 79	-13,675	13,672	-13,673	1430,926	MOJON ANTIGUO
BM 79 - 80	BM - 80	26,281	-26,278	26,279	1457,637	MOJON ANTIGUO
BM 80 - 81	BM - 81	5,546	-5,548	5,547	1463,184	MOJON ANTIGUO
BM 81 - APT-28B	APT - 28B	12,072	-12,072	12,072	1475,256	MOJON ANTIGUO
APT - 28B - ATP-28A	APT - 28A	-1,040	1,039	-1,040	1474,216	MOJON ANTIGUO
APT - 28A - BM-82	BM - 82	3,328	-3,330	3,329	1477,545	MOJON ANTIGUO
BM 82 - 83	BM - 83	-17,591	17,594	-17,592	1459,953	MOJON ANTIGUO
BM 83 - 84	BM - 84	-28,011	28,010	-28,010	1431,943	MOJON ANTIGUO
BM 84 - APT-29A	APT - 29A	-18,047	18,051	-18,049	1413,894	MOJON ANTIGUO
APT - 29A - ATP-29B	APT - 29B	2,849	-2,852	2,850	1416,744	MOJON ANTIGUO
APT - 29B - BM-85	BM - 85	-3,934	3,929	-3,932	1412,812	MOJON ANTIGUO
BM 85 - 86	BM - 86	-0,253	0,251	-0,252	1412,560	MOJON ANTIGUO
BM 86 - 87	BM - 87	-3,065	3,062	-3,064	1409,496	MOJON ANTIGUO
BM 87 - PTPA-1B	PTPA - 1B	-5,957	5,957	-5,957	1403,539	MOJON ANTIGUO
PTPA-1B - PTPA-1A	PTPA - 1A	19,555	-19,557	19,556	1423,086	MOJON ANTIGUO
1						

NOTA. - Los BMs.(Bench Marck) están considerados como puntos bases (APTs) para la realización de todos los trabajos de replanteo levantamiento, offset, ubicación y levantamiento de alcantarillas y puentes y todo tipo de trabajos de obras de arte.

ANEXO No. 4POLIGONAL BASE

TOPOGRAFIA Y GEODESIA

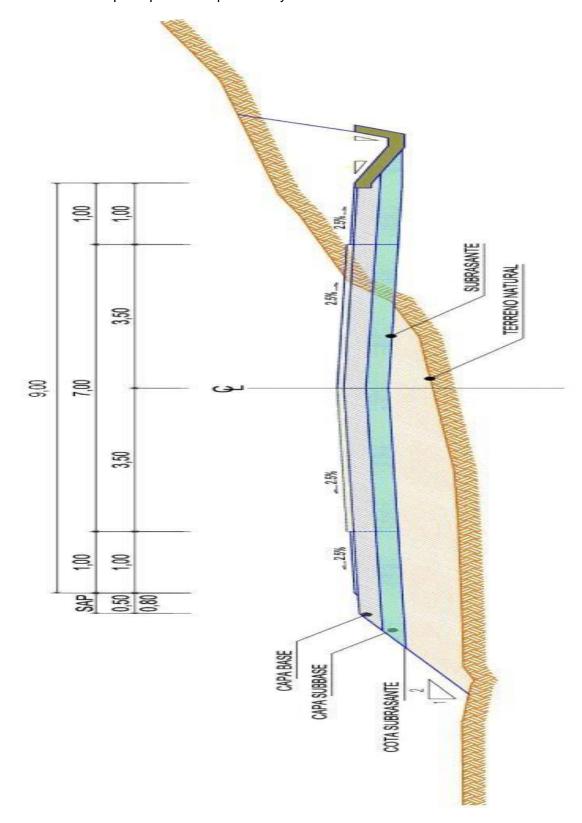
PROYECTO: SUPERVISION TECNICA, AMBIENTAL Y SOCIAL DE LA CONSTRUCCION DE LA CARRETERA PUENTE ARCE-AIQUILE-LA PALIZADA

TRAMO KILOMETRO 30 (VILLA GRANADO) - PUENTE TAPERAS

SUPERVISION: PROINTEC. S.A. SUC. BOLIVIA

POLIGONAL BASE

N°	NOMBRE	COORDEN	ADAS UTM	СОТА	DEFEDENCIA	FACTOR	ODOEDVA OLON
PUNTO	PUNTO	NORTE	ESTE	NIVELADA	REFERENCIA	COMBINADO	OBSERVACION
1	APT-2A	7985758,668	286101,014	2169,868			MOJON ANTIGUO
2	APT-2B	7985598,479	286245,150	2166,719			MOJON ANTIGUO
3	BM-5	7985502,666	286785,401	2193,794	30+150	0.0000400	MOJON ANTIGUO
4	BM-6	7985280,198	287039,832	2186,188	30+480	0,9998193	MOJON ANTIGUO
5	ATP-3A	7985188,678	287463,278	2202,566	30+920		MOJON ANTIGUO
6	ATP-3B	7985291,639	287600,727	2210,649	31+080		MOJON ANTIGUO
7	BM-7	7985497,372	287927,176	2225,049	31+480		MOJON ANTIGUO
8	BM-8	7985907,848	288070,648	2203,633	31+920		MOJON ANTIGUO
9	BM-9	7986190,255	288348,052	2175,607	32+460	0,9998136	MOJON ANTIGUO
10	APT-4A	7985959,829	288760,334	2152,100	32+920		MOJON ANTIGUO
11	APT-4B	7985936,683	288640,121	2156,998	32+840		MOJON ANTIGUO
12	BM-10	7986049,458	288951,753	2135,126	33+150		MOJON ANTIGUO
13	BM 11	7986044,966	289300,328	2119,622	33+500		MOJON ANTIGUO
14	BM-12	7986105,363	289786,144	2098,165	34+050	0,9998176	MOJON ANTIGUO
15	APT-5A	7986056,310	290306,049	2061,685	34+600		MOJON ANTIGUO
16	APT-5B	7986059,654	290393,970	2059,835	34+700		MOJON ANTIGUO
17	BM-13	7986195,077	290622,695	2039,895	34+940		MOJON ANTIGUO
18	BM-14	7986232,006	291009,914	2018,252	35+370		MOJON ANTIGUO
19	BM-15	7986561,489	291413,835	1995,005	35+920	0,9998234	MOJON ANTIGUO
20	APT-6A	7986515,206	291667,682	1998,712	36+160		MOJON ANTIGUO
21	APT-6B	7986509,342	291859,261	1980,899	36+360		MOJON ANTIGUO
22	BM-16R	7986522,412	292597,501	1961,460	37+120		MOJON NUEVO
23	BM-17	7986857,577	292529,191	1961,994	37+450		MOJON ANTIGUO
24	BM-18	7987266,295	292432,222	1970,605	37+870	0,9998241	MOJON ANTIGUO
25	APT-7A	7987842,394	292482,507	1972,601	38+370		MOJON ANTIGUO
26	APT-7B	7987736,089	292259,099	1982,786	38+650		MOJON ANTIGUO
27	BM-19	7987832,478	293200,503	1982,137	39+400		MOJON ANTIGUO
28	BM-20	7987775,971	293656,879	1997,082	39+980	0,9998097	MOJON ANTIGUO
29	BM-21	7987925,567	294034,869	2040,741	40+700		MOJON ANTIGUO


30	APT-8A	7000157 262	294217,119	2077 467	41+310		MOJON ANTIGUO
		7988157,362		2077,467			
31	APT-8B	7988103,176	294305,688	2084,950	41+400		MOJON ANTIGUO
32	BM-22	7987984,452	294558,385	2100,021	41+690		MOJON ANTIGUO
33	BM23	7987980,902	294836,443	2115,589	41+950	0.0007004	MOJON ANTIGUO
34	BM24	7988041,090	295300,236	2156,718	42+430	0,9997894	MOJON ANTIGUO
35	APT-9A	7988045,661	295553,653	2137,230	42+670		MOJON ANTIGUO
36	APT-9B	7988067,821	295945,972	2127,682	43+100		MOJON ANTIGUO
37	BM25	7987944,150	296739,400	2065,648	44+040		MOJON ANTIGUO
38	BM26	7987861,640	296994,883	2009,812	44+890		MOJON ANTIGUO
39	BM27	7987760,267	296946,240	1975,449	45+800	0,9997967	MOJON ANTIGUO
40	APT-10A	7988232,135	297627,075	1925,612	47+050		MOJON ANTIGUO
41	APT-10B	7987977,698	297516,809	1948,367	46+470		MOJON ANTIGUO
42	BM28	7987965,580	297793,656	1865,106	48+200		MOJON ANTIGUO
43	BM29	7987772,112	297823,573	1821,235	48+680		MOJON ANTIGUO
44	BM30	7988043,165	298054,287	1785,739	49+160	0,9998176	MOJON ANTIGUO
45	APT-11A	7988498,638	298338,493	1776,956	49+760		MOJON ANTIGUO
47	APT-11B	7988382,937	298333,179	1783,872	49+660		MOJON ANTIGUO
48	BM31R	7988489,643	298830,029	1721,139	50+440		MOJON NUEVO
49	BM32	7988639,954	298865,454	1711,704	50+580		MOJON ANTIGUO
50	BM33	7988968,715	299172,476	1694,419	52+190	0,9998298	MOJON ANTIGUO
51	APT-12A	7989070,236	299586,127	1697,358	51+660		MOJON ANTIGUO
52	APT-12B	7989111,225	299719,620	1689,854	51+800		MOJON ANTIGUO
53	BM34	7989238,842	300278,468	1673,766	52+380		MOJON ANTIGUO
54	BM35	7989408,168	300828,645	1656,399	52+950		MOJON ANTIGUO
55	BM36	7989549,08	301254,469	1640,418	53+400	0,9998321	MOJON ANTIGUO
56	APT-13A	7989793,896	301914,698	1609,506	54+050		MOJON ANTIGUO
57	APT-13B	7989805,169	301710,104	1608,186	53+900		MOJON ANTIGUO
58	BM37	7989669,322	302007,745	1574,576	54+200		MOJON ANTIGUO
59	BM38	7989787,054	302379,700	1564,081	54+640		MOJON ANTIGUO
60	BM39	7989737,428	302796,602	1574,350	55+110	0,9998330	MOJON ANTIGUO
61	APT-14A	7989836,589	303108,339	1611,055	55+650		MOJON ANTIGUO
62	APT-14B	7989883,380	303035,763	1617,192	55+700		MOJON ANTIGUO
63	BM40	7990183,781	303797,389	1647,065	56+480		MOJON ANTIGUO
64	BM41	7990247,092	304285,018	1638,326	57+340		MOJON ANTIGUO
65	BM42	7990604,283	304427,503	1631,578	57+710	0,9998217	MOJON ANTIGUO
66	APT-15A	7990764,553	304652,871	1601,162	58+300		MOJON ANTIGUO
67	APT-15B	7990913,294	304641,608	1601,259	58+160		MOJON ANTIGUO
68	BM-43	7990909,03	304897,629	1556,377	58+780		MOJON ANTIGUO
69	BM44	7991254,412	304999,987	1548,130	59+150	0,9998286	MOJON ANTIGUO
L	I	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	<i>'</i>	l	l	<u> </u>

70	D1445	7004044 440	005404 570	4500 754	50.500		MO IONI ANITIOLIO					
70	BM45	7991614,412	305131,576	1528,751	59+530		MOJON ANTIGUO					
71	APT-16A	7991940,817	305011,636	1525,529	59+850		MOJON ANTIGUO					
72	APT-16B	7991977,291	305103,491	1520,637	59+910		MOJON ANTIGUO					
73	BM46	7992153,321	305288,326	1520,693	60+170		MOJON ANTIGUO					
74	BM47	7992576,567	305305,572	1519,005	60+600		MOJON ANTIGUO					
75	BM48	7992815,951	305291,857	1523,464	60+850	0,9998288	MOJON ANTIGUO					
76	APT-17A	7993264,019	305341,300	1558,464	61+390		MOJON ANTIGUO					
77	APT-17B	7993077,942	305139,885	1559,614	61+140		MOJON ANTIGUO					
78	BM49	7993596,219	305458,704	1554,105	61+770		MOJON ANTIGUO					
80	BM50	7993711,604	305892,246	1583,498	62+220		MOJON ANTIGUO					
81	BM51	7993652,154	306272,434	1583,498	62+574	0,9998203	MOJON ANTIGUO					
82	APT-18A	7993404,215	306752,247	1582,491	63+400		MOJON ANTIGUO					
83	APT-18B	7993577,345	306533,105	1586,161	63+110		MOJON ANTIGUO					
84	BM52	7993226,586	306984,677	1556,092	63+680	0,9998205	MOJON ANTIGUO					
85	BM53	7993496,257	307253,601	1536,888	64+050		MOJON ANTIGUO					
86	BM54	7993909,314	307312,091	1529,632	64+470	0.0000005	MOJON ANTIGUO					
88	APT-19A	7994409,502	307275,765	1507,148	65+000	0,9998205	MOJON ANTIGUO					
89	APT-19B	7994314,157	307286,817	1514,221	64+910		MOJON ANTIGUO					
91	BM55	7994485,304	307611,381	1498,022	65+350		MOJON NUEVO					
92	BM56 R	7994611,603	307888,144	1495,530	65+655		MOJON NUEVO					
93	BM57 R	7994699,284	308451,668	1486,857	66+225	0,9998201	MOJON ANTIGUO					
94	APT-20A	7995085,875	309093,937	1501,505	66+990		MOJON ANTIGUO					
95	APT-20B	7994977,237	308953,339	1505,104	66+820		MOJON ANTIGUO					
97	BM58	7995048,372	309555,522	1501,366	67+440		MOJON ANTIGUO					
98	BM59	7995123,963	310138,020	1555,372	68+080		MOJON ANTIGUO					
99	BM60	7995120,871	310703,331	1558,759	68+620	0,9998050	MOJON ANTIGUO					
100	APT-21A	7995084,119	311336,233	1566,715	69+365		MOJON ANTIGUO					
101	APT-21B	7995126,181	311031,667	1550,016	68+980		MOJON ANTIGUO					
102	BM61	7995241,822	311693,579	1586,595	69+810		MOJON ANTIGUO					
103	BM62	7995118,234	311956,950	1601,840	70+168		MOJON ANTIGUO					
104	BM63	7994932,532	312413,358	1614,086	70+685	0,9997853	MOJON ANTIGUO					
105	APT-22A	7994786,259	312622,330	1655,201	70+935		MOJON ANTIGUO					
106	APT-22B	7994683,069	312767,623	1645,512	71+128		MOJON ANTIGUO					
107	BM64	7994639,037	313064,246	1633,351	71+440		MOJON ANTIGUO					
108	BM65	7994797,609	313252,782	1608,651	71+910		MOJON ANTIGUO					
109	BM66	7995194,251	313337,094	1574,263	72+310	0,9997839	MOJON ANTIGUO					
110	APT-23A	7995646,127	313372,342	1544,268	72+800	.,	MOJON ANTIGUO					
112	APT-23B	7995521,962	313423,711	1556,807	72+655		MOJON ANTIGUO					
113	BM-67	7995727,622	313693,432	1489,739	73+440		MOJON ANTIGUO					
114	BM-68	7996210,458	313248,031	1478,224	74+100	0,9997963						
117	DIVI 00	7 0002 10,700	5 102 TO,001	1110,227	1-7-100		MOJON ANTIGUO					

115	BM-69 R	7996688,641	313343,980	1467849	74+740		MOJON ANTIGUO
116	APT-24A	7997406,077	313485,745	1470,185	75+500		MOJON ANTIGUO
117	APT-24B	7997340,998	313577,181	1490,522	75+425		MOJON ANTIGUO
118	BM70	7997845,661	313412,059	1461,241	75+963		MOJON ANTIGUO
119	BM71	7998227,033	313455,532	1454,893	76+360		MOJON ANTIGUO
120	BM72	7998617,052	314051,051	1467,002	77+185	0,9997992	MOJON ANTIGUO
121	APT-25A	7998753,019	314416,731	1449,681	77+600		MOJON ANTIGUO
122	APT-25B	7998630,837	314391,357	1466,117	77+520		MOJON ANTIGUO
123	BM73	7998640,139	314717,430	1471,230	77+960		MOJON ANTIGUO
124	BM74	7998883,351	314807,114	1492,639	78+165		MOJON ANTIGUO
125	BM75	7999042,796	315119,720	1498,608	78+880	0,9997934	MOJON ANTIGUO
126	APT-26B	7999598,387	315586,386	1458,782	79+450		MOJON ANTIGUO
127	APT-26A	7999457,646	315500,898	1451,688	79+580		MOJON ANTIGUO
128	BM76	7999266,541	316035,947	1460,050	80+080	0,9997897	MOJON ANTIGUO
129	BM77	7999434,779	316356,854	1461,391	80+700	0,9997097	MOJON ANTIGUO
130	BM78	7999546,581	316700,017	1445,068	81+077		MOJON ANTIGUO
131	APT-27A	7999888,530	316691,010	1449,408	81+670	0,999789728	MOJON ANTIGUO
132	APT-27B	7999503,787	316776,913	1459,185	81+120		MOJON ANTIGUO
133	BM79	8000525,930	316959,866	1431,389	82+295		MOJON ANTIGUO
134	BM80	8000417,128	317316,591	1457,637	82+700		MOJON ANTIGUO
135	BM81	8000175,323	317643,489	1463,184	83+110	0,9997846	MOJON ANTIGUO
136	APT-28A	7999992,113	318008,741	1474,215	83+550		MOJON ANTIGUO
137	APT-28B	7999904,385	317958,969	1475,256	83+520		MOJON ANTIGUO
138	BM82	7999882,321	318338,173	1477,545	83+890		MOJON ANTIGUO
139	BM83	7999918,205	318526,628	1459,951	84+090		MOJON ANTIGUO
140	BM84	7999706,220	318832,343	1431,943	84+470	0,9997813	MOJON ANTIGUO
141	APT-29A	7999585,089	319265,128	1413,895	84+930		MOJON ANTIGUO
142	APT-29B	7999487,972	319289,166	1416,745	84+980		MOJON ANTIGUO
143	BM85	7999320,337	319476,274	1412,813	85+250		MOJON ANTIGUO
144	BM86	7999128,835	319670,041	1412,558	85+515		MOJON ANTIGUO
145	BM87	7998955,552	319922,650	1409,496	85+830	0,9997804	MOJON ANTIGUO
146	GPS- PTLP01A	7998836,871	320452,526	1423,088	86+475		MOJON ANTIGUO
147	GPS- PTLP01B	7998854,839	320083,949	1403,541	86+020		MOJON ANTIGUO

ANEXO No. 5 Sección Típica

• La sección típica que se adoptó al Proyecto

ANEXO No. 6 Planillas de Replanteo

Planilla de Replanteo de capa Sub-rasante

UMENTAR		Drognosiy	riogicaly	В	30+000	30+010	30+020	30+030	30+040	30+050	30+060	30+070	30+080	30+090	30+100	30+110	30+120	30+130	30+140	30+150	30+160	30+170	30+180	30+190	30+200	30+210	30+220	30+230	30+240	30+250	30+260	30+270	30+280	30+290	30+300
E TALUD A	ISTANCIA		Ancho	E	5.55	5.55	5.55	5.55	5.55	5.55	5.57	5.81	6.07	6.35	6.53	6.53	6.53	6.53	6.53	6.53	6.29	6.03	5.80	5.56	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55
BECERAS D	0,40cm A LA DISTANCIA	ERECHO	PERRALTE	%	-5.5%	-5.5%	-5.5%	-5.5%	-5.5%	-5.5%	-5.5%	-5.5%	-2.5%	-3.9%	-2.6%	-2.6%	-2.6%	-5.6%	-5.6%	-5.6%	-3.9%	-5.5%	-2.5%	-2.5%	-5.5%	-2.5%	-2.5%	-2.5%	-5.5%	-2.5%	-2.5%	-2.5%	-2.5%	-2.5%	-5.5%
PARA LAS CABECERAS DE TALUD AUMENTAR	0/0	AA LADO D	Cota	msnm	2175.44	2176.02	2176.61	2177.20	2177.78	2178.36	2178.93	2179.50	2180.07	2180.54	2181.00	2181.57	2182.14	2182.71	2183.27	2183.84	2184.54	2185.20	2185.77	2186.32	2186.84	2187.34	2187.82	2188.27	2188.69	2189.09	2189.47	2189.83	2190.16	2190.46	2190.75
		BORDE PLATAFORMA LADO DERECHO	Este	WGS-84	286636.55	286646.54	286656.53	286666.52	286676.50	286686.49	286696.48	286706.41	286716.25	286725.99	286735.59	286745.11	286754.54	286763.84	286772.99	286781.98	286791.18	286800.37	286809.51	286818.62	286827.60	286836.53	286845.42	286854.27	286863.08	286871.84	286880.56	286889.24	286897.87	286906.45	286914.99
		BORDE	Norte	WGS-84	7985493.94	7985493.44	7985492.94	7985492.45	7985491.95	7985491.45	7985490.93	7985490.18	7985489.26	7985488.09	7985486.66	7985484.94	7985482.75	7985480.09	7985476.97	7985473.40	7985469.67	7985465.85	7985461.93	7985457.93	7985453.65	7985449.26	7985444.80	7985440.26	7985435.63	7985430.92	7985426.13	7985421.26	7985416.31	7985411.28	7985406.17
		31	Cota	msnm	2175.57	2176.16	2176.75	2177.33	2177.92	2178.50	2179.07	2179.65	2180.22	2180.79	2181.36	2181.93	2182.50	2183.07	2183.64	2184.21	2184.78	2185.35	2185.92	2186.46	2186.98	2187.48	2187.95	2188.40	2188.83	2189.23	2189.61	2189.97	2190.30	2190.60	2190.89
VTE		EJE NIVEL SUBRASANTE	Este	WGS-84	286636.83	286646.82	286656.80	286666.79	286676.78	286686.77	286696.75	286706.74	286716.72	286726.68	286736.59	286746.43	286756.17	286765.79	286775.25	286784.54	286793.71	286802.85	286811.95	286821.00	286830.02	286839.00	286847.94	286856.83	286865.69	286874.49	286883.26	286891.98	286900.65	286909.28	286917.86
PLANILLA DE REPLANTEO NIVEL SUBRASANTE	00-59+200	EJE NIVI	Norte	WGS-84	7985499.48	7985498.99	7985498.49	7985497.99	7985497.49	7985497.00	7985496.50	7985495.98	7985495.32	7985494.40	7985493.11	7985491.33	7985489.07	7985486.32	7985483.10	7985479.40	7985475.42	7985471.35	7985467.20	7985462.96	7985458.64	7985454.24	7985449.75	7985445.18	7985440.53	7985435.80	7985430.98	7985426.09	7985421.11	7985416.06	7985410.92
REPLANTEO I	DE PK : KM 30+000-59+200	0	Cota	msnm	2175.44	2176.02	2176.61	2177.20	2177.78	2178.36	2178.99	2179.67	2180.34	2181.01	2181.69	2182.26	2182.83	2182.94	2183.65	2184.35	2184.92	2185.49	2186.05	2186.60	2187.12	2187.62	2188.09	2188.54	2188.97	2189.37	2189.75	2190.10	2190.43	2190.74	2191.02
PLANILLA DE	DE P	LADO IZQUIERDO	Este	WGS-84	286637.10	286647.09	286657.08	286667.07	286677.05	286687.04	286697.03	286707.06	286717.15	286727.29	286737.47	286747.60	286757.62	286767.56	286777.28	286786.83	286796.02	286805.16	286814.26	286823.33	286832.39	286841.42	286850.40	286859.34	286868.23	286877.09	286885.90	286894.66	286903.38	286912.05	286920.67
		BORDE PLATAFORMA LA	Norte	WGS-84	7985505.01	7985504.51	7985504.01	7985503.52	7985503.02	7985502.52	7985502.01	7985501.53	7985500.89	7985500.01	7985498.82	7985497.00	7985494.67	7985491.98	7985488.61	7985484.77	7985480.66	7985476.47	7985472.21	7985467.88	7985463.53	7985459.11	7985454.60	7985450.00	7985445.33	7985440.57	7985435.73	7985430.81	7985425.81	7985420.73	7985415.57
		BORDE PL	PERRALTE	%	-2.5%	-2.5%	-5.5%	-5.5%	-5.5%	-5.5%	-1.5%	%E'0	2.1%	3.9%	2.6%	2.6%	2.6%	-2.1%	0.1%	2.4%	2.5%	7.5%	2.5%	2.5%	7.5%	7.5%	2.5%	2.5%	7.5%	2.5%	7.5%	2.5%	7.5%	2.5%	7.5%
			Ancho	E	5.53	5.53	5.53	5.53	5.53	5.53	5.51	5.57	5.59	5.64	5.78	5.78	5.78	5.92	5.88	5.84	5.72	5.62	5.52	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43
			Progresiva		30+000	30+010	30+020	30+030	30+040	30+020	30+060	30+070	30+080	30+090	30+100	30+110	30+120	30+130	30+140	30+150	30+160	30+170	30+180	30+190	30+200	30+210	30+220	30+230	30+240	30+250	30+260	30+270	30+280	30+290	30+300

Planilla de Replanteo Capa Sub-Base

						PLANILLA DE REPLANTEO NIVEL SUB-BASE	LA D	ERF	LANT	EO N	WEL 9	SUB-B	ASE							
PROGRESI	SUB	SUB-BASE LADO IZQUIERDO	UIERDO		SUB-R	RASANTE LADO IZQUIERDO	IZQUIERDO		EJE NIV	EJE NIVEL SUBRASANTE	VTE	ns	SUB-RASANTE LADO DERECHO	ADO DEREC	CH.		SUB-BASE LADO DERECHO	LADO D	ERECHO	PROGRESI
VA	DISTANCIA AL EJE	COTA IZQUIENDA	COTAEJE	DISTANCIA	PERALTE	NORTE	ESTE	COTA	NORTE	ESTE	COTA EJE	NORTE	ESTE	COTA	PERALTE	DISTANCIA	COTA EJE	DISTANCIA	COTA DERECHA	NA
30+000	5.05	2176.631	2176.757	5.53	-5.5%	7985505.01	286637.10	2176.379	7985499.48	286636.83	2176.517	7985493.94	286636.55	2176.378	-2.5%	5.55	2176.757	5.07	2176.630	30+000
30+010	5.05	111.111	767.771	5.53	-5.5%	7985504.51	286647.09	2176.919	7985498.99	286646.82	2177.057	7985493.44	286646.54	2176.918	-2.5%	5.55	7177.297	5.07	2177.170	30+010
30+020	5.05	117.711	2177.838	5.53	-7.5%	7985504.01	286657.08	2177.459	7985498.49	286656.80	2177.598	7985492.94	286656.53	2177.459	-2.5%	5.55	2177.838	2.07	117.711	30+020
30+030	5.05	2178.251	2178.378	5.53	-2.5%	7985503.52	286667.07	2177.999	7985497.99	286666.79	2178.138	7985492.45	286666.52	2177.999	-2.5%	5.55	2178.378	2.07	2178.251	30+030
30+040	5.05	2178.792	2178,918	5.53	-5.5%	7985503.02	286677.05	2178.540	7985497.49	286676.78	2178.678	7985491.95	286676.50	2178.539	-2.5%	5.55	2178.918	2.07	2178.791	30+040
30+050	5.05	2179.332	2179.458	5.53	-7.5%	7985502.52	286687.04	2179.080	7985497.00	286686.77	2179.218	7985491.45	286686.49	2179.079	-2.5%	5.55	2179.458	2.07	2179.331	30+050
30+060	5.03	2179.937	2179.998	5.51	-1.2%	7985502.00	286697.03	2179.691	7985496.50	286696.75	2179.758	7985490.95	286696.48	2179.620	-2.5%	5.55	2179.998	5.07	2179.872	30+060
30+070	90'9	2180.565	2180.539	5.54	0.5%	7985501.53	286707.02	2180.328	7985496.00	286706.74	2180.299	7985490.45	286706.46	2180.160	-2.5%	5.56	2180,539	2.08	2180.412	30+070
30+080	5.04	2181.193	2181,079	5.52	7.3%	7985500.96	286717.07	2180.964	7985495.45	286716.73	2180.839	7985489.78	286716.38	2180.697	-2.5%	5.68	2181.079	5.20	2180.949	30+080
30+090	5.01	2181.821	2181,619	5.49	4.0%	7985500.20	286727.18	2181.600	7985494.72	286726.70	2181.379	7985488.66	286726.17	2181.134	-4.0%	90.9	2181.619	2.60	2181.394	30+090
30+100	5.07	2182.452	2182.159	5.55	2.8%	7985499.18	286737.34	2182.240	7985493.68	286736.65	2181.919	7985487.12	286735.82	2181.538	-5.8%	9.61	2182.159	6.13	2181.806	30+100
30+110	2.08	2183,055	2182.700	5.56	7.0%	7985497.65	286747.51	2182.849	7985492.18	286746.53	2182.460	7985485.56	286745.34	2181.989	-7.0%	6.73	2182.700	6.25	2182.262	30+110
30+120	5.10	2183.569	2183.212	5.58	7.0%	7985495.57	286757.61	2183.363	7985490.14	286756.32	2182.972	7985483.58	286754.76	2182.500	-7.0%	6.74	2183.212	97.9	2182.774	30+120
30+130	5.14	2184.085	2183.725	29.5	7.0%	7985492.95	286767.58	2183.878	7985487.56	286765.98	2183.485	7985481.11	286764.06	2183.014	-7.0%	6.73	2183.725	6.25	2183.287	30+130
30+140	5.19	2184.601	2184.237	2.67	7.0%	7985489.78	286777.39	2184.394	7985484.45	286775.48	2183.997	7985478.15	286773.22	2183.529	-7.0%	69.9	2184.237	6.21	2183,803	30+140
30+150	5.25	2185.117	2184.750	5.73	7.0%	7985486.09	286787.03	2184.911	7985480.81	286784.80	2184.510	7985474.71	286782.22	2184.047	-7.0%	9.62	2184.750	6.14	2184.320	30+150
30+160	5.18	2185.599	2185.262	2.66	9:2%	7985481.97	286796.24	2185.391	7985476.79	286793.95	2185.022	7985470.95	286791.37	2184.607	-6.5%	6:39	2185.262	5.91	2184.878	30+160
30+170	2.08	2186.069	2185.775	5.56	2.8%	7985477.80	286805.36	2185.857	7985472.73	286803.09	2185.535	7985467.16	286800.60	2185.181	-5.8%	6.11	2185.775	5.63	2185,449	30+170
30+180	4.97	2186.540	2186.288	5.45	5.1%	7985473.56	286814.47	2186.325	7985468.60	286812.20	2186.048	7985463.34	286809.78	2185.753	-5.1%	5.79	2186.288	5.31	2186.017	30+180
30+190	4.92	2187.015	2186.800	5.40	4.4%	7985469.28	286823.57	2186.796	7985464.39	286821.27	2186.560	7985459.31	286818.88	2186.315	-4.4%	5.61	2186.800	5.13	2186.576	30+190
30+200	4.93	2187,493	2187,313	5.41	3.7%	7985464.97	286832.65	2187.271	7985460.09	286830.30	2187.073	7985455.07	286827.88	2186.868	-3.7%	5.57	2187.313	5.09	2187.126	30+200
30+210	4.94	2187.975	2187.812	5.42	3.3%	7985460.57	286841.68	2187.751	7985455.71	286839.29	2187.572	7985450.72	286836.83	2187.389	-3.3%	5.56	2187.812	2.08	2187.645	30+210
30+220	4.93	2188,451	2188.288	5.41	3.3%	7985456.08	286850.68	2188.227	7985451.25	286848.24	2188.048	7985446.28	286845.73	2187.865	-3.3%	5.56	2188.288	2.08	2188.120	30+220
30+230	4.93	2188,903	2188.740	5.41	3.3%	7985451.51	286859.63	2188.679	7985446.70	286857.14	2188.500	7985441.76	286854.59	2188.317	-3.3%	5.56	2188.740	2.08	2188.572	30+230
30+240	4.93	2189.331	2189.168	5.41	3.3%	7985446.86	286868.54	2189.107	7985442.07	286866.01	2188.928	7985437.16	286863.41	2188.745	-3.3%	5.56	2189.168	2.08	2189.001	30+240
30+250	4.93	2189.735	2189,572	5.41	3.3%	7985442.13	286877.40	2189.511	7985437.36	286874.83	2189.332	7985432.47	286872.19	2189.149	-3.3%	5.56	2189.572	2.08	2189,405	30+250
30+260	4.94	2190,115	2189.953	5.42	3.3%	7985437.31	286886.22	2189.891	7985432.57	286883.60	2189.713	7985427.70	286880.92	2189.529	-3.3%	5.56	2189,953	5.08	2189.785	30+260

Planilla de Replanteo de Capa Base

							J	COORDENADAS DE REPLANTEO CAPA BASE	S DE REPLAN	TEO CAPA	BASE							
		LATERAL				MEDIA			当			MEDIA			LATE	LATERAL		
PROGRESIV DISTANC	DISTANC	NORTE	ESTE	COTA	DISTAN	СОТА	PERALTE	NORTE	ESTE	СОТА	PERALTE	DISTAN	СОТА	NORTE	ESTE	СОТА	DISTA P	PROGRESIV A
30+000	4.50	7985503.98	286637.05	2176.862	2.25	2176.919	-2.5%	7985499.48	286636.83	2176.977	-2.5%	2.25	2176.919	7985494.99	286636.61	2176.861	4.50	30+000
30+010	4.50	7985503.48	7985503.48 286647.04	2177.402	2.25	2177.460	-2.5%	7985498.99	286646.82	2177.517	-2.5%	2.25	2177.459	7985494.49	286646.59	2177.401	4.50	30+010
30+020	4.50	7985502.98	7985502.98 286657.03	2177.942	2.25	2178.000	-2.5%	7985498.49	286656.80	2178.058	-2.5%	2.25	2178.000	7985493.99	286656.58	2177.942	4.50	30+020
30+030	4.50	7985502,49	7985502.49 286667.02	2178.482	2.25	2178.540	-2.5%	7985497.99	286666.79	2178.598	-2.5%	2.25	2178.540	7985493.50	286666.57	2178.482	4.50	30+030
30+040	4.50	7985501.99	7985501.99 286677.00	2179.023	2.25	2179.080	-2.5%	7985497.49	286676.78	2179.138	-2.5%	2.25	2179.080	7985493.00	286676.56	2179.022	4.50	30+040
30+020	4.50	7985501.49	7985501.49 286686.99	2179.563	2.25	2179.621	-2.5%	7985497.00	286686.77	2179.678	-2.5%	2.25	2179.620	7985492.50	286686.54	2179.562	4.50	30+050
30+060	4.50	7985501.00	7985501.00 286696.98	2180.162	2.25	2180.190	-1.2%	7985496.50	286696.75	2180.218	-5.6%	2.25	2180.160	7985492.00	286696.53	2180.103	4.50	30+060
30+070	4.57	7985500.56	7985500.56 286706.97	2180.783	2.28	2180.771	0.5%	7985496.00	286706.74	2180.759	-5.6%	2.25	2180.701	7985491.50	286706.52	2180.643	4.51	30+070
30+080	4.58	7985500.02	7985500.02 286717.01	2181,403	2.29	2181.351	2.3%	7985495.45	286716.73	2181.299	-5.6%	2.31	2181.239	7985490.83	286716.44	2181.180	4.63	30+080
30+090	4.59	7985499.29 286727.10	286727.10	2182.023	2.29	2181.931	4.0%	7985494.72	286726.70	2181.839	-4.2%	2.50	2181.735	7985489.75	286726.27	2181.631	2.00	30+090
30+100	4.67	7985498.31	7985498.31 286737.23	2182.647	2.34	2182.513	2.7%	7985493.68	286736.65	2182.379	%0.9-	2.74	2182.215	7985488.25	286735.96	2182.051	5.48	30+100
30+110	4.70	7985496.80	7985496.80 286747.36	2183.244	2.35	2183.082	%6'9	7985492.18	286746.53	2182.920	-7.3%	2.78	2182.716	7985486.70	286745.55	2182.513	5.56	30+110
30+120	4.72	7985494.73	7985494.73 286757.41	2183.759	2.36	2183.595	%6.9	7985490.14	286756.32	2183,432	-7.3%	2.79	2183.228	7985484.71	286755.03	2183.024	5.58	30+120
30+130	4.76	7985492.12	7985492.12 286767.34	2184.274	2.38	2184.109	%6'9	7985487.56	286765.98	2183.945	-7.3%	2.78	2183.741	7985482.22	286764.39	2183.538	5.57	30+130
30+140	4.81	7985488.97	7985488.97 286777.10	2184.790	2.40	2184.624	%6'9	7985484.45	286775.48	2184.457	-7.3%	2.76	2184.255	7985479.24	286773.62	2184.053	5.53	30+140
30+150	4.87	7985485.29	7985485.29 286786.69	2185.306	2.43	2185.138	%6.9	7985480.81	286784.80	2184.970	-7.3%	2.73	2184.770	7985475.79	286782.67	2184.571	5.46	30+150
30+160	4.80	7985481.18	7985481.18 286795.89	2185.791	2.40	2185.637	%4.9	7985476.79	286793.95	2185.482	%8'9-	2.62	2185.305	7985472.00	286791.83	2185.127	5.24	30+160
30+170	4.68	7985477.00	7985477.00 286805.00	2186.264	2.34	2186.129	2.7%	7985472.73	286803.09	2185.995	%0'9-	2.49	2185.845	7985468.19	286801.06	2185.694	4.98	30+170
30+180	4.56	7985472.75	7985472.75 286814.10	2186.738	2.28	2186.623	2.0%	7985468.60	286812.20	2186.508	-5.3%	2.34	2186.384	7985464.35	286810.25	2186.260	4.68	30+180
30+190	4.50	7985468.46	7985468.46 286823.18	2187.216	2.25	2187.118	4.4%	7985464.39	286821.27	2187.020	-4.5%	2.26	2186.917	7985460.30	286819.35	2186.815	4.52	30+190
30+200	4.50	7985464.15	7985464.15 286832.25	2187.697	2.25	2187.615	3.7%	7985460.09	286830.30	2187.533	-3.8%	2.25	2187.447	7985456.04	286828.35	2187.362	4.50	30+200
30+210	4.55	7985459.80	7985459.80 286841.30	2188.181	2.28	2188,106	3.3%	7985455.71	286839.29	2188,032	-3.3%	2.29	2187.956	7985451.61	286837.26	2187.879	4.58	30+210
30+220	4.55	7985455.31	7985455.31 286850.29	2188.656	2.28	2188.582	3.3%	7985451.25	286848.24	2188.508	-3.3%	2.29	2188.432	7985447.16	286846.17	2188.355	4.57	30+220

ANEXO No. 7

Liberación de paquete estructural (Capa Sub-Rasante, Capa Sub-Base y Capa Base) Planilla de liberación de capa Sub-rasante

LIBERACION	DE CAPA	-20 DE LA	SUB	RASANTE
------------	---------	-----------	-----	---------

	OPERAD	OR Severe	Ferre	1	FECH	IA 2.70	1-2018
	DESDE	67+50	O A	67 + 78	O HOR	A14	50
	PROG	i. L.I.	DIF.	EJE	DIF.	L.D	DIF.
	67+50	0 1501.582	-0.010	1501.888	10		-0.013
	67+51	0 1501.892		1502.306		1502.698	
	67+52	0 1502.279	-0.004	1502.745	-0.006		0.014
	67+530	1502.738		1503.204		1503.650	-0.00(
	67+540	1503.217	-0.615	1503.683	-0.003	2501122	0.006
	67+550	1503.716		1504.182		1504.628	0.005
	67+560	1504.310	-0.005	1504.701	-0.002	1505.072	-0.005
8	67+570			1505.240		1505.491	0.041
•	67+580	1505.655	-0.015	1505.799	-0.009	1505.940	-0.091
	67+590	1506.240		1506.379		1506.421	(0.000)
	67+600	1506.840	-0.013	1506.978	-0.003	1300.51	- 6.009
	67+610	1507.459		1507.598		1507.459	
ľ	67+620	1508.099	-0.014	1508.237	-0.008	1508.098	-0.00 3
	67+630	1508.758		1508.897		1508.758	
	67+640	1509.438	-0.018	1509.577	-0.003	1509.438	-0012
1	67+650	1510.138		1510.277		1510.138	
I	67+660	1510.858	-0.018	1510.997	-0.017	1510.858	-0.007
T	67+670	1511.598		1511.737		1511.598	
r	67+680	1512.358	-0.006	1512.497	-0.006	1512.358	-0.014
Γ	67+690	1513.139		1513.277		1513.138	
	67+700	1513.931	-0024	1514.070	-0.015	1513.931	-0.014
	67+710	1514.724		1514.862		1514.724	
	67+720	1515.517	0.009	1515.655	-0.003	1515.516	-0.005
	67+730	1516.309		1516.448		1516.309	
	67+740	1517.102	0009	1517.241	-0.010	1517.102	-0.006
	67+750	1517.895		1518.033		1517.894	
	67+760	1518.688	-0.010	1518.826	-0.016	1518.687	-0.011
(57+770	1519.480		1519.619		1519.505	
6	7+780	1520.273	-0.015	1520.411	-0.004	1520.394	-0.014

LIBERADO

Top. Constantino Vargas Flores

C.I. 6779018 L.P.

SUPERVISION PROINTEC

RECHAZADO

TOP. HENTEY SINUA C.I. 1600399974

CVA. CONTRUCTORA

Planilla de liberación de capa Sub-Base

	L	BERACIO	ON DE CAPA	A SUB BASE		
OPERADOR				FECHA.		
DESDE		А		HORA		
PROG.	L.I.	DIF.	EJE	DIF.	L.D	DIF.
42+520	2146.218		2146.542		2146.832	
42+530	2145.852		2146.177		2146.467	
42+540	2145.447		2145.771		2146.062	
42+550	2145.002		2145.326		2145.617	
42+560	2144.517		2144.841		2145.132	
42+570	2143.992		2144.317		2144.607	
42+580	2143.428		2143.752		2144.043	
42+590	2142.824		2143.148	191	2143.438	
42+600	2142.179		2142.504		2142.794	
42+610	2141.496		2141.820		2142.111	
42+620	2140.772		2141.096		2141.387	
42+630	2140.009		2140.333		2140.624	
42+640	2139.285		2139.530		2139.748	
42+650	2138.562		2138.714	3. ×	2138.842	
42+660	2137.752		2137.898		2137.938	
42+670	2136.941		2137.081		2137.035	
42+680	2136.127		2136.265		2136.132	
42+690	2135.310		2135.449	53. ×	2135.310	
42+700	2134.494		2134.632		2134.494	
42+710	2133.745		2133.816		2133.677	
42+720	2133.029		2133.000		2132.861	
42+730	2132.314		2132.183	33. ×	2132.031	
42+740	2131.622		2131.386		2131.105	
42+750	2130.994		2130.641		2130.206	
42+760	2130.430		2129.950		2129.342	
42+770	2129.813		2129.314	3	2128.690	
42+780	2129.231		2128.731		2128.108	
42+790	2128.687		2128.202		2127.590	
42+800	2128.083		2127.728		2127.287	
LIBERADO				RECHAZADO)	
Гор.				Тор.		
C.I.				C.I.		
	SUPERVISION				CONTRATIST	Α
	PROINTEC				VA. CONTRUCT	TORA

Planilla de liberación de capa Base

			LIBERACIO	N DE C	APA BASE					
OPERADOR							FECHA			
DESDE			A				HORA			
PROG.	L.I.	DIF.	INTER.	DIF.	EJE	DIF.	INTER.	DIF.	L.D.	DIF
46+830	1933.392		1933.195		1932.998	9	1932.569		1932.140	
46+840	1932.949		1932.752		1932.554		1932.126		1931.697	
46+850	1932.499		1932.302		1932.105	82	1931.676		1931.247	
46+860	1932.043		1932.346		1932.648		1931.720		1930.791	
46+870	1931.580		1931.383		1931.185	3	1930.757		1930.328	
46+880	1931.007		1930.862		1930.716		1930.393		1930.070	
46+890	1930.471	8	1930.356		1930.241	9	1930.045		1929.849	
46+900	1929.900		1929.830		1929.759		1929.664		1929.568	
46+910	1929.400	13	1929.335		1929.270	3	1929.204		1929.138	
46+920	1928.910		1928.844		1928.777		1928.714		1928.651	
46+930	1928.420	e e	1928.355		1928.290	92	1928.227		1928.163	
46+940	1927.940		1927.875		1927.809	100	1927.740		1927.670	
46+950	1927.521		1927.428		1927.335	3	1927.221		1927.107	
46+960	1927.143		1927.006		1926.869		1926.685		1926.500	
46+970	1926.772	i es	1926.591		1926.409	92	1926.144		1925.879	
46+980	1926.322		1926.140		1925.957	20	1925.691		1925.425	
46+990	1925.877	13	1925.694		1925.511	3	1925.245		1924.978	
47+000	1925.438		1925.256		1925.073		1924.806		1924.539	
47+010	1925.007		1929.825		1934.642	2	1929.375		1924.108	
47+020	1924.582		1924.400		1924.217		1923.951		1923.684	
47+030	1924.165		1923.983		1923.800	3	1923.533		1923.266	
47+040	1923.755	i i	1923.573		1923.390	22	1923.123		1922.856	
					2					
Top.						-	Тор.			
C.I.		1220					C.I	9,00,00		
	PROINTEC								NTRATISTA ONTRUCTO	

ANEXO No. 8 Especificaciones Técnicas

CAPA SUB-BASE

CONTROL POR EL SUPERVISOR

El control de calidad de la ejecución de la capa sub base granular será de responsabilidad del ejecutante, debiendo cumplir con los requerimientos de las Especificaciones Generales y Especiales, así como con las instrucciones del SUPERVISOR.

El SUPERVISOR llevara a cabo el control de la ejecución de la obra en base a los controles efectuados por el CONTRATISTA, que deberán ser proporcionados al SUPERVISOR, y a medidas o ensayos de control realizados independientemente por el SUPERVISOR, en cuyo caso, estos serán los valores a ser tomados en cuenta para aceptación o rechazo del trabajo efectuado.

CONTROL GEOMETRICO

Concluida la compactación de la capa de sub base granular, se procederá al estacado de cada sección (5 estacas mínimo) para realizar el siguiente control geométrico, mediante nivelación de las secciones, admitiéndose las siguientes tolerancias:

- Variación máxima de cotas para el eje y para los bordes de (-) 2 cm con relación a las cotas de diseño, no admitiéndose variación en más (+).
- Variación en el ancho en mas en el ancho de cada mitad de plataforma incluido el ancho del SAP, no admitiéndose variación en menos. No se aceptará que la diferencia en el ancho de la plataforma entre dos estacas adyacentes sea mayor a 10 cm.
- Variación máxima en más (+) 20% en la pendiente de la sección transversal del diseño (bombeos y peraltes), no admitiéndose variación en menos (-).
- Variación máxima de (-) 2 cm en el espesor de la capa con relación al espesor indicado en el diseño, medido como mínimo en un punto cada 100 m.

Cada capa de subbase deberá ser conformada y compactada uniformemente en todo su ancho, incluyendo los bordes y taludes, evitando dejar crestas irregulares en los bordes que concentren el agua de lluvia y produzcan erosiones concentradas.

CAPA BASE

CONTROL POR EL SUPERVISOR

El control de calidad de la ejecución de la capa base granular será de responsabilidad del ejecutante, debiendo cumplir con los requerimientos de las Especificaciones Generales y Especiales, así como con las instrucciones del SUPERVISOR.

El SUPERVISOR llevara a cabo el control de la ejecución de la obra en base a los controles efectuados por el CONTRATISTA, que deberán ser proporcionados al SUPERVISOR, y a medidas o ensayos de control realizados independientemente por el SUPERVISOR, en cuyo caso, estos serán los valores a ser tomados en cuenta para aceptación o rechazo del trabajo efectuado.

CONTROL GEOMETRICO

Concluida la compactación de la capa base granular, se procederá al estacado de cada sección (5 estacas mínimo) para realizar el siguiente control geométrico, mediante nivelación de las secciones, admitiéndose las siguientes tolerancias:

- Variación máxima de cotas para el eje y para los bordes de (+/-) 1 cm con relación a las cotas de diseño, no admitiéndose variación sistemática en menos (-).
- Variación en el ancho en más en el ancho de cada mitad de plataforma incluido el ancho del SAP, no admitiéndose variación en menos No se aceptará que la diferencia en el ancho de la plataforma entre dos estacas adyacentes sea mayor a 10 cm.
- Variación máxima en más (+) 10% en la pendiente de la sección transversal del diseño (bombeos y peraltes), no admitiéndose variación en menos (-).
- Variación máxima de (-) 1 cm en el espesor de la capa con relación al espesor indicado en el diseño, medido como mínimo en un punto cada 100 m, o donde lo indique el SUPERVISOR. No se admitirá variación sistemática en menos.

Cada capa de base deberá ser conformada y compactada uniformemente en todo su ancho, incluyendo los bordes y taludes, evitando dejar crestas irregulares en los bordes que concentren el agua de lluvia y produzcan erosiones concentradas.