UNIVERSIDAD MAYOR DE SAN ANDRÉS

FACULTAD DE TECNOLOGÍA CARRERA DE GEODESIA, TOPOGRAFÍA Y GEOMATICA

CARTOGRAFÍA DE RIESGO DE INUNDACIONES CON EL SOFTWARE IBER

Caso: Río Grande Municipios San Julián, Cuatro Cañadas y

Okinawa Uno Santa Cruz – Bolivia

Proyecto de Grado para obtener el Título de Licenciatura

POSTULANTE: KARINA MARISOL QUISPE AJATA

TUTOR: M. SC. ING. JOSE LUIS DELGADO ALVAREZ

LA PAZ – BOLIVIA

2021

DEDICATORIA

Este proyecto está dedicado: Hay momentos en la vida en que se siente que tu camino se termina, y todo parece oscuro, pero de repente te das cuenta que no estás solo que estas rodeado de seres maravillosos que te extienden su mano para no dejarte sucumbir

Dedico este trabajo de grado à: A Dios, porque me mostró el camino y me dio fortaleza en los momentos más duros.

A mis padres Roberto Quispe Apaza por ser mi fortaleza, Secundina

Ajata Ramírez por guiarme.

A mi familia, hermanitos que me apoyaron en todo momento seguir adelante.

AGRADECIMIENTOS

Deseamos expresar nuestros agradecimientos:

De manera muy especial doy mis agradecimientos a:

A mis padres por el apoyo proporcionado día tras día.

A la Universidad la mejor casa de estudios que es la Universidad Mayor de San Andrés. A la Carrera de Geodesia, Topografía y Geomatica por habernos formado en sus aulas y por contribuir desinteresadamente en la profundización de nuestros conocimientos.

Director de carrera y Docentes aquellos que nos inculcaron conocimientos en todo el tiempo de formación académica forjandonos para desarrollarnos como profesionales.

Al tutor M. Sc. Ing. José Luis Delgado Álvarez por orientarme, aconsejarme y apoyarme en la elaboración del proyecto que además fue un docente que nos enseñó en cuanto al tema desarrollado y nuestra formación académica.

A mi hijo Renzo Maximiliano Carita Quispe mi esposo Oscar Wilfredo Carita Palma que me dio la fortaleza para mirar hacia adelante γ no rendirme en el camino.

ÍNDICE GENERAL

CONT	ONTENIDO PÁGINA		
CAPIT	TULO I		
INTRO	DUCCIO	ON Y OBJETIVOS	
1.1	INTRO	DUCCIÓN	1
1.2	ANTEC	CEDENTES	2
1.3	PLANT	EAMIENTO DEL PROBLEMA	6
1.4	OBJET	IVOS	7
	1.4.1	Objetivo General	7
	1.4.2	Objetivo Específicos	7
1.5	JUSTIF	FICACIÓN DEL PROYECTO	7
	1.5.1	Justificación Social	7
1.6	UBICA	CIÓN GEOGRÁFICA	8
	1.6.1	Datos Generales	9
	1.6.2	Población	10
	1.6.3	Usos del Suelo	10
1.7	CARA	CTERÍSTICAS FÍSICAS DE LA ZONA DE ESTUDIO	11
	1.7.1	Descripción Fisiográfica	11
	1.7.2	Altitud	12
	1.7.3	Relieve	12
	1.7.4	Topografía	12
	1.7.5	Características Climáticas	13
		1.7.5.1 Precipitación	13
		1.7.5.2 Temperatura	13
		1753 Viento	13

CAPITULO II

MARCO TEÓRICO

2.1	TEORÍ	A DE LA C	SESTIÓN DE RIESGO Y DESASTRES	14
	2.1.1	Riesgo		14
		2.1.1.1	Riesgo de Desastre	14
		2.1.1.2	Riesgo Intensivo	15
		2.1.1.3	Riesgo Extensivo	15
		2.1.1.4	Riesgo Residual	15
		2.1.1.5	Riesgo Existente o Actual	15
		2.1.1.6	Riesgo por crearse o riesgo futuro	15
	2.1.2	Manejo (o gestión) integrado de riesgo	16
		2.1.2.1	Preparación	17
		2.1.2.2	Respuesta	17
		2.1.1.5	Recuperación	17
2.2	INUND	ACIÓN		18
	2.2.1	Causas	de las Inundaciones	19
	2.2.2	Tipos de	Inundaciones	23
	2.2.3	Factores	primordiales en eventos de Inundación	25
	2.2.4	Mitigació	n de daños por Inundaciones	26
2.3	VULNE	ERABILIDA	\ D	28
2.4	DESAS	STRE		30
2.5	AMEN	AZA		30
	2.5.1	Amenaza	a Biológica	30
	2.5.2	Amenaza	a Geológica	31
	2.2.3	Amenaza	as Hidrometeorológicas	31
	251	Amenaza	a Natural	31

	2.2.5	Amenaza Socio Natural	31
2.6	CONC	EPTOS DE HIDRÁULICA DE RÍOS	32
	2.6.1	Canales	32
		2.6.1.1 Canales Naturales	32
		2.6.1.2 Canales Artificiales	32
	2.6.2	Rugosidad	33
	2.6.3	Coeficiente de Rugosidad de Maninng	34
	2.6.4	Número de Curva	34
	2.6.5	Caudal	35
2.7	TELED	DETECCION	35
	2.7.1	Definición	36
	2.7.2	Sistemas de Percepción Remota	36
		2.7.2.1 Percepción Remota Aérea	36
	2.7.3	Aspecto Electro Magnético	37
	2.7.4	Imagen Satelital	37
2.8	PROG	RAMA IBER	38
	2.8.1	Ecuación que Resuelve la Hidrodinámica	41
	2.8.2	Estructura del Programa	42
CAPIT	ULO III		
MATE	RIALES	Y METODOS	
3.1	MATER	RIALES	48
	3.1.1	Imagen Satelital	48
	3.1.2	Coberturas	49
	3.1.3	Software	49
	3.1.4	Equipo de Computación	49
	3.1.5	Material de Escritorio	49

3.2	CRONOGRAMA DE ACTIVIDADES	50
3.3	EL DIAGRAMA DE FLUJO	51
CAPIT	ULO IV	
DESA	RROLLO DEL PROYECTO	
4.1	SELECCIÓN DEL SITIO DE TRABAJO	52
	4.1.1 Delimitación del Área de Estudio del Rio Grande y los Municipios de San Julián, Cuatro Cañadas y Okinawa Uno	53
	4.1.2 Identificación de Parámetros Morfometricos	53
	4.1.3 Reconocimiento del Terreno	54
4.2	RECOPILACIÓN DE INFORMACIÓN	54
4.3	ESTUDIO HIDROLÓGICO HIDRÁULICO DE LA CUENCA DEL RÍO GRANDE	55
	4.3.1 Precipitación de la Cuenca del Río Grande	56
	4.3.2 Precipitación Media a Real de la Cuenca del Río Grande	56
	4.3.3 Crecidas de la Cuenca del Río Grande	57
	4.3.4 Tiempo de Concentración de la Cuenca del Río Grande	58
	4.3.5 Hidrograma de Diseño de la Cuenca del Río Grande	60
4.4	MAPA DE PENDIENTES DEL ÁREA DE ESTUDIO	66
4.5	MAPA DE COBERTURA Y USO ACTUAL DE SUELOS (COBUSO) DEL ÁREA DE ESTUDIO	67
4.6	PROCESAMIENTO DE DATOS EN IBER	68
CAPIT	ULO V	
RESUI	LTADOS OBTENIDOS EN IBER	
5.1	RESULTADOS OBTENIDOS EN IBER	75
	5.1.1 Calados	75
	5.1.2 Velocidades	76
	5.1.3 Caudal Especifico	77

	5.1.4	Cota de Agua	78
	5.1.6	Perfiles Longitudinales y Transversales	79
	5.1.6	Perfiles Transversales	80
5.2	ANÁLI	SIS DE INUNDACIÓN	81
5.3	CUAN	TIFICACION DEL MODELADO DE LA INUNDACION	81
5.4	MEDIC	AS DE PREVENCIÓN DE INUNDACIÓN	82
CAPIT	ULO VI		
CONC	LUSION	ES Y REMENEDACIONES	
6.1	CONC	LUSIONES	83
6.1	RECO	MENDACIONES	84
BIBLIC	OGRAFÍ	A	

ÍNDICE DE FIGURAS

	P <i>Á</i>	GINAS
Figura Nº 1	Ubicación Geográfica País – Departamento – zona de estudio	8
Figura Nº 2	Ubicación Geográfica con Imagen Satelital del Área de Estudio	8
Figura Nº 3	Mapa de Rango de Pendientes	9
Figura Nº 4	Representación de Censo Agropecuario 2013	10
Figura Nº 5	Representación de Uso de Tierra, Censo Agropecuario 2013	11
Figura Nº 6	Carta Topográfica	12
Figura Nº 7	El daño como una cadena de interacciones	16
Figura Nº 8	Ciclo de Manejo de Riesgos	18
Figura Nº 9	Causas, efectos e impactos de la Inundación	20

Figura Nº 10	Mapa general de exposición por Inundación en Bolivia	27		
Figura Nº 11	Factores y componentes de la Vulnerabilidad	29		
Figura Nº 12	Esperanza de Contorno	33		
Figura Nº 13	Espectro Electromagnético	37		
Figura Nº 14	Imagen obtenida de un Sensor de cuadro de bandas	38		
Figura Nº 15	Logo del programa Iber	39		
Figura Nº 16	Módulos de cálculo Iber	40		
Figura Nº 17	Malla de cálculo formada por una red irregular de triángulos rectángulos	44		
Figura Nº 18	Menú IBER herramientas y un ejemplo de edición de nodos de una malla	45		
Figura Nº 19	Extensión de Inundación y altura de lámina de agua calculada considerando motas rebasables definidas mediante una sobre elevación del MDT (izquierda) y motas no rebasables definidas como contornos tipo pared (derecha)	47		
Figura Nº 20	Sección transversal con vista 3D del talud del puente (izquierda) y MDT utilizando el modelo numérico donde puede observarse el trazado de las motas de protección frente a Inundaciones (derecha)	47		
Figura Nº 21	Diagrama de Flujo	51		
Figura Nº 22	Ubicación de la zona de estudio Rio Grande entre los tres Municipios San Julián, Cuatro Cañadas y Okinawa Uno	53		
Figura Nº 23	Hidrogramas Compuestos Estimados de la Cuenca del Río Grande	61		
Figura Nº 24	Hidrogramas Relativos de la estación hidrométrica de Abapó	62		
Figura Nº 25	Hidrogramas Relativos Tipo de la Cuenca del Río Grande	64		
Figura Nº 26	Hidrograma de crecida de diseño de la Cuenca del Río Grande	65		
Figura Nº 27	Mapa de Pendientes del Área de estudio del Río Grande			
Figura Nº 28	Mapa de Cobertura y Uso de la Tierra de Estudio del Río Grande	67		

Figura Nº 32 Condiciones de Contorno		71
Figura Nº 33	Figura Nº 33 Malla Generada	
Figura Nº 34	Figura № 34 Importación de datos ASCII para Elevación del Terreno	
Figura Nº 35	Información del proceso de cálculo	74
Figura Nº 36	Obtención de Calados	76
Figura Nº 37	Velocidades (m/s), en Iber	77
Figura Nº 38	Obtención de caudales por unidad lineal	78
Figura Nº 39	Obtención de Cota de Agua	78
Figura Nº 40	Secciones Longitudinales	79
Figura Nº 41	Secciones Longitudinales	79
Figura Nº 42	Secciones Trasversales	80
Figura Nº 43	Sección 1	80
Figura Nº 44	Sección 2	81
Figura Nº 45	Reporte Nacional 2021	85
	ÍNDICE DE FOTOGRAFÍAS	
	P	ÁGINAS
Fotografía Nº	1 Río Grande vista desde el Puente Pailón	10
Fotografía Nº	2 Desborde del Río Grande	10
Fotografía Nº	37 Municipios en desastre por las fuertes Precipitaciones	13
Fotografía Nº	Inundación por desborde de Río Grande zona agrícola – Santa Cruz municipio San Julián	19
Fotografía Nº	5 Sectores del Río Grande	54
Fotografía Nº	6 Medidas de Inundación	88

Figura Nº 29

Figura Nº 30

ÍNDICE DE TABLAS

	PAG	GINAS
Tabla Nº 1	Registro Histórico de las Inundaciones Río Grande	6
Tabla Nº 2	Enfoques para definir riesgos	14
Tabla Nº 3	Tipos de Inundaciones	25
Tabla Nº 4	Otros factores que ocasionan daños en caso de Inundación	26
Tabla Nº 5	Características de la Imagen Satelital	48
Tabla N°6	Cronograma de Actividades	50
Tabla Nº 7	Parámetros Morfométricos del Río Grande	54
Tabla Nº 8	Estaciones Hidrometeorológicas de medición	55
Tabla Nº 9	Caudales Máximos Instantáneos Registrados en la Estación Hidrométrica de Abapó	57
Tabla Nº 10	Precipitación media - Area de la Cuenca del Río Grande hasta Abapó	14 25 26 48 50 54 55
Tabla Nº 11	pos de Inundaciones	
Tabla Nº 12	Tiempo de Concentración de la Cuenca Alta del Río Grande	60
Tabla Nº 13	Hidrograma Unitario Sintético SCS de la Cuenca Alta del Río Grande	60
Tabla Nº 14	Parámetros de los eventos de crecida para la construcción de los Hidrogramas Relativos de Abapó	63
Tabla Nº 15	Parámetros de los eventos de crecida para la construcción de los Hidrogramas Relativos de Abapó	63
Tabla Nº 16	Hidrogramas de Crecida de Diseño del Río Grande	65
Tabla Nº 17	Uso de Suelos	69
Tabla Nº 18	Hidrograma-Condiciones de Contorno	70

Tabla Nº 19	Datos para Mallado	72
Tabla Nº 20	Datos ingresados para simulación	73
Tabla Nº 21	Datos de simulación	82
ANEXOS.		

CAPITULO I PLANTEAMIENTO GENERAL

1.1 INTRODUCCIÓN

La presente investigación contempla la temática de riesgo de inundación son considerados dentro de las amenazas naturales de mayor recurrencia en el mundo. Las inundaciones se convierten en un riesgo cuando se produce la interacción entre un elemento natural excepcional y las actividades humanas, que pueden ser consideradas como un recurso cuando la crecida de un río no supera los umbrales de aceptabilidad establecidos por los humanos, cuando estos umbrales se rebasan se habla de riesgo.

Particularmente el 22 de febrero del 2020 en Bolivia se vivieron bastantes precipitaciones lo que genero desastres naturales como los desbordes de ríos, tales son los casos de Tiquipaya en Cochabamba y Tupiza en Potosí, entre los más destacables, son algunos de los ejemplos que demuestran la vulnerabilidad ante fenómenos naturales climatológicos, en este caso desborde de Ríos.

Por lo expuesto anteriormente hacen falta estrategias para la gestión de riesgos en nuestro país, estrategias que ayuden a identificar con anticipación estas zonas de riesgo.

La tecnología de los Sistemas de Información Geográfica (SIG), es una herramienta que por medio de computadoras y datos geográficos ayudan a un mejor entendimiento del medio en que vivimos y nos permite resolver los problemas que diariamente afrontamos.

El uso de la SIG ayuda a diagnosticar sitios de posible desborde y planificar acciones para mitigar la ocurrencia de inundaciones, integrando modelos hidráulicos e hidrológicos, así como fotografías aéreas e imágenes satelitales.

El presente trabajo consiste en la aplicación del Sistema de Información Geográfica como herramienta de análisis hidráulico y modelamiento espacial para evaluar el impacto de posibles inundaciones en un sector de la cuenca baja del Río Grande o Guapay en el departamento de Santa Cruz, que ha sido identificado como zona vulnerable entre los municipios de: San Julián, Cuatro Cañadas y Okinawa Uno; con antecedentes de

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

inundación y la falta de un mapa de riesgos, que permita establecer medidas de prevención en esta zona, para ello se integró el software de análisis hidráulico Iber, con software SIG, ArcGis generando como resultado cartografía de riesgos de inundación y su posterior análisis.

Hoy en día, para efectuar mapas y análisis de riesgos de inundaciones, cobra importancia el uso de determinados tecnologías y modelos numéricos, como es el caso de Iber; modelo matemático bidimensional para la simulación de flujos en ríos y estuarios, que permite realizar modelación bidimensional de cauces con enfoque de delimitación de zonas inundables, que para el caso de estudio permitirá entender los diferentes problemas que se suscitan en temporada de Iluvia. Asimismo, ver la respuesta hidrológica e hidráulica en la zona de estudio del Río Grande o Guapay puede llegar a facilitar la toma de decisiones a la hora de elegir una solución a un problema.

1.2 ANTECEDENTES

A lo largo de los años, varias inundaciones han tenido lugar en diferentes partes del mundo, varias de ellas con resultados devastadores; como la inundación en Europa el año 2002 catalogada como la más fuerte en los últimos 100 años, donde las lluvias del verano azotaron el norte y centro de Europa: República Checa, Austria, Alemania, Eslovaquia, Polonia, Hungría, Rumania, Croacia y Rusia, a raíz de este suceso se vieron afectadas 250.000 personas estimándose los daños en 20.000 millones de dólares (Vonderková, 2017).

El año 2008 el desborde del Río Irawadi en Myanmar (sudeste asiático), causó una fuerte inundación. La ONU informó sobre 2,4 millones de personas afectadas, y alrededor de 146.000 muertos o desaparecidos (EFE, 2012).

El año 2015, producto de las intensas lluvias se agudizó los efectos de El Niño, afectando a Paraguay declarándose en estado de emergencia por 90 días debido a las inundaciones en Asunción y otros siete departamentos: Concepción, San Pedro, Misiones, Ñeembucú, Amambay y Pdte. Hayes. En este evento, al menos 140 mil personas tuvieron que ser evacuadas de sus Comunidades por las Inundaciones y

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU L. TAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

crecidas del Río Paraguay (Fernandez, 2016).

Por otro lado, Bolivia el año 2017, en el trópico Cochabambino, los ríos Ichilo y Chapare se desbordaron afectando a las poblaciones de: Puerto Villarroel, Entre Ríos, Bulo Bulo y Comunidades aledañas, viéndose afectadas 15.800 familias y perdiendo 17.144 hectáreas de cultivo en la zona (ABI, 2019).

En cuanto al caso de estudio de la presente propuesta, el Río Grande o Guapay, río largo amazónico Boliviano, afluente del río Mamoré, que discurre en su mayor parte por el departamento de Santa Cruz, en su cuenca baja presenta problemas ambientales a consecuencia de frecuentes inundaciones, ocasionando grandes pérdidas económicas, tanto en la producción agrícola como en el daño a la infraestructura y a las personas. De acuerdo a los estudios existentes, las posibles causas de los desbordes del río y de las consecuentes inundaciones se deben a tres factores: la expansión de la frontera agrícola hacia las márgenes del río; la eliminación de la cobertura arbórea que había en las riberas del río y la gran cantidad de sedimentos que vienen desde la cuenca alta del río (zona montañosa).

El río Grande, se caracteriza por ser un depósito de sedimentos, que desde hace miles de años vienen de la Subcuenca Alta del río Grande; es posible que, debido a la deforestación y mal uso de los suelos en los últimos 30 años, la producción de sedimentos se haya incrementado. La cantidad de sedimentos que recibía la Subcuenca es 162 mill./tn/año, medidos en la estación de Abapó (periodo 1971-1979) (Colque & Asociados, 2000).

Estos sedimentos se han depositado en el lecho del río a través de miles de años, (540 Km. de largo), en diferentes proporciones, facilitando la identificación de otros factores que contribuyeron a esta diferenciación fueron: a) pendiente, b) altura y c) vulnerabilidad frente a las crecidas del río (Guerra, 2006).

Las Inundaciones tienen estrecha relación con la morfología del lecho; a mayor depósito de sedimentos, mayor es la amenaza de Inundación. En el cuadro 1 se resume el registro histórico de las Inundaciones provocadas por el río Grande, en los últimos 18 años, en

los municipios de San Julián, Cuatro Cañadas y Okinawa Uno.

FECHA DEL		EFECTO SOBRE LAS
DESBORDE	SITUACIÓN DEL RÍO	COMUNIDADES
Julio de 1988	- El río Grande se desborda y empieza a Inundar las Comunidades ribereñas de Colonia Berlín	
Febrero de 1992	 Nueva crecida en la misma zona con "gran caudal". El río se desborda nuevamente pero ahora abandona su cauce, y abre uno nuevo con rumbo norte. El nuevo cauce sigue el camino principal Copacabana El Carmen Santo Domingo, a lo largo de 33 km. En Rancho Bolívar se bifurca en 2 brazos. En el sector de Okinawa I y II, la altura de las aguas fue de 0.8 a 1.0 m. siendo su duración de 3 a 6,5 días 	 La Inundación destruye la Comunidad Copacabana, y afecta a San Isidro. El Carmen, Manantial, Bolívar y la Isla. También afecta terrenos en barbecho, cultivos y destruye parcialmente los caminos principal y secundario.
Febrero de 1994	- Crecida superior a las de 1992, el río ensancha el nuevo curso (casi 1,5 km.) y abandona definitivamente el anterior - En Bolívar, el río abrió nuevos cauces	- El agua llego hasta la Comunidad Santo Domingo (extremo norte), y afecto a 32 comunidades a lo largo del camino Las aguas Inundaron una franja de 3 a 4 Km. de ancho (aprox. 22.700 ha) - Los daños económicos fueron incalculables porque las actividades se paralizaron por varios días La Población decide evacuar el lugar y mantenerlo para cultivar en invierno.
1996 al 2000	 El Río empieza a desbordarse por 3 meandros en el sector de Cuatro Cañadas. El Río Grande deposita 	 Se Inundan las Comunidades de San Miguel de los Ángeles, Puerto Céspedes, Providencia,

		l o b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	muchos sedimentos El río sigue Inundando y sedimentado las Comunidades de Berlín.	San Roque, Villa Primavera y Villa Alto Perú.
Febrero del 2001	- Esta crecida afecto principalmente al Municipio de Pailón, con más de 8.000 habitantes. Fue la mayor en 33 años. La anterior se había registrado en 1968 El Río se desbordo por un meandro ubicado al sur de Pailón y por 3 meandros en el sector de Pailón y por 3 meandros en el sector de Cuatro Cañadas.	 Además de Pailón, las aguas afectaron las Comunidades de Cuatro Cañadas, de Berlín, y las Comunidades de El Fortín, Villa Paraíso y San Martín.
Febrero del 2002	 El Río amplio los meandros de Palmitas y Puerto Pacay. Se desbordo y rompió el camino ripiado Los Troncos – Puerto Pacay, cerca de la Comunidad El Fortín. 	 Destruyo parte de las Comunidades de Palmitas y Puerto Pacay
	- La corriente que pasó cerca de El Fortín se bifurcó en 2 corrientes El Río Grande siguió inundado lo que era Colonia Berlín, sus aguas llegaron hasta el río Pailas y sedimento la zona de Santo Domingo con más de 1 metro de sedimento	 Las aguas desbordadas Inundaron algunas Comunidades de Villa Paraíso y San Martín, para unirse al Río Grande en la zona de "1 de Julio" Otra corriente se fue al oeste, atravesando las Comunidades Illimani, "2 de agosto" y "24 de septiembre" (Distrito Berlín), hasta desembocar en el Río Grande en la zona de Comunidad El Carmen.
Enero del 2004	- La crecida afecta, principalmente el dique de los "productores japoneses", en el sector de Meandro Moscú.	 Inundo la Comunidad de Nueva Aurora, próxima al Meandro Moscú (Municipio de Okinawa).
Febrero del 2006	 Nuevamente destruyo para del dique de los "productores japoneses" También amplio el meandro de Pacay y "ataco" el meandro de Cosorio (5 Km. 	Destruyo gran parte de la comunidad de Puerto Pacay

	al norte de Pacay).	
Febrero del 2008	- Gran desborde del Río, por el sector de Cosorió Socavación de la barranca de la propiedad del Sr. Pablo Fukujara, y de la comunidad Palmitas (sector de Cuatro Cañadas)	-Inundación de las Comunidades de Colonia Berlín y de Brecha Casarabe, con grandes pérdidas económicas
Enero del 2010	- Gran desborde del Río, por el sector del meandro las mangas	Inundación de las Comunidades Okinawa, San Julián

Tabla N° 1: Registro Histórico de las inundaciones Río Grande

Fuente: Elaboración propia en base a consulta bibliográficas de diferentes textos

1.3 PLANTEAMIENTO DEL PROBLEMA

Como se describe en el registro histórico de Inundaciones, (tabla N°1), la crecida del río grande ha provocado el desborde del mismo afectando a las Comunidades aledañas de los Municipios de: San Julián, Cuatro Cañadas y Okinawa Uno, causando daño a cultivos en la zona y pérdidas materiales; por lo que la crecida del río Grande es una amenaza permanente en la zona.

Este fenómeno se reitera cada año en periodo de lluvia, afectando las zonas vulnerables de estos Municipios, sin tener a la fecha un mapa de riesgos de la zona para la toma de decisiones, por lo que se precisa un análisis de riesgos, que permita conocer las zonas más vulnerables y se puedan plantear soluciones acordes a cada caso.

En la actualidad ha cobrado importancia en los proyectos, hidráulicos el uso de softwares que aplican modelos numéricos, que coadyuven en la comprensión de los diferentes problemas que surgen en este campo de estudio, uno de estos softwares es lber, que es un modelo matemático bidimensional que permite realizar modelos numéricos con aplicación de hidráulica y morfología fluvial.

En este sentido la presente propuesta busca formular un mapa de Inundaciones en la zona de estudio con el software Iber de modelado numérico para contribuir a las medidas de prevención en esta zona.

1.4 OBJETIVOS

1.4.1 Objetivo General

Elaborar un mapa de riesgo de Inundaciones para el Río Grande en su paso por los Municipios de San Julián, Cuatro Cañadas y Okinawa Uno del Departamento de Santa Cruz, aplicando el modelo numérico de simulación IBER.

1.4.2 Objetivo Específicos

- Definir el área de trabajo.
- Definir el caudal de crecida máximo para un periodo de 50 años.
- Realizar una modelización hidráulica mediante el programa lber.
- Generar cartografía de riesgo de Inundación de los sectores urbanos aledaños al Río Grande.

1.5 JUSTIFICACIÓN DEL PROYECTO

El presente trabajo se justifica en el aspecto, en el tema social enfocado hacia los habitantes de los Municipios de San Julián, Cuatro Cañadas y Okinawa Uno, otro técnico científico enfocado a la actualización técnico-metodológica en el marco académico, tomando en cuenta el acceso a la tecnología a los Sistemas de Información Geográfica en el ámbito de procesamiento de datos geoespaciales y la herramienta de modelización y ambiental para efectos de la producción de resultados válidos.

1.5.1 Justificación Social

El paso del río Grande en periodo de lluvia por los Municipios de: San Julián, Cuatro Cañadas y Okinawa Uno, es una amenaza por la crecida del río, desborde y daño a sembradíos y comunidad que habita en zonas adyacentes al río.

Por tanto, la presente propuesta tiene por objeto la elaboración de un mapa de riesgo de inundaciones en esta zona con el software Iber, que permitirá realizar una simulación del comportamiento hidrológico en la zona que permita tomar medidas de prevención.

1.6 UBICACIÓN GEOGRÁFICA

El caso de estudio comprende una zona del Río Grande entre los municipios San Julián, Cuatro Cañadas y Okinawa Uno (ver en mapa de ubicación en anexo N°1).

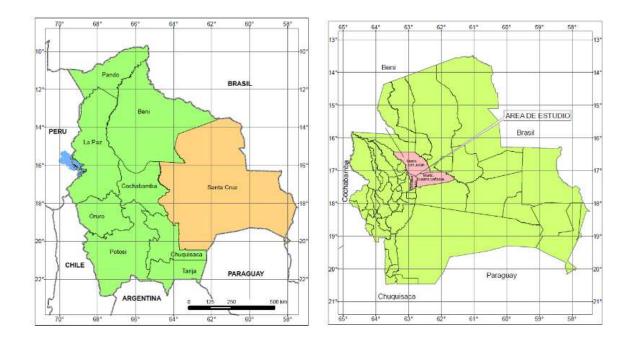


Figura Nº 1: Ubicación Geográfica País – Departamento – zona de estudio
Fuente: Propia Extraído del software ArcGis 10.4.2

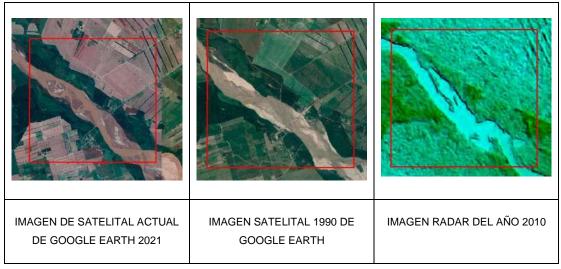


Figura N°2 Ubicación Geográfica con Imagen Satelital del Área de Estudio

Fuente: Extraído de imagen satelital y Raster.

1.6.1. Datos Generales

El río Grande también conocido como Guapay, río amazónico boliviano afluente del río Mamoré, que discurre en mayor parte por el Departamento de Santa Cruz. Tiene una longitud de 1.438 km alcanza los 1.715 km, su cuenca drena 101.902 km². El río Grande nace a las confluencias de los ríos Caine y San Pedro (18º25`3`S 65º20`43`O) y discurre en dirección noreste formando frontera entre los departamentos de Chuquisaca – Cochabamba – Santa Cruz en unos 500 km hasta su entrada en las llanuras en las coordenadas latitud y longitud(18º55`39`S 63º25`29`O) donde discurre otros 938 km en dirección noreste y formando una curva ancha que sirve de límite entre las provincias de Andrés Ibáñez y Chiquitos, finalmente el río Grande desemboca en el río Mamoré (15º48`09`S 64º43`47`O) discurriendo una longitud total de 1.438 km.

Sus pendientes son elevadas en el curso alto y suaves aguas abajo de la localidad de Abapó, con altitudes que van desde los 5100 hasta los 210 m.s.n.m y con pendientes medias elevadas en toda la cabecera de la cuenca, como se muestra en la siguiente figura (Banco Mundial, 2010):

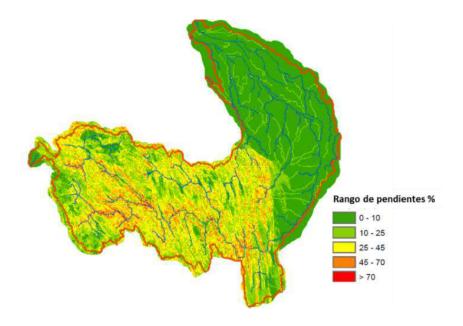


Figura N° 3: Mapa de rango de pendientes y red hidrográfica de la cuenca del río Grande
Fuente: Banco Mundial, 2010

Fotografía N°1: Río Grande vista desde el Puente Pailón
Fuente: ibolivia.org

Fotografía N° 2: Desborde del Río Grande Fuente: boliviaentusmanos.com

1.6.2. Población

De acuerdo al último censo de población y vivienda del año 2012, realizada por el instituto de Nacional de Estadística (INE), de acuerdo con el anuario estadístico, por parte del municipio de Okinawa uno tiene una población 12.482 habitantes, hombres: 6.434 y mujeres 6.048. Municipio San Julián tiene una población 47.416 habitantes, hombres: 24.959 y mujeres 22.457. Municipio Cuatro Cañadas tiene una población 22.845 habitantes, hombres: 13.959 y mujeres 8.886.

1.6.3. Usos del suelo

El uso de suelos en la zona de estudio, es mayormente ocupado para la agricultura, donde se cultiva soya, arroz, maíz y azúcar, entre otros. Asimismo, existen zonas cubierta por bosques húmedos y humedales forestados junto con praderas herbáceas y de

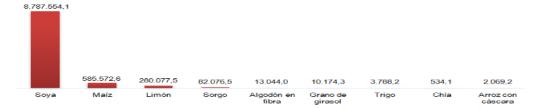


Figura N^a 4: Representación de censo agropecuario 2013 Fuente: Instituto Nacional de Estadística 2013

El Censo Agropecuario 2013 estableció un total de 364.235,1 hectáreas en Cuatro Cañadas con diferentes usos de la tierra, 65,9% se destina para la agricultura, 17,0% para la actividad forestal y 14,1% para la ganadería.

También se empadronaron 2.442 Unidades de Producción Agropecuaria (UPA), de las cuales 3.648 miembros de estas UPA tienen como actividad principal la agricultura, en tanto que 1.725 miembros se dedican a la ganadería.

USO DE LA TIERRA, CENSO AGROPECUARIO 2013

(En hectáreas)

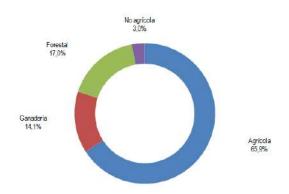


Figura Nº 5: Representación del Uso de la Tierra, Censo Agropecuario 2013

Fuente: Instituto Nacional de Estadística

1.7. CARACTERÍSTICAS FÍSICAS DE LA ZONA DE ESTUDIO.

1.7.1. Descripción Fisiográfica

La mayor parte de los tres municipios que son: Cuatro Cañadas, Okinawa uno y San Julián está constituida por materiales acarreados y depositados por el Rio Grande que a través de las décadas de su historia siempre fue divagante y cursos de quebradas que modelaron de diversa forma la superficie de la tierra con constantes cambios de cauce, que dieron lugar a la formación de diferentes paisajes y subpaisajes. Según la naturaleza fisiográfica de los paisajes y subpaisajes, se identificaron dos grandes paisajes fisiográficos que son: la llanura aluvial reciente y la llanura aluvial subreciente cerca del Río Grande, además de estas unidades fisiográficas, se presenta la llanura aluvial muy

reciente en la zona.

1.7.2. Altitud.

Los tres municipios presentan una elevación media de 235 metros sobre el nivel del mar.

1.7.3. Relieve

No se presentan diferencias notables en el relieve superficial de los suelos del Municipio. Al tratarse de suelos que fueron formados por llanuras aluviales antiguas por rebalses del Río Grande, estos presentan paisajes homogéneos.

1.7.4. Topografía.

El municipio de Cuatro Cañadas presenta una topografía predominantemente plana, con algunas pendientes aisladas en márgenes de cursos de aguas, que no sobrepasan el 0,05%, es decir, en cada 100m lineales de terreno, existe menos de 5m de desnivel. Los datos fueron extraídos de mapas del IGM a escala 1:50.000.

Figura N° 6: Carta Topográfica

Fuente: Carta Topográfica IGM a escala 1:50.000.

1.7.5. Características Climáticas

La información sobre el clima de los Municipios se basa en datos de 5 años (2001-2006) obtenida de la Estación Meteorológica de Pailón, es la más cercana de los municipios el mismo que no dispone de una propia. Según el método de Thornthwaite, el clima dominante en el municipio está clasificado como subhúmedo, seco megatermal, con nulo o pequeño exceso de agua (C1A' d). La clasificación de zonas de vida de L.R. Höldrige es bosque seco templado (bs-TE).

1.7.5.1. Precipitación

Se identifica una relativa variación, en el departamento (SENAMHI, 2006) está comprendido sobre la isoyeta de 900 mm de precipitación/anual, en el municipio de Cuatro Cañadas, con tendencia a la disminución de las intensidades, este último año se sufrió el fenómeno del Niño que ocasiono lluvias cíclicas intensas que derivaron en pérdidas económicas en la actividad agropecuaria e infraestructura caminera.

Fotografía Na 3: 37 Municipios en desastre por las fuertes precipitaciones Fuente: https://www.telesurtv.net/news/bolivia-fenomeno-el-nino-inundaciones

1.7.5.2. Temperatura

La temperatura promedio anual alcanza a 24,3 °C, con una variación que fluctúa entre 30 y 35 para la máxima (en verano) y entre 7 y 10 para la mínima (en invierno).

1.7.5.3. Viento

La velocidad del viento alcanza de 10 a 12 nudos, entre los meses junio – septiembre.

CAPITULO II

MARCO TEÓRICO

2.1 TEORIA DE LA GESTION DE RIESGO Y DESASTRES

2.1.1 Riesgo

El origen de la palabra "riesgo" no es claro, sin embargo, algunos documentos antiguos de origen italiano y de la época medieval podrían indicar que procede del árabe. Otras fuentes apuntan a que el término nació en la Francia del siglo XVII, formando parte de la teoría de las probabilidades (Garcia, 2005).

Para Beck (2002), el riesgo es un efecto de causa; es decir, es producto de las consecuencias que genera la aplicación de determinadas actuaciones sobre un determinado aspecto, añade que este concepto del riesgo, constituye el enfoque moderno de la prevision y control de las consecuencias futuras de la acción humana; en otras palabras, las diversas consecuencias no deseadas de la modernización radicalizada.

El concepto de riesgo ha sido incorporado a diversas disciplinas: economía, política, medicina, etc. lo que revela en amplio alcance del concepto. El concepto de riesgo de acuerdo al componente se describe en el siguiente cuadro:

	Enfoque naturaleza	Enfoque social	Enfoque territorial
Riesgo	Umbral de la dinámica natural de carácter extraordinario rebasado por el hombre en el desarrollo de sus actividades.	Grado de aceptación de la peligrosidad natural por un grupo humano.	Plasmación territorial de una actuación humana poco acorde con los rasgos extremos de medio donde tiene lugar.

Tabla N° 2: Enfoques para definir riesgo **Fuente:** Ayala – Carcedo y Olcina, 2006

2.1.1.1 Riesgo de Desastre

Las posibilidades pérdidas que ocasionaría un desastre en términos de vidas, las

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

condiciones de salud, los medios de sustento, los bienes y servicios, y que podrían ocurrir en una comunidad o sociedad particular en un periodo específico de tiempo en el futuro. (EIRD).

2.1.1.2 Riesgo Intensivo

El riesgo asociado con la exposición de grandes concentraciones poblacionales y actividades económicas a intensos eventos relativos a las amenazas existentes, los cuales pueden conducir al surgimiento de impactos potencialmente catastróficos de desastres que incluirían una gran cantidad de muertes y la perdida de bienes. (EIRD).

2.1.1.3 Riesgo Extensivo

El riesgo generalizado que se relaciona con la exposición de poblaciones dispersas a condiciones reiteradas o persistentes con una intensidad baja o moderada, a menudo de naturaleza altamente localizada, lo cual puede conducir a un impacto acumulativo muy debilitante de los desastres. (EIRD).

2.1.1.4 Riesgo Residual

El riesgo que todavía no se gestionado aun cuando existan medidas eficaces para la reducción del riesgo de desastres y para los cuales se debe mantener las capacidades de respuesta de emergencia y de recuperación. (EIRD).

2.1.1.5 Riesgo Existente o Actual

El riesgo actual se refiere al riesgo ya creado, es decir cuando existen elementos socioeconómicos expuestos en condiciones de vulnerabilidad ante fenómenos físicos potencialmente peligrosos que han sido analizados, evaluados o cuyos posibles efectos han sido percibidos por la sociedad de forma anticipada. El riesgo actual es el que más inmediatamente se puede transformar o actualizar en desastre en virtud de que tanto la amenaza como la vulnerabilidad son hechos o realidades ya dadas. (PREDECAN, 2009).

2.1.1.6 Riesgo por crearse o Riesgo Futuro

Por su parte, el riesgo futuro se refiere a la prospección del riesgo, es decir al entendimiento anticipado de su probable consolidación en el futuro. Este concepto se basa en la comprensión de la dinámica de los procesos sociales que crean el riesgo. No obstante que el concepto de riesgo se refiere a una situación en todo caso latente y por ende futura, con la expresión "riesgo futuro", se hace referencia no a la probable ocurrencia de un desastre sino a la posible consolidación o configuración de un riesgo que hoy día no existe. (PREDECAN, 2009).

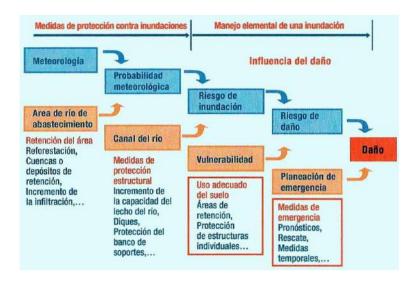


Figura N°7: El daño como una cadena de interacciones Fuente: IV Foro Mundial del Agua, 2006

2.1.2 Manejo (o gestión) Integrado de Riesgo

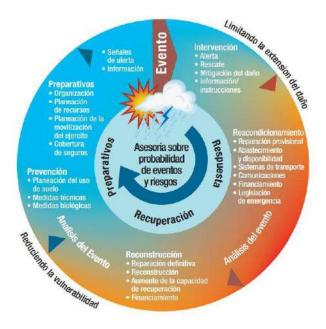
El manejo de riesgo en los desastres consiste en el "conjunto de decisiones administrativas, de organización y conocimientos operacionales desarrollados por sociedades y comunidades para implementar políticas, estratégicas y fortalecer sus capacidades a fin de reducir el impacto de amenazas naturales y de desastres ambientales y tecnológicos consecuentes". Esto involucra todo tipo de actividades, incluyendo los efectos adversos de los desastres (Ayala Carcedo, 2002).

Un manejo integrado de riesgos está conformado por acciones sistemáticas en tres grandes etapas o ciclos (IV Foro Mundial del Agua, 2006):

2.1.2.1 Preparación

Consiste en medidas preventivas y precautorias para enfrentar un evento antes de que ocurra. Apunta a minimizar el efecto de las actividades del desarrollo para que no acentúen la magnitud del peligro, sino reduzcan la exposición a los peligros naturales y minimicen la vulnerabilidad socio-económica de las personas y los recursos materiales expuestos. La prevención trata de planificar a largo plazo y está incorporada al proceso de desarrollo. La preparación trata de reducir la vulnerabilidad a nivel local y limitar la magnitud de impacto adverso del evento inevitable en el corto plazo. La inversión en medidas estructurales es necesaria para alcanzar un determinado grado de protección, pero no es suficiente y la estrategia también debe incorporar medidas no-estructurales y debe hacer frente a los riesgos.

2.1.2.2 Respuesta


Consiste en medidas que limitan los efectos de exposición a un peligro y su duración. Se enfoca principalmente en alertar a las personas, rescatar a las víctimas y proporcionar ayuda en caso de ser necesario. También incluye medidas inmediatas para prevenir mayores impactos adversos, el reacondicionando provisional de infraestructura importante y la documentación de los eventos.

2.1.2.3 Recuperación

Consiste en permitir que las actividades económicas y sociales regresen a la normalidad con el mínimo retraso. También involucra el análisis del desastre para aprender las lecciones pertinentes e integrar las medidas correctivas en la prevención y la preparación de los planes.

Al respecto resulta ilustrativo el gráfico presentado en el Documento Temático 5 del IV Foro Mundial del Agua (2006) que se muestra a continuación:

Figura 8: Ciclo del Manejo de Riesgos **Fuente:** IV Foro Mundial del Agua, 2006

En dicho documento se expresa que la efectividad del ciclo del manejo del riesgo para reducir la exposición al peligro y los daños depende de la voluntad política para aplicar los principios del manejo de riesgos en el desarrollo de planes, la existencia de responsabilidades institucionales bien definidas y un proceso democrático de consulta y control social con una gobernabilidad eficaz. Consiste, además, en un cambio fundamental de la respuesta y la reacción al desastre, hacia la anticipación y mitigación.

2.2 INUNDACIÓN

De acuerdo con el glosario internacional de hidrología (OMM/UNESCO, 1974), la definición oficial de inundación es: "aumento del agua por arriba del nivel normal del cauce". En este caso, "nivel normal" se debe entender como aquella elevación de la superficie del agua que no causa daños, es decir, inundación es una elevación mayor a la habitual en el cauce, por lo que puede generar desbordes de agua y causar daños y pérdidas de diferente índole.

Fortes (2006) define inundación como el anegamiento temporal de terrenos que en

general no están cubiertos por agua, y que puede producirse por diferentes causas y sobre distintos escenarios, originando distinto tipo de inundaciones como las fluviales, las costeras, las repentinas, las urbanas, etc. Por lo tanto, se entiende como inundación a aquel evento que, debido a la precipitación, oleaje, marea de tormenta, o falla de alguna estructura hidráulica provoca un incremento en el nivel de la superficie libre del agua de los ríos, o el mar mismo; generando invasión o penetración de agua en sitios donde usualmente no la hay, causando daños en la población, agricultura, ganadería e infraestructura.

Fotografía N°4: Inundación por desborde de río Grande zona agrícola – Santa Cruz Municipio San Julián

Fuente: La Razón, 2018

2.2.1 Causas de las Inundaciones

Las causas de inundaciones pueden deberse a actividades humanas, exceso de precipitación pluvial o falla de obras hidráulicas:

a. Actividades humanas

Debido a actividades humanas, las causas principales que derivan en inundaciones son (CENAPRED, 2012):

- La urbanización de las ciudades provoca que el suelo se cubra con una capa impermeable de concreto o asfalto, que no permite que el agua de lluvia penetre en

el suelo. Además, que la basura que se tira en la calle, tapa alcantarillas y ocasiona que su capacidad no sea suficiente para conducir los volúmenes de agua para el cual fueron diseñados.

- Tala de árboles para sembrar, ocasiona destrucción de la cobertura vegetal del suelo. Al llover, el agua arrastra la tierra hacia las partes bajas, tapando el drenaje y azolvando los ríos y las presas, lo que favorece las inundaciones, así como la erosión del suelo.
- Construcción de viviendas cerca de ríos, que ante crecida por precipitaciones provocan desborde e inundación en zonas aledañas.

b. Exceso de precipitación pluvial

La complejidad y magnitud de una inundación, puede verse directamente afectada por la acción de la intervención humana sobre la cuenca y/o el cauce del río. El daño generado por la inundación es usualmente la consecuencia de las actividades del hombre en áreas vulnerables a las inundaciones, y pueden presentarse como resultado de cambios en el uso de la tierra; como, por ejemplo, al utilizar un terreno aledaño al cauce de un río como zona de cultivos, y la transformación de la cobertura natural del suelo durante el proceso de urbanización (ERN, 2012).

Las causas, efecto e impactos de la inundación, se describen en la siguiente figura:

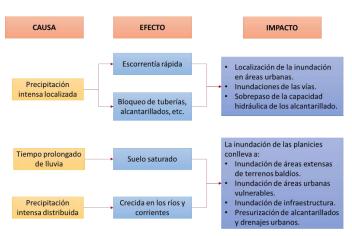


Figura N°9: Causas, efectos e impactos de la inundación

Fuente: ERN, 2012

c. Falla de obras hidráulicas

Cuando se rompe una presa, dique o bordo, el agua almacenada sale rápidamente y puede causar graves daños a poblaciones ubicadas en las zonas aguas abajo (CENAPRED, 2012).

2.2.2 Tipos de Inundaciones

La clasificación de los tipos de inundaciones obedece a su origen y al tiempo que tardan en presentarse sus efectos. (CENAPRED, 2012):

a. De acuerdo a su origen

- **Inundaciones pluviales.** Son consecuencias de la precipitación, se presentan cuando el terreno se ha saturado y el agua de lluvia excedente comienza a acumularse, pudiendo permanecer horas o días.

Su principal característica, es que el agua acumulada es agua precipitada sobre esa zona y no la que viene de alguna otra parte (por ejemplo, de la parte alta de la cuenca) (CENAPRED, 2004).

El vapor de agua en las capas alta y frías de la atmósfera, se transforma en nubes que se presentan en diversas formas: cúmulos, cirros, estratos y nimbos; de acuerdo con el contenido de vapor de agua que se condensa, se convierte en gotas de agua. Los principales mecanismos a través de los que se genera la precipitación son (Cruz, 2009):

- Ciclones, cuya manifestación destructiva más conocida es, en intensas precipitaciones, además de fuertes velocidades de viento, oleaje y marea de tormenta.
- Lo que concierne a lluvias orográficas, éstas se originan por el ascenso de una columna de aire húmedo al encontrarse con un obstáculo orográfico, como una montaña. En su ascenso el aire se enfría hasta alcanzar el punto de saturación del vapor de agua, y una humedad relativa del 100% que origina la lluvia.

- Las lluvias invernales. Consisten en el desplazamiento de aire frío procedente de la zona de polo norte.
- Las Iluvias convectivas. Se originan por el calentamiento de la superficie terrestre, en donde el aire que está en contacto con esa zona cálida, llega a calentarse más que los alrededores, dando lugar a corrientes vertientes con las que asciende el aire caliente húmedo.
- Inundaciones fluviales (Ribereñas). Se tienen cuando el agua que se desborda de los ríos queda sobre la superficie de terreno cercano a ellos. Son volúmenes de agua de precipitaciones registradas en algún punto de la cuenca tributaria. Las inundaciones fluviales más importantes se pueden dar en los ríos con mayores desarrollos urbanos o que lleguen hasta las planicies costeras.

La causa de los desbordamientos de los ríos y arroyos, se atribuyen en primera instancia a un excedente de agua, igual que a sequia se atribuye al efecto contrario (la carencia de recursos hídricos), el aumento brusco del volumen de agua que un lecho o cauce es capaz de transportar sin desbordarse, produce lo que se denomina como avenida o riada. Una avenida o riada es el paso por tramos de un río de caudales superiores a los normales, que dan lugar a elevaciones de los niveles de agua causando alteraciones a la morfología de los ríos (CENAPRED, 2012).

Los cauces de los ríos y arroyos no permanecen siempre inalterados, no son rectos ni uniformes, sino que en general están afectados por los deslizamientos del terreno, los arrastres de sólidos, la acumulación de sedimentos, meandros, estrechamientos, puentes que se construyen para cruzarlos, represas, obstrucciones, deforestación, etc. La cubierta vegetal cumple entonces una función muy destacada al evitar el impacto directo de las gotas de agua sobre el terreno, impidiendo su erosión, al mismo tiempo que con sus raíces absorbe una parte de ella o dificulta su avance hacia los ríos, prologando en estos su tiempo de concentración. Además, colabora en la disminución del transporte de residuos sólidos que posteriormente afectan a los cauces (Cruz, 2009).

- Inundaciones costeras. Este tipo de inundación tiene lugar cuando el nivel medio del mar asciende a la marea y permite que éste penetre tierra adentro en las zonas costeras, generando el cubrimiento de grandes extensiones de terrenos. Los vientos de los ciclones tropicales sobre la superficie del mar son los causantes de la marea de tormenta.
- Inundaciones por falla de infraestructura hidráulica. Este tipo de inundaciones son poco frecuentes, y tienen su origen por un diseño escaso, mala operación, falta de mantenimiento o término de la vida útil.

Se trata de un hecho circunstancial poco probable y no necesariamente relacionado con los fenómenos meteorológicos, sino más bien con los geológicos o con la técnica de operación. Es evidente que la rotura de una presa, por pequeña que sea, puede llegar a causar una serie de estragos no sólo a la población sino también a sus bienes, a la infraestructura y al medio ambiente. La propagación de la onda de avenida en ese caso resulta tanta más dañina cuanto mayor sea el caudal circundante, el tiempo de propagación y los elementos existentes en la zona de afectación (Cruz, 2009).

b. Clasificación de las inundaciones por el tiempo de respuesta de la cuenca

La respuesta hidrológica de una cuenca depende de sus características fisiográficas. Por lo que básicamente se han definido dos grupos:

 Inundaciones lentas. Al ocurrir una precipitación capaz de saturar el terreno; esto es, cuando el suelo no puede seguir absorbiendo más agua de lluvia, el volumen remanente escurre por los ríos y arroyos o sobre el terreno.

Conforme el escurrimiento avanza hacia la salida de la cuenca, se incrementa proporcionalmente con el área drenada, si el volumen que fluye por el cauce excede la capacidad de éste, se presentan desbordamientos sobre sus márgenes y el agua desalojada puede permanecer horas o días sobre el terreno inundado (CENAPRED, 2004).

Este efecto es propio de zonas donde la pendiente del cauce es pequeña; por ende, la capacidad de los ríos disminuye considerablemente provocando desbordamientos que generan inundaciones en las partes aledañas.

 Inundaciones súbitas. Las inundaciones súbitas son el resultado de lluvias repentinas e intensas que ocurren en áreas específicas. Pueden ocasionar que pequeñas corrientes se transformen, en cuestión de minutos, en vientos torrentes capaces de causar grandes daños.

Las zonas urbanas son usualmente los sitios donde se presentan este tipo de inundaciones, como consecuencia de la "cubierta impermeable", formada de manera artificial por edificios y calles, así como por la deforestación; esto hace que el agua no pueda infiltrarse y prácticamente todo el volumen precipitado se convierte en escurrimiento.

Por otro lado, de acuerdo a ALNAP (2010), los tipos de inundaciones se clasifican de acuerdo a la descripción del siguiente cuadro:

TIPO	DURACIÓN	IMPACTO CARACTERÍSTICOS
Inundaciones predecibles, regulares	Hasta 3 meses	Bloquea el acceso. Daños y desplazamiento de la población relativamente reducidos, dependiendo de los niveles de protección.
Inundaciones regulares de mayor tamaño	Hasta 6 meses	Bloquea el acceso a la mayoría de las áreas. Gran posibilidad de dañar infraestructuras, impactar en medios de sustento y generar desplazamientos de la población masivos.
Inundaciones repentinas	De pocos días a semanas	Alcanzan rápidamente su máximo, muchas veces sin previo aviso. El flujo de inundaciones a altas velocidades puede destruir infraestructuras. Desplazamiento de personas a menudo se produce a nivel local.

Inundaciones urbanas	De días a semanas	Pueden ser de comienzo rápido, muchas veces proceden de inundaciones repentinas en ríos urbanos o de la saturación o bloqueo de sistemas de drenaje urbano. Posibilidad de dañar infraestructuras afectando carreteras más amplias. Desplazamiento de personas a menudo se produce a nivel local.
Inundaciones costeras	Pocos días	A menudo se producen en combinación con daños por vientos de tormentas. Daños y desplazamientos a lo largo de la línea costera cuya extensión que depende de la magnitud de la tormenta.
Inundaciones de comienzo lento por Iluvias continuas	3 – 6 meses	Bloquea el acceso. Según la estación, los daños en los cultivos pueden ser importantes. Desplazamiento de la población limitado y puede depender de la seguridad alimentaria.

Tabla N°3: Tipos de Inundaciones **Fuente:** ALNAP, 2010

La magnitud del desastre no se determina sólo por el agua de la inundación, sino también por el patrón de vulnerabilidad en el que las personas viven. Las vidas y los medios de sustento de muchas personas pobres, se ven afectados severamente por las inundaciones.

2.2.3 Factores primordiales en eventos de Inundación

Para el control de las inundaciones, es esencial determinar qué factores generan mayor impacto. Generalmente el nivel del agua ha sido el elemento más importante para calificar el daño de una inundación; sin embargo, este no es el único factor a considerar. A continuación, se va a evidenciar los otros factores que se podrán considerar:

Velocidad del flujo de agua	La fuerza adicional crea el riesgo de colapsos, arrastre de personas y reduce el tiempo de respuesta para poder evacuar la zona.	

Duración	Una larga duración daña los materiales y causa problemas de salud (vectores, infecciones, enfermedades)
Sedimentos	Genera daños a equipos mecánicos y trae problemas posteriores por la limpieza y olor.
Frecuencia	Una alta frecuencia genera daños en estructuras y equipos.
Materiales de construcción	Metales o ladrillos son más resistentes que madera, cales u otros materiales.
Condiciones	Las condiciones y calidad de las construcciones pueden determinar la magnitud de los daños.
Edad	Normalmente a mayor edad, los materiales estarán más deteriorados y propensos al daño.
Medidas de alerta	Buenos sistemas de alerta permiten tomar medidas y reducir el daño.

Tabla N° 4: Otros factores que ocasionan daños en caso de Inundación

Fuente: Barón, 2012

2.2.4 Mitigación de daños por inundaciones

Para establecer acciones frente a los daños causados por las inundaciones es indispensable emprender acciones de protección: Medidas estructurales (construcción de obras), o medidas no estructurales (indirectas o institucionales).

a) Medidas estructurales

Que corresponde a obras o infraestructuras hidráulicas que ayuden a evitar o al menos mitigar inundaciones (Salas, 1999).

b) Medidas no estructurales o acciones institucionales

Este tipo de medidas se basa en la planeación, organización, coordinación y ejecución de acciones que buscan disminuir los daños causados por las inundaciones. Pueden ser de carácter permanente o aplicable sólo durante la contingencia. Las principales acciones dentro de este tipo de medidas son (CENAPRED, 2012):

- Acciones permanentes

Se refieren básicamente a la normatividad para el uso de suelo, con lo que se posibilita la delimitación de las zonas inundables bajo diferentes escenarios, relacionando la magnitud del evento con el área afectada.

- Mapa de riesgo

Es la representación gráfica de los potenciales daños de un sitio (ciudad, localidad, vía de comunicación, etc.) generados por algún fenómeno natural o antropogénico (inundación, sismo, explosión de material químico, etc.) que lo afecte.

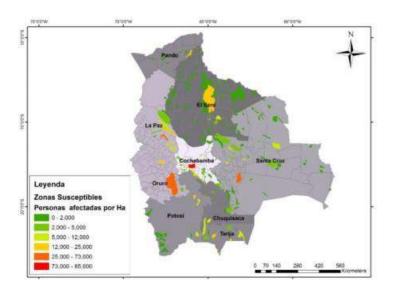


Figura N°10: Mapa general de exposición por inundación en Bolivia
Fuente: Desinventar (2014)

Acciones de operación durante la temporada de Iluvia.

Ante la presencia de un fenómeno de tipo hidrometeoro lógico capaz de generar una

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

inundación, se llevan a cabo medidas cuya finalidad es conocer su evolución durante sus diferentes fases (ocurrencia y cuantificación de la precipitación; transformación en escurrimiento superficial; regulación a lo largo del cauce, desfasamiento en el tiempo y atenuación del gasto máximo; operación de la infraestructura hidráulica, etc.).

De esta manera, es posible anticiparse a la ocurrencia de eventos peligrosos y tener la posibilidad de emitir los avisos correspondientes, con el fin de informar tanto a autoridades como a la población.

2.3 VULNERABILIDAD

Es la medida de la susceptibilidad de un bien expuesto a la ocurrencia de un fenómeno perturbador. De dos bienes expuestos uno es más vulnerables si, ante la ocurrencia de fenómenos perturbadores con la misma intensidad, éste sufre mayores daños (Ordaz, 1996).

La vulnerabilidad es entendida como aquel factor del riesgo interno de un elemento o grupo de elementos expuestos a una amenaza, correspondiente a su predisposición intrínseca o susceptibilidad física, económica, social o política que tiene una comunidad de ser afectada o de sufrir efectos adversos en caso de que se manifieste un fenómeno peligroso de origen natural (Cardona, 1991).

El nivel de vulnerabilidad es determinado por factores asociados al modelo de desarrollo, la disponibilidad y fragilidad de los medios de subsistencia, la sobrepoblación, la cultura, la organización social, la percepción social frente a los riesgos, la capacidad institucional, el equilibrio ambiental, la capacidad de prevención, respuesta o recuperación, entre otros aspectos (Cardona, 1991).

La vulnerabilidad es función de tres componentes principales: la exposición ante amenazas naturales, socio natural o antrópicas; la sensibilidad o fragilidad de los elementos expuestos y la capacidad de adaptación o recuperación. En la siguiente figura se muestra la relación entre los factores de la vulnerabilidad y sus componentes o subsistemas (Vera y Albarracín, 2016).

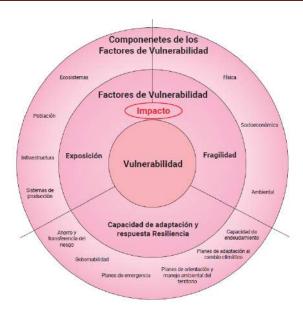


Figura N°11: Factores y componentes de la vulnerabilidad
Fuente: Vera & Albarracín, 2016

La exposición como factor de vulnerabilidad se refiere al nivel donde ecosistemas, población, infraestructuras y sistemas de producción se encuentran en zonas de incidencia potencial de las amenazas consideradas en el análisis.

Por su parte la fragilidad hace referencia al nivel de susceptibilidad intrínseca de los elementos expuestos a ser afectados por una magnitud estimada de la amenaza; los componentes de la fragilidad son el físico, el socioeconómico y el ambiental.

La capacidad de respuesta y adaptación tiene que ver con la posibilidad de las comunidades para atender, asumir, recuperarse y adaptarse ante grandes variaciones en sus condiciones normales de vida, producto de un desastre. Esto está determinado por aspectos como niveles de gobernabilidad, nivel cultural, capacidad de ordenación y gestión ambiental del territorio, niveles de preparación y diseño de planes de manejo de emergencias y gestión del riesgo, capacidad de endeudamiento, capacidad de ahorro y transferencia de riesgos mediante pólizas de aseguramiento, entre otros.

Aunque es usual encontrar el uso del término resiliencia para hacer referencia a este componente de la vulnerabilidad, ello es impreciso, ya que esta se refiere fundamentalmente a la tolerancia que tienen las configuraciones territoriales de soportar

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

una acción perturbadora antes de presentar un cambio sustancial en sus características, en tanto que la capacidad de adaptación hace referencia a la posibilidad que tienen los ecosistemas de ajustarse a variaciones sustanciales en su entorno y frente a acciones perturbadoras, súbitas o no, de manera que puedan seguir funcionando a pesar de

cambios cualitativos o cuantitativos importantes (Schroter, Polsky, & Patt, 2005).

2.4 DESASTRE

Una seria interrupción en el funcionamiento de una comunidad o sociedad que ocasiona

una gran cantidad de muertes al igual que pérdidas e impactos materiales, económicos

y ambientales que exceden la capacidad de la comunidad o la sociedad afectada para

hacer frente a la situación afecta para hacer frente a la situación mediante el uso de sus

propios recursos. (EIRD).

Escenario de grave afectación y/o daño directo a las personas, sus bienes, medios de

vida, servicios y su entorno, causadas por un evento adverso de origen natural o

generado por la actividad humana (antrópico), en el contexto de un proceso social, que

exceden la capacidad de respuesta de la comunidad o región afectada. (D.S. 2342,

2015).

2.5 AMENAZA

Es la probabilidad de que un evento de origen natural, socio-natural o antrópico, se

concrete y se produzca en un determinado tiempo o en una determinada región. (Ley

602, 2014).

Un fenómeno, sustancia, actividad humana o condición peligrosa que pueden ocasionar

la muerte, lesiones u otros impactos a la salud, al igual que daños a la propiedad, la

pérdida de medio de sustento y de servicios, trastornos sociales y económicos, o daños

ambientales. (EIRD).

2.5.1 Amenaza Biológica

Un proceso o fenómeno de origen orgánico o que se transporta mediante vectores

Postulante: Karina Marisol Quispe Ajata

30

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

biológicos, lo que incluye la exposición a microorganismos patógenos, toxinas y sustancias bioactivas que pueden ocasionar la muerte enfermedades u otros impactos a la salud, al igual que daños a la propiedad, la perdida de medios de sustento y de servicios, trastornos sociales y económicos, o daños ambientales. (EIRD).

2.5.2 Amenaza Geológica

Un proceso o fenómeno geológico que podría ocasionar la muerte, lesiones u otros impactos a la salud, al igual que daños a la propiedad, la pérdida de medios de sustento y de servicios, trastornos sociales y económicos, o daños ambientales. (EIRD).

2.5.3 Amenaza Hidrometeorológica

Un proceso o fenómeno de origen atmosférico, hidrológico u oceanográfico que puede ocasionar la muerte, lesiones u otros impactos a la salud, la pérdida de medios de sustento y de servicios, trastornos sociales y económicos, o daños ambientales. (EIRD).

2.5.4 Amenaza Natural

Un proceso o fenómeno natural que puede ocasionar la muerte, lesiones u otros impactos a la salud, al igual que daños a la propiedad, la pérdida de medios de sustento y de servicios, trastornos sociales y económicos, o daños ambientales. (EIRD).

2.5.5 Amenaza Socio Natural

Derivan de la intersección de prácticas humanas con el ambiente natural, normalmente en condiciones tipificadas como de degradación ambiental, de inadaptabilidad al entorno o bajo condiciones de insuficiencias y/o deficiencias en la dotación de infraestructuras urbanas rurales. (Lavell, 2003). 2.1.2.6 Amenaza tecnológica Una amenaza que se origina a raíz de las condiciones tecnológicas o industriales, lo que incluye accidentes, procedimientos peligrosos, fallas en la infraestructura o actividades humanas específicas que pueden ocasionar la muerte, lesiones, enfermedades u otros impactos a la salud al igual que daños a la propiedad, la perdida de medios de sustento y de servicios, trastornos sociales o económicos, daños ambientales. (EIRD).

2.6 CONCEPTOS DE HIDRAULICA DE RIOS

2.6.1 Canales

Los canales son conductos abiertos o cerrados en los cuales el agua circula debido a la acción de la gravedad y sin ninguna presión, pues la superficie libre del líquido está en contacto con la atmosfera; esto quiere decir que el agua fluye impulsada por la presión atmosférica y de su propio peso. (Pedro Rodríguez Ruiz, Hidráulica II-2008)

2.6.1.1 Canales Naturales

Incluyen todos los canales de agua que existen de manera natural de la tierra, los cuales varían en tamaño desde pequeños riachuelos en zonas montañosas, hasta quebradas, ríos pequeños y grandes, arroyos, lagos y lagunas. Las corrientes subterráneas que transportan agua con una superficie libre también son consideradas como canales abiertos naturales. La sección transversal de un canal natural es generalmente de forma muy irregular y variable durante su recorrido, lo mismo su alineación y las características de los lechos. (Pedro Rodríguez Ruiz, Hidráulica II-2008).

Los canales naturales incluyen todos los cursos de agua que existen de manera natural en la Tierra, los cuales varían en tamaño desde pequeños arroyuelos en zonas montañosas, hasta quebradas, arroyos, ríos pequeños y granes, y estuarios de mareas. Las corrientes subterráneas que transportan agua con una superficie libre también son consideradas como canales abiertos naturales. Un flujo en canal abierto debe tener una superficie libre, una superficie libre está sometida a la presión atmosférica. El flujo de un fluido en un canal se caracteriza por la exposición de una superficie libre a la presión atmosférica. El agua que fluye en un canal se ve afectada por las fuerzas que intervienen en el fluyo dentro de un tubo con la adición de las fuerzas de gravedad y tensión superficial que son consecuencia directa de la superficie libre. (Pedro Rodríguez Ruiz, Hidráulica II-2008).

2.6.1.2 Canales Artificiales

Los canales artificiales son todos aquellos construidos o desarrollados mediante el

esfuerzo de la mano del hombre, tales como: canales de riego, de navegación, control de inundaciones, canales de centrales hidroeléctricas, alcantarillado pluvial, sanitario, canales de desborde, canaletas de madera, cunetas a lo largo de carreteras, cunetas de drenaje agrícola y canales de modelos construidos en el laboratorio. Los canales artificiales usualmente se diseñan con formas geométricas regulares (primaticos), un canal construido con una sección transversal invariable y una pendiente de fondo constante se conoce como canal prismático. El termino sección de canal se refiere a la sección transversal tomando en forma perpendicular a la dirección del flujo. Las secciones transversales más comunes son las siguientes: (Pedro Rodríguez Ruiz, Hidráulica II-2008).

2.6.2 Rugosidad

Cada contorno tiene su propia aspereza o rugosidad que depende del material de que está hecho y de su estado de conservación. Así, por ejemplo, una tubería de concreto es más rugosa que una de acero. Un canal de tierra es más rugo que un canal de concreto.

Si se podría ver con un lente de aumento el contorno de una tubería o canal, se vería algo así como muestra la figura siguiente: (Arturo Rocha - Hidráulica de Tuberías y canales).

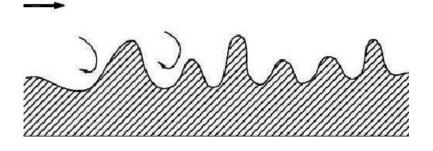


Figura N°12: Aspereza del contorno.

Fuente: Arturo Rocha, Hidráulica de tuberías y canales

Las asperezas tienen diferente forma y tamaño. Dan lugar a la aparición de pequeñas corrientes secundarias (vorticosas). Estas asperezas producen una modificación en las condiciones del escurrimiento. (Arturo Rocha - Hidráulica de Tuberías y canales).

2.6.3 Coeficiente de Rugosidad de Maninng

En 1889 el ingeniero irlandés Robert Manning presento una ecuación, la cual se modificó más adelante hasta llegar a su bien conocida forma actual.

$$=Rh/\frac{I}{n}$$

Siendo:

I, la pendiente de la condición en m/m.

v, la velocidad media en m/s.

R, el radio hidráulico en m (superficie mojada / perímetro mojado).

n, coeficiente de Manning.

El valor de n es muy variable y depende de un cierto número de factores. Para seleccionar el valor de n apropiado para diferentes condiciones de diseño, resulta muy útil tener un conocimiento básico de estos factores. Los factores que ejercen la mayor influencia sobre el coeficiente de rugosidad tanto en canales artificiales como en canales naturales son los siguientes: (Ven Te Chow – Hidráulica de canales).

- Rugosidad superficial.
- Vegetación. ÿ Irregularidad del canal.
- > Alineamiento del canal.
- Sedimentación y socavación
- Obstrucción ÿ Tamaño y forma del canal
- Nivel y Caudal

2.6.4 Número de Curva

El método del número de curva (CN), (Ven Te, 1984), es un parámetro empírico fue desarrollado por el Servicio de Conservación de Recursos Naturales de EE.UU. (Natural Resources Conservation Service – NRCS), originalmente llamado Servicio de Conservación de Suelos (Soil Conservation Service -SCS), para calcular la precipitación

efectiva como una función de la lluvia acumulada, la cobertura del suelo, el uso del suelo y las condiciones de humedad.

La metodología del número de la curva (CN), es la más empleada para transformar la precipitación total en precipitación efectiva, surgió de la observación del fenómeno hidrológico en distintos tipos de suelo en varios estados y para distintas condiciones de humedad antecedente. La representación gráfica de la profundidad de precipitación (P), y la profundidad de exceso de precipitación o escorrentía directa (Pe), permitió obtener una familia de curvas que fueron estandarizadas a partir de un número adimensional de curva CN, que varía de 1 a 100, según sea el grado del escurrimiento directo. Así un número de la curva CN = 100, indica que toda la lluvia escurre y un CN = 1, indica que toda la lluvia se infiltra.

2.6.5 **Caudal**

Como definición general, se conoce como caudal, a la cantidad de fluido que circula a través de una sección de un ducto, ya sea tubería, cañería, oleoducto, río, canal, por unidad de tiempo. Generalmente, el caudal se identifica con el flujo volumétrico o volumen que pasa por un área determinada en una unidad de tiempo específica. El caudal de un río puede aumentar o disminuir dependiendo de la estación del año, por ejemplo, los ríos que se alimentan principalmente del deshielo de las capas de nieve, aumentan su caudal en primavera, mientras que ríos cuya agua procede de las precipitaciones de aguas meteóricas, presentan niveles máximos de caudal en épocas de lluvias y niveles mínimos en las estaciones o meses más secos. Es por esto que, si la fuente hídrica se localiza en zonas con altos índices de precipitación a lo largo del año, el caudal será constante y regular, y si se localiza en zonas donde la precipitación sea irregular, sufrirá fuertes crecidas en las épocas de lluvia y bajará su nivel de agua el resto del año; este fenómeno se conoce como estiaje.

2.7 TELEDETECCION

En la actualidad los sistemas de percepción remota, se utilizan para llevar a cabo estudios relacionados con agricultura de precisión, control poblacional y deforestación,

entre otros, mediante los cuales es posible establecer estrategias que permiten optimizar los recursos naturales y poblacionales de los países. La implementación de los sistemas de percepción remota se realiza a través del empleo de sensores ópticos que se ubican en aeronaves a baja altura, como vehículos aéreos no tripulados o satélites pequeños. Las imágenes que capturan los sensores deben reconstruirse usando técnicas de procesamiento de imágenes, sin embargo, debido a los altos costos computacionales que genera ejecutar dicho procesamiento a bordo de las aeronaves, resulta una mejor opción manipular un computador en tierra para reconstruirlas. (M.Sc. Freddy Alexánder Díaz González).

2.7.1 Definición

En geociencia, se define percepción remota (RS, Remote Sensing, por su sigla en inglés), o teledetección como la técnica de capturar, tratar y analizar las imágenes de la superficie terrestre, tomadas desde el espacio. (Gutiérrez y Muñoz, 2002). Un sistema RS está compuesto por varios elementos que interactúan entre sí, la base del sistema es una fuente que genera una radiación electromagnética, que puede ser natural como el Sol o artificial como una antena emisora de ondas de radio. Esta fuente es necesaria para captar por medio de sensores, la señal reflejada de los objetos de los que se desea información; es importante resaltar que los sensores del sistema se encuentran en plataformas espaciales, como los satélites artificiales. Luego esta información es transmitida a la estación receptora, en donde se procesará según lo requiera la investigación o el objeto de estudio. (Chuvieco, 2008).

2.7.2 Sistemas de Percepción Remota

De acuerdo a la plataforma donde se ubique el sensor, se distinguen dos grandes tipos de sistemas de percepción remota (Dr. Miguel Moctesuma Flores):

- Percepción remota aérea.
- Percepción remota espacial.

2.7.2.1 Percepción Remota Aérea

Se considera percepción remota aérea aquella que se obtiene a partir de las

plataformas:

- Globo.
- Avión.
- Helicóptero.

Los sensores más usados son:

- Cámara fotográfica.
- Cámara multibanda.
- Cámara digital.
- Cámara de video.
- Barredor multiespectral.
- Barredor térmico.

(Alejandro Oscar Camara Sanchez).

2.7.2.2 Espectro Electro Magnético

El espectro electromagnético es un conjunto de ondas que comprende la transmisión de radio y televisión, la luz visible, la radiación infrarroja y ultravioleta, los rayos x y los rayos gamma. (Ford & Reedman, 2005).

La luz visible es la parte del espectro electromagnético que se encuentra entre 400 nm y 700 nm, su nombre se debe a que puede ser percibido por el ojo humano. Las diferentes partes de este espectro visible, dan la sensación de color en los materiales.

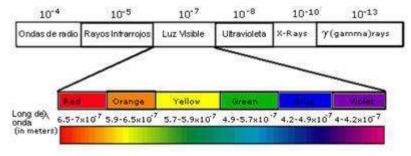


Figura N°13: Espectro Electromagnético.

Fuente: Aproximación a los sistemas de percepción remota en satélites pequeños.

2.7.4 Imagen Satelital

Una imagen satelital se puede definir como la representación visual de la información

captada por un sensor instalado a bordo de un satélite artificial. Una imagen satelital está compuesta por un conjunto de elementos de igual tamaño, denominados pixeles, los cuales se encuentran organizados en filas y columnas. Los pixeles contienen un valor numérico o numero digital, obtenido de los sensores al captar la cantidad de energía reflejada por los objetos en la superficie terrestre.

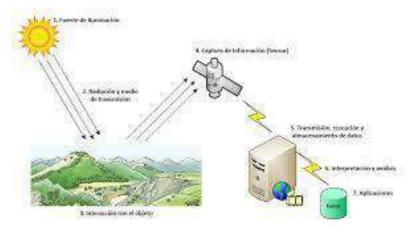


Figura N°14: Imagen Obtenida de un Sensor de cuatro bandas.

Fuente: Aproximación a los sistemas de percepción remota en satélites pequeños.

Cuando la imagen satelital es lograda por sensores multiespectrales, es contenida en una matriz de varias dimensiones, en donde el numero digital de cada pixel, se ubica en una fila, en una columna y en una banda (Pérez y Muñoz, 2006). En la anterior figura se muestra una imagen adquirida por un sensor multiespectral de cuatro bandas. (Freddy A. Días Gonzales y Otros).

2.8 PROGRAMA IBER

IBER es un software libre en español, que utiliza un modelo matemático bidimensional promediado en profundidad para el cálculo del flujo en lámina libre en aguas poco profundas, siendo una herramienta muy interesante para solucionar problemas hidráulicos. En muchas ocasiones, ofrece grandes ventajas respecto a los cálculos con modelos unidimensionales, ya sean en régimen variable o en régimen permanente, dando una mayor estabilidad y convergencia que los anteriores (Gonzales, 2017).

Figura N^a 15: Logo del programa Iber. Fuente: http://iberula.es.

Además de esto, es capaz de simular con mayor ajuste a la realidad todas aquellas situaciones en que el flujo no es exclusivamente unidireccional, ampliándose por tanto enormemente su campo de utilización (Martos, 2018).

Con IBER se puede modelizar el cálculo de flujo en ríos, definición de zonas inundables, evaluación de zonas de riesgo, y delimitación de vías de intenso desagüe, supuestos donde el flujo es bidireccional, rotura de presas, son algunas de sus aplicaciones fundamentales. Se incluye entre sus posibilidades el transporte de sedimentos y transporte de fondo junto con el flujo de marea en estuarios.

Algunos de los campos de aplicación de la versión actual de Iber son (Bladé, y otros, 2012):

- Simulación del flujo en lámina libre en cauces naturales.
- Evaluación de zonas inundables. Cálculo de las zonas de flujo preferente.
- Cálculo hidráulico de encauzamientos.
- Cálculo hidráulico de redes de canales en lámina libre.
- Cálculo de corrientes de marea en estuarios.
- Estabilidad de los sedimentos del lecho.
- Procesos de erosión y sedimentación por transporte de material granular.

El modelo lber consta de diferentes módulos de cálculo acoplados entre sí. En su primera versión se incluye un módulo hidrodinámico, un módulo de turbulencia y un módulo de

transporte de sedimentos, de granulometría uniforme, por carga de fondo y por carga en suspensión. En sucesivas versiones del modelo se irán complementando y ampliando estos módulos y se desarrollarán otros nuevos. Entre las líneas prioritarias de desarrollo de lber a corto plazo se encuentran los modelos de transporte de mezclas de sedimento, los modelos de hábitat fluvial y los modelos de calidad de aguas (Martos, 2018).

lber es una herramienta de modelización bidimensional del flujo en lámina libre en aguas poco profundas que sirve para calcular, básicamente, niveles de agua y velocidades en ríos, estuarios, llanuras de inundación. Al ser un modelo 2D significa que los resultados que ofrece son la cota de agua y la velocidad del agua en las dos direcciones horizontales del espacio (x, y).

El desarrollo de modelos bidimensionales surge de la necesidad de superar ciertas limitaciones de los modelos 1D (flujo perpendicular a la sección y un único valor de velocidad y cota de agua) (Bladé, y otros, 2012).

El modelo de Iber consta de 3 módulos de cálculo principalmente (Martos, 2018):

- Modelo hidrodinámico,
- Modelo de transporte de sedimentos
- Modelo de turbulencia.

Figura N°16: Módulos de cálculo de Iber Fuente: Martos, 2018

2.8.1. Ecuación que resuelve la Hidrodinámica

Para resolver la hidrodinámica, Iber resuelve unas ecuaciones que se deducen de dos leyes fundamentales de la física (conservación de la masa y conservación de la cantidad de movimiento). Estas leyes físicas se traducen en unas expresiones matemáticas que son las ecuaciones de Navier-Stokes. Dichas ecuaciones, gobiernan el movimiento de un fluido en las 3 dimensiones del espacio, de las cuales se deducen las ecuaciones de aguas someras (*Shallow Water Equations*), también conocidas como ecuaciones de Saint Venant en 2 dimensiones. Estas ecuaciones son las ecuaciones básicas que resuelve el módulo hidrodinámico de Iber (Gonzales, 2017).

Las ecuaciones de Saint Venant 2D se obtienen de las ecuaciones de Navier-Stokes, realizando dos pasos (Bladé, y otros, 2012):

- 1) Promedio temporal que filtra las fluctuaciones turbulentas, obteniéndose las ecuaciones de Reynolds.
- 2) Promedio en la profundidad para pasar de las ecuaciones tridimensionales a las ecuaciones bidimensionales.

Si además no se considera el efecto de las tensiones turbulentas, ya que será un módulo que no se usará en los cálculos, las ecuaciones de Saint Venant en 2D quedan de la siguiente manera.

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} &= 0 \\ \\ \frac{\partial q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2 x}{h} + g \frac{h^2}{2} \right) + \frac{\partial}{\partial y} \left(\frac{q_x q_y}{h} \right) &= gh(S_{0x} - S_{fx}) \\ \\ \frac{\partial q_y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_x q_y}{h} \right) + \frac{\partial}{\partial y} \left(\frac{q^2 y}{h} + g \frac{h^2}{2} \right) &= gh(S_{0y} - S_{fy}) \end{split}$$

Fuente: Blade 2012

En estas ecuaciones, la primera representa la ecuación de conservación de la masa;

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

mientras que las 2 siguientes representan las ecuaciones de conservación de la cantidad de movimiento en las direcciones x e y respectivamente. En dichas ecuaciones, las variables son las siguientes:

H = calado o profundidad de la lámina de agua

Qx = caudal específico (caudal por unidad de ancho) en dirección x.

Qy = caudal específico (caudal por unidad de ancho) en dirección y.

Sox = pendiente (variación en la dirección de la cota de fondo) en la dirección x.

Soy = pendiente (variación en la dirección de la cota de fondo) en la dirección y.

Sfx = pendiente motriz (disipación de la energía con el fondo) en la dirección x.

Sfy = pendiente motriz (disipación de la energía con el fondo) en la dirección y.

La primera indica que, si los caudales cambian de un punto a otro, el calado en un punto fijo deberá variar con el tiempo. Mientras tanto, las ecuaciones siguientes indican como varían los caudales en función de las fuerzas que actúan (fuerzas de inercia, fuerzas de presión, fuerzas de gravedad y fuerzas de rozamiento con los contornos).

Estas ecuaciones, son un sistema de ecuaciones en derivadas parciales que se tienen que resolver con algún método numérico. Estas ecuaciones obtendrán el caudal en todos los puntos y el calado, por lo que conociendo esto, es inmediato conocer las dos componentes horizontales de la velocidad (x e y).

2.8.2. Estructura del Programa

En el programa lber se distinguen 3 procesos fundamentales a la hora de realizar una simulación:

Pre - proceso

En este módulo se definen principalmente la geometría y datos que se necesitan a la

hora de hacer los cálculos. Una vez se haya introducido la geometría, se incluirán datos de simulación y condiciones de contorno e iniciales. Además se aplicará rugosidad y se procederá a mallar las superficies para que el programa de cálculo se encargue de resolver las ecuaciones en la malla (Martos, 2018).

- Definir la geometría. Para IBER la geometría es una representación idealizada del problema que se desea estudiar, es decir, se trata de crear un modelo geométrico a partir de puntos, líneas y superficies. Para ello, el software ha generado una jerarquía entre dichas entidades, de la siguiente manera: una superficie es una entidad superior a una línea, que a su vez es una entidad superior a un punto. Así mismo es importante tener en cuenta que una línea está formada por puntos, y una superficie está formada por líneas, escalafón que condiciona las operaciones que podemos realizar para modificar, crear y borrar entidades (García Mendivelso, 2017).
- Condiciones iniciales. En IBER el estado inicial del canal es un estado permanente.
 Dicho régimen permanente es aquel en que no existen variaciones temporales de
 velocidades y calados, aunque sí permite variaciones espaciales, es decir, puede
 haber distintos valores de las variables en las distintas secciones del canal, pero
 estos son constantes a lo largo del tiempo. En esta situación, la lámina de agua es
 constante en el tiempo y recibe el nombre de curva de remanso (Bladé, y otros,
 2012).
- Condiciones de contorno. Las mallas computacionales presentan una serie de caras que coinciden con los límites del dominio físico bajo consideración, llamado contorno. En primera medida, se debe diferenciar las condiciones iniciales de las condiciones de frontera, ya que las primeras son un requisito obligatorio para los problemas transitorios (fenómenos no estacionarios), inicializando todas las variables en todos los puntos del dominio en el instante inicial. Las condiciones iniciales dependen del tiempo, mientras que las ecuaciones de frontera dependen de una coordenada espacial. Las condiciones de contorno pueden ser numéricas y físicas (García Mendivelso, 2017).
- Mallado. La resolución de las ecuaciones de aguas someras 2D pasa por la

utilización de métodos numéricos, razón por la cual, para resolver numéricamente las ecuaciones de flujo es necesario discretizarlas en una malla bidimensional. Independientemente del esquema numérico utilizado, las mallas en que se discretizan las ecuaciones se pueden clasificar de forma general en mallas estructuradas y mallas no estructuradas (García Mendivelso, 2017).

Iber permite realizar dos tipos de mallados: malla estructurada y malla no estructurada. Una malla estructurada se realiza en canales o cauces más o menos rectilíneos, mientras que una malla no estructurada se realiza para geometrías más irregulares (Martos, 2018).

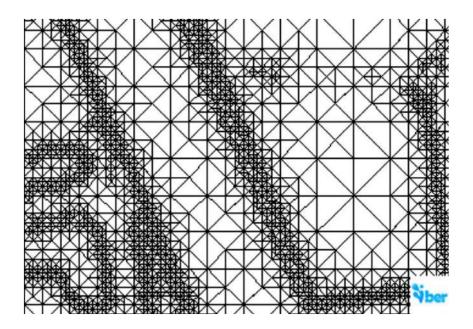


Figura N°17: Malla de cálculo formada por una red irregular de triángulos rectángulos

Fuente: Blade y otros, 2012

Posteriormente a mallar la superficie, se procede a aplicar una elevación a la malla introduciendo el terreno definido. Esto se hace aplicando directamente a la malla el archivo ASCII del terreno (Martos, 2018).

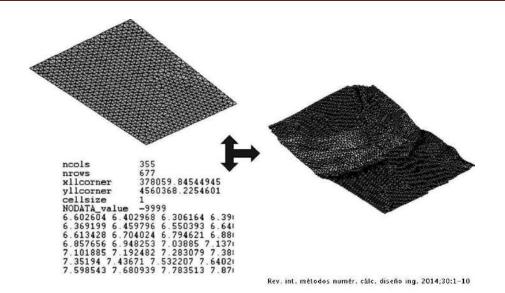


Figura N°18: Menú IBER herramientas y un ejemplo de edición de nodos de una malla Fuente: Blade y otros, 2012

Proceso

Cálculo de simulación.

En esta etapa de cálculo Iber empieza a resolver las ecuaciones en cada uno de los nodos de la malla creada, partiendo de las condiciones iniciales, de frontera y rugosidad asignadas. El software posee varias opciones para realizar la simulación, las cuales dirigirán y limitarán los cálculos del ordenador (García Mendivelso, 2017).

Post - proceso

En este módulo se obtendrán resultados de la simulación tales como mapas de calados, de velocidades, gráficas, perfiles longitudinales y transversales, hidrogramas, videos (Martos, 2018).

Visualización de resultados

IBER dispone de multitud de opciones para visualizar y analizar los resultados, personalizar los colores, las leyendas, mostrar etiquetas de valores, etc. A través de las ventanas desplegables permite acceder a los distintos grupos de resultados (o

Análisis) que se pueden visualizar en cada instante de tiempo, como áreas coloreadas, áreas coloreadas suavizadas, o vectores (García Mendivelso, 2017).

Creación de gráficos

El software además permite con los distintos botones de creación de gráficos de la barra de visualización de resultados (botones evolución de punto, gráfico de línea, gráfico punto y gráfico de borde) crear gráficos de utilidad para el análisis de resultados. Los gráficos creados de pueden ser visualizados dentro de la interfaz que ofrece el programa o se pueden exportar para abrirlos, por ejemplo, en formatos de Excel, por ejemplo (García Mendivelso, 2017).

• Exportar resultados en formato raster

IBER permite exportar la mayoría de los resultados en formato ASCII grid de Arc Info a través de los menús superiores. Para ello únicamente es necesario seleccionar un resultado, introducir el valor de un instante de tiempo y un tamaño de celda. IBER creará una carpeta dentro de la carpeta del proyecto actual (carpeta Grids of results), y dentro de la misma los archivos en formato ASCII de los resultados seleccionados en el instante de tiempo más próximo al solicitado (Bladé, y otros, 2012).

Caudal a través de una línea

Una de las ventajas actuales de IBER es que permite obtener el caudal a través de una línea. Para ello se debe crear un archivo de texto, dentro de la carpeta del proyecto actual, en el cual se especifiquen el número de líneas de control del caudal, el número de vértices de la línea y el listado de los vértices. Las opciones anteriores son las más usadas en la visualización de resultados, sin embargo, existen un sinfín de opciones para poder ver detalladamente cada una de las variables que resultan del proceso de cálculo (García Mendivelso, 2017).

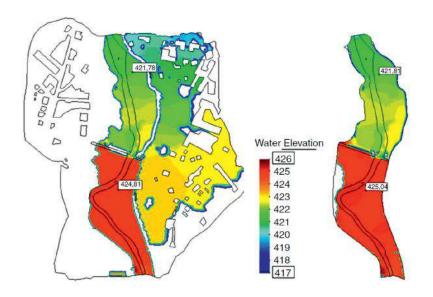


Figura N°19: Extensión de Inundación y altura de lámina de agua calculada considerando motas rebasables definidas mediante una sobreelevación del MDT (izquierda) y motas no rebasables definidas como contornos tipo pared (derecha)

Fuente: Blade, 2012

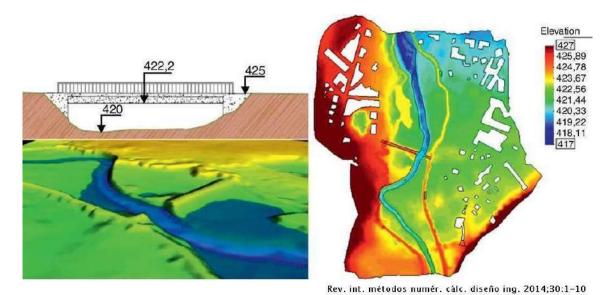


Figura N°20: Sección transversal con vista 3D del talud del puente (izquierda) y MDT utilizando el modelo numérico donde puede observarse el trazado de las motas de protección frente a Inundaciones (derecha)

Fuente: Blade, 2012

CAPITULO III

MATERIALES Y METODOS

3.1. MATERIALES

3.1.1 Imagen Satelital

DESCRIPCIÓN	MDT	RESOL UCION	ESCENA	SISTEMA	FECHA	FUENTE
MDT al conjunto de capas (generalmente raster) que representan distintas características de la superficie terrestre derivadas de una capa de elevaciones a la que se denomina Modelo Digital de Elevaciones (MDE).	MODELO DIGITAL DE ELEVACION	MDT SRTM de 12 m	DEM UTM Zona 20	RASTER	AÑO 2010	Unión Europea SERGEO MIN

Tabla Nª 5: Características de la Imagen Satelital. **Fuente**: Elaboración Propia

En el presente trabajo, se realizó diferentes técnicas de procesamiento visual y digital de imágenes satelitales (LANDSAT 8) y Sistemas de Información Geográfica, para la actualización de la Cobertura y Uso Actual de la Tierra, el análisis técnico para la Certificación de Vocación Productiva, se efectuó teniendo como área de análisis una superficie de 3572,0953 ha. Se realizó una evaluación de la información propuesta por el municipio establecidas en sistema de referencia WGS 84 y sistema de proyección UTM, evaluando la Ubicación Geográfica. Posteriormente se determinó la Cobertura y Uso Actual de la Tierra, actualizando el Mapa de Cobertura y Uso Actual de la Tierra (COBUSO 2010), utilizando técnicas de percepción remota en imágenes satelitales Landsat 8 LDCM actualizando los tipos de cobertura y usos.

3.1.2 Coberturas

- Mapa de Cobertura y Uso actual de la Tierra de Bolivia (COBUSO-2010), elaborada por el Ministerio de Desarrollo Rural y Tierras – Viceministerio de Tierras.
- Mapa de suelos de Bolivia, obtenido de la página de GeoBolivia.
- Mapa Geológico de Bolivia obtenido de la página de GeoBolivia.

3.1.3 Sofware

- ArcGIS Versión 10.4.1,
- Iber Versión 2.4.3.

3.1.4 Equipo de Computación

Una computadora con las siguientes características: ·

- Procesador Intel Core (TM), i7.
- Memoria Ram de 8 GB.
- Tarjeta de Video de 2 GB.
- Sistema operativo de 64 Bits.

3.1.5 Materiales de escritorio

- CD
- Flash drive (1GB)
- Hojas.

3.2 CRONOGRAMA DE ACTIVIDADES

El cronograma de actividades de las fases de actividades para el desarrollo de la propuesta, en base a la metodología de trabajo planteada, se muestra a continuación:

PLANEACIÓN DEL PROYECTO	Mes 1		Mes 2		Mes 3				Mes 4				Mes 5			Mes 6								
PLANEACION DEL PROTECTO	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
PREPARACIÓN DEL PROYECTO																								
Selección del sitio de trabajo																								
Reconocimiento del terreno																								
Recopilación de información																								
TRABAJO DE GABINETE																								
Estudio hidrológico hidráulico de la cuenca del río Grande																								
Empleo de ArcGis para aplicaciones de estudio hidrológico																								
Procesamiento de datos en Iber																								
PRESENTACIÓN DE RESULTADOS																								
Modelo de dinámica fluvial en Iber																								
Generación de mapa de riesgo de inundaciones para el caso de estudio																								

Tabla 6: Cronograma de Actividades **Fuente:** Elaboración propia

3.3 EL DIAGRAMA DE FLUJO

METODOLOGÍA DE TRABAJO EMPLEADA EN LA PRESENTE PROPUESTA SE

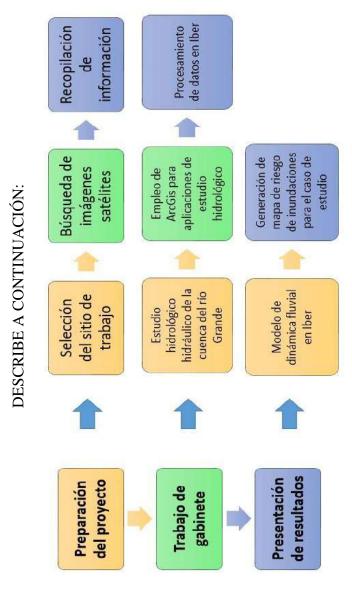


Figura N°21: Diagrama de flujo Fuente: Elaboración propia

CAPITULO IV

DESARROLLO DEL PROYECTO

La Metodología utilizada para desarrollar el presente proyecto es una metodología cuantitativa, ya teniendo datos reales que son numéricos estadísticos para presentar un modelo hidrológico e hidráulico del área de estudio del rio Grande e identificar si se ajusta a la realidad.

Para aplicar la metodología que permita generar la modelización de inundación en el Río Grande que pasa por los tres Municipios San Julián, Cuatro Cañadas y Okinawa Uno, siguió las siguientes fases:

- 1. Delimitación del área de estudio del río Grande.
- 2. Identificación de morfometría del área de estudio del río grande.
- 3. Determinación del tiempo de concentración.
- 4. Determinación de la lluvia del proyecto para un periodo de retorno de 50 años.
- 5. Generación del Modelo hidráulico de dinámica Fluvial en el Software Iber.

4.1 SELECCIÓN DEL SITIO DE TRABAJO

El proyecto se encuentra en el Departamento de Santa Cruz.

Se seleccionó como caso de estudio una zona vulnerable en el trayecto del río Grande, donde en periodo de lluvia se evidencia desborde del río e inundaciones afectando a la población circundante del sector y sus cultivos. Por lo tanto, la zona de estudio contempla el río Grande en su paso por los municipios de San Julián, Cuatro Cañadas y Okinawa Uno.

La delimitación del área de estudio del río Grande que afecta a tres Municipios, se lo realizo con el programa ArcGIS 10.4.1. Utilizando para ello un modelo digital del terreno (MDT). SRTM con resolución espacial de 12m. Apoyado en división político

administrativa, basado en la Ley Nº 339, se realizó el apoyo en cartografía nacional escala 1: 50 000, existente que cubre el área de estudio del presente proyecto. La cobertura del Río Grande que en su paso se cubre por tres Municipios así definida, será considerada como Área de Interés (AOI), que permitirá realizar el corte de las imágenes satelitales SRTM y las coberturas espaciales, para su posterior procesamiento y análisis.

4.1.1 Delimitación del Área de estudio del Río Grande y los Municipios de San Julián, Cuatro Cañadas y Okinawa Uno.

La delimitación del área de estudio del Río Grande, se lo realizo con el programa ArcGIS. mediante siguientes insumos:

- MDT SRTM de 12 m.
- Imagen de satelital Lamsat 8

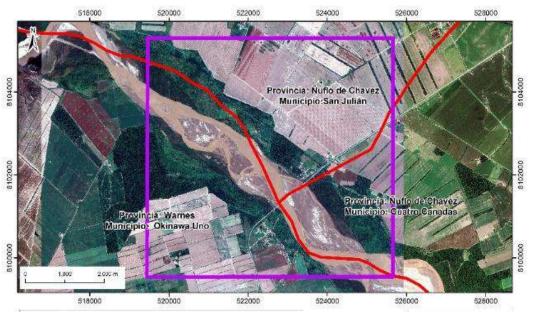


Figura Nº 22: Ubicación de la zona de estudio – Río Grande entre los tres Municipios San Julián, Cuatro Cañadas y Okinawa Uno.

Fuente: Elaboración propia.

4.1.2 Identificación de Parámetros Morfométricos

Una vez identificado el área de estudio del Río Grande, que pasa por los tres

Municipios San Julián, Cuatro Cañadas y Okinawa Uno, se identificó los parámetros morfométricos del área de estudio, obteniendo los siguientes datos:

AREA DE	LONGITUD DEL	ALTURA MAXIMA	ALTURA MINIMA	PENDIENTE
ESTUDIO	RÍO (Km)	DEL RÍO (h)	DE DEL RÍO (h)	(m/m)
Río grande	7.66	296	275	0.2

Tabla N° 7: Parámetros Morfométricos del Río Grande. **Fuente:** Elaboración Propia

4.1.3 Reconocimiento del Terreno

Para la realización del estudio topográfico en la zona de estudio, inicialmente se procedió con el reconocimiento general del área de estudio con la identificación con imágenes satelitales y google Earth se identificó carta topográfica y se digitalizo a una escala 1:5000. Se pudo evidenciar lugares de importancia para la materialización de los puntos de control en el área de estudio, las vías de acceso a las orillas del río, las poblaciones para el apoyo visual ubicación (Municipios San Julián, Cuatro Cañadas y Okinawa Uno).

Fotografía N°5: Sectores del Río Grande.

Fuente: Elaboración Propia

4.2 RECOPILACIÓN DE INFORMACIÓN

Una vez realizado la selección, el área del proyecto se pasó a la recopilación de información:

Esta actividad consiste en la obtención de gran parte de la bibliografía de la Dirección de Ordenamiento Territorial y Cuencas (DIORTECU – PLUS) de Santa Cruz como la búsqueda en sitios web oficiales de instituciones gubernamentales y no gubernamentales así también documentación de otras instituciones, imágenes satelitales etc.

4.3 ESTUDIO HIDROLÓGICO HIDRÁULICO DE LA CUENCA DEL RÍO GRANDE

Para obtener una mayor comprensión de los eventos hidrológicos que se suscitan en la Cuenca Baja del Río Grande se recurrió a informacion hidrológica ya existente.

Los hidrogramas empleados para la simulación de inundaciones en Iber, son hidrogramas ya elaborados extraídos del documento "Estudio Hidrológico – Hidráulico con el fin de delimitar zonas inundables en la cuenca baja del Río Grande" (CaryGlobal, 2008).

En este sentido, a continuación se describe la metodología para la obtención de los hidrogramas referenciales a emplearse en la presente proyecto.

Las estaciones hidrometeorológicas de medición en tiempo real referenciales son:

ESTACIONES	DEPARTAMENTO	LATITUD	LONGITUD
Abapó	Santa Cruz	18°54′11′′S	63°23′34′′W
Santa Cruz	Santa Cruz	17°49′58′′S	63°09′39′′W
Pailón	Santa Cruz	17°39′38′′S	62°43′04′′W

Tabla N°8: Estaciones Hidrometeorológicas de medición

Fuente: CaryGlobal, 2008

Los eventos de inundación más importante que marcó un nuevo escenario de inundaciones es el que se suscitó durante el año 2008, el cuál favoreció el desarrollo de nuevos puntos de desborde que descargaron un importante volumen de agua en la planicie de inundaciones. Sin embargo, la información actual no permite considerar a éste evento durante la etapa de calibración de algún modelo a ser empleado, muestra la inundación ocurrida durante el evento del año 2008.

4.3.1 Precipitación de la Cuenca del Río Grande

La precipitación en la cuenca de estudio del Río Grande, es el catalizador de las crecidas en la Cuenca Baja, es por ello que su análisis se desarrolla para poder establecer las propiedades del comportamiento hidrológico en la zona de estudio su determinación de las lluvias para diversos escenarios de crecida registrados en la estación hidrométrica de Abapó.

4.3.2 Precipitación Media a real de la Cuenca del Río Grande

Si bien la información de la cuenca alta es insuficiente para desarrollar la estimación de caudales considerando sus características físicas y las precipitaciones que se desarrollan en la misma, se determinó la precipitación media a real de la cuenca alta con el fin de establecer un criterio de evaluación de las crecidas en la Cuenca a través de la precipitación que se suscita en la misma y de la información básica que se cuenta en la estación hidrométrica de Abapó.

Para ello se seleccionaron los eventos de crecida, en los que la información de caudales instantáneos existía para la estación hidrométrica de Abapó. Los caudales máximos instantáneos registrados en la estación hidrométrica de Abapó se presentan en la Tabla

Fecha	Caudal (m3/s)
19/2/1975 18:00	3084.0
17/2/1976 18:00	4206.0
2/3/1977 18:00	2280.0
7/2/1978 12:00	3610.0
31/1/1979 17:00	10990.0
12/3/1980 12:00	910.8
18/02/1981 00.00	2611.0
06/031982 18:00	6234.0
31/01/1983 18:00	3364.0
23/01/1984 07:00	4977.0
01/02/1989 18:00	946.0
09/02/1990 23:00	766.4
16/01/1991 18:00	1634.0
14/01/2004 18:00	2240.0

16/02/2005 18:00	2423.0
27/01/2006 18:00	3366.0
13/01/2007 07:00	4855.0

Tabla №9: Caudales Máximos Instantáneos Registrados en la Estación Hidrométrica de Abapó

Fuente: CaryGlobal, 2008

Luego de haberse identificado los eventos de crecidas más importantes en la Cuenca del Río Grande, se procedió a identificar las precipitaciones que se suscitaron en las fechas anteriores a la presentación del pico máximo instantáneo de la crecida.

Las precipitaciones que se identificaron corresponden a un periodo equivalente a por lo menos 7 días antes de la fecha y hora señalada en los registros de la estación de Abapó, debido a que el tiempo de concentración de la cuenca alta es igual a 2.7 días.

Se contempló un tiempo adicional para poder considerar la influencia de las lluvias antecedentes en el Hidrograma.

Año	Pre	Precipitación media a real (mm) según periodo de duración horas											
Hidrológico	0-24	24-48	48-72	72-96	72-96 96-120 120-144		144-168						
1974 - 1975	0.17	0.42	0.63	0.48	0.49	0.96	0.61						
1975 - 1976	0.76	0.96	1.10	1.28	1.24	0.79	0.02						
1976 - 1977	0.46	0.60	0.25	0.41	0.91	0.74	0.17						
1977 - 1978	0.84	0.91	1.95	0.56	2.16	0.58	0.74						
1978 - 1979	1.58	0.63	0.35	1.73	2.19	0.84	0.10						
1981 - 1982	1.53	1.51	1.43	1.46	1.35	1.27	1.11						
1983 - 1984	0.85	1.20	1.31	1.13	1.54	1.17	0.66						

Tabla №10: Precipitación media - Área de la Cuenca del Río Grande hasta Abapó

Fuente: CaryGlobal, 2008

Se emplearon todas las estaciones pluviométricas de la cuenca y se determinó la precipitación media areal mediante los polígonos de Thiessen; a continuación, se presentan las precipitaciones medias areales de la cuenca para diferentes crecidas analizadas con datos tomados de las estaciones pluviométricas de la cuenca del Río Grande.

4.3.3 Crecidas de la Cuenca del Río Grande

Las crecidas del Río Grande, se evaluaron considerando la necesidad de estimar los Hidrogramas de Crecida de Diseño de la Cuenca del Río Grande; para ello se emplearon dos técnicas, una estadística mediante la evaluación de la información registrada en la estación hidrométrica de Abapó y otra mediante la estimación de un Hidrograma en función de la precipitación media areal determinada para la Cuenca Alta del Río Grande.

Los Hidrogramas así determinados permitirán evaluar el ingreso de agua hacia la llanura de inundación, en cuanto el cauce pierde su capacidad de conducción de los caudales decrecida, los volúmenes excedentes son descargados hacia las zonas bajas de la llanura de inundación. Además de ello se evaluarán ciertos aspectos hidrológicos como ser el tiempo de concentración y los tiempos de viaje de la onda de crecida, debido a que los mismos permiten estimar algunos criterios para la comprensión del fenómeno de crecidas y formulación de los parámetros de calibración del modelo hidráulico, y disponer de información útil para el diseño del sistema de alerta temprana.

4.3.4 Tiempo de Concentración de la Cuenca del Río Grande

El tiempo de concentración de la cuenca fue estudiado por diversos autores, y es definido como aquel tiempo en el cual una gota de agua tarda en llegar desde el punto más alejado de la cuenca hasta el punto de desembocadura definido. Su importancia estriba en la consecuente determinación del periodo de duración de la precipitación que, para el desarrollo de la crecida, como así también en la construcción de Hidrogramas en base a fórmulas empíricas.

		Cuenca				
Cuenca	Cota mínima	Cota máxima	Longitud	Pendiente	Área	Perímetro
	(m.s.n.m)	(m.s.n.m)	(km)	(m/m)	(km2)	(km)
Río grande	437	5167	530.25	0.01	53676.25	1562.48

Tabla N°11: Características Morfológicas de la Cuenca Alta del Río Grande hasta Abapó
Fuente: CaryGlobal, 2008

Las fórmulas empleadas para la determinación del tiempo de concentración son las siguientes:

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACU LAD DE TECNOLOGIA CARRERA DE GEODESIA, TOPOGRAFIA Y GEOMATICA

Temez (1978)

$$Tc = (\frac{L}{So^{0.25}})^{0.75}$$

Longitud del cauce principal (Km) L Pendiente de concentración (%) So Tiempo de concentración (hrs) Tc

California Culverts Practice (1942)

$$Tc = 0.01(\frac{L^3}{H})^{0.385}$$

Longitud del cauce principal (Km) L Desnivel de concentración (m) H Tiempo de concentración (hrs) Tc

Johnstone y Cross (1949)

$$Tc = 5 * (\frac{L}{\sqrt{So}})^{0.5}$$

Longitud del Rio principal (Km) L Pendiente del Rio (m/m) So Tiempo de concentración (hrs) Tc

Kirpich (1990)

$$Tc = 0.066 * (\frac{L}{\sqrt{So}})^{0.77}$$

Longitud del cauce principal (mi) L
Desnivel del Rio (ft)
Pendiente del Rio (ft/min) So
Tiempo de concentración (hrs) Tc

Pérez Monteagudo (1985)

$$Tc = \left(\frac{L}{V_R}\right) = \frac{L}{72*\left(\frac{A*E}{L}\right)^{0.6}}$$

Longitud del cauce principal (mi) L

Diferencia de cotas (ft)
Pendiente del Rio (ft/min) So

Tiempo de concentración (hrs) Tc

California

$$Tc = (\frac{0.871 * L^3}{H})^{0.385}$$

Longitud del cauce principal (Km) L

Desnivel del Rio (m) H

Tiempo de concentración (hrs) Tc

U.S.C.E

$$Tc = 0.3 * (\frac{L}{\sqrt[4]{J}})^{0.77}$$

Longitud del cauce principal (Km) L Pendiente del Rio (m/m) So

Tiempo de concentración (hrs) Tc

El tiempo de concentración promedio, estimado a través de las anteriores fórmulas, se presenta en la Tabla

	Tiempo	Tiempo	Tiempo de	Tiem			Caudal	Intervalo	Tiemp
0	de	de	duración	ро	Tiempo	Área	pico	de	o de
Cuenca	concentra	retardo	de la lluvia	pico	base (h)	(Km2)	(m3/s/c	tiempo	recesió
	ción (h)	(h)	efectiva (h)	(h)			m)	(h)	n (h)
Río	64.79	38.88	168.00	122.8	328.08	53676.	908.61	18.00	205.20
Grande	04.79	30.00	100.00	8	320.00	25	900.01	10.00	205.20

Tabla N°12: Tiempo de Concentración de la Cuenca Alta del Río Grande
Fuente: CaryGlobal, 2008

4.3.5 Hidrograma de Diseño de la Cuenca del Río Grande

El Hidrograma de diseño de la Cuenca del Río Grande se determinó empleando dos metodologías para realizar una comparación:

A) La primera metodología consiste en la construcción de un hidrograma compuesto empleando el Hidrograma Unitario Sintético del Servicio de Conservación de Suelos de los Estados Unidos (SCS); ésta metodología permite transformar la lluvia en caudal. Para ello se realizaron las estimaciones de los parámetros requeridos por la metodología, y que se presentan en la Tabla N°12.

Cuenca	Tiempo de concentración (h)	Tiempo de concentración (días)
Rio grande	64.79	2.70

Tabla N°12: Hidrograma Unitario Sintético SCS de la Cuenca Alta del Río Grande Fuente: CaryGlobal, 2008.

Con los parámetros presentados en la tabla anterior y los valores de la precipitacion media areal presentada en la Tabla N°11, se han construido los Hidrogramas compuestos de la Cuenca del Río Grande y se presentan en el siguiente gráfico:

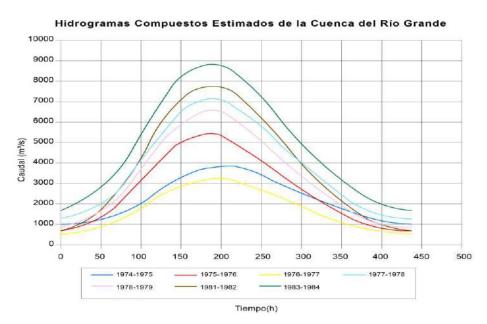


Figura N°23: Hidrogramas Compuestos Estimados de la Cuenca del Río Grande
Fuente: CarvGlobal. 2008

Comparando los valores de los caudales máximos instantáneos de la Tabla con los obtenidos mediante esta metodología se observa que existen diferencias notables. Esto puede ser explicado por el empleo de la precipitación total y no así de la precipitación efectiva, por la carencia de información necesaria de la Cuenca Alta, y además por el tiempo adoptado de duración de la lluvia de 24 horas; también se puede establecer la importancia de realizar un análisis y crítica detallado de la información de las estaciones hidrométricas y pluviométricas de la cuenca que queda fuera del alcance del presente estudio, porque según el análisis realizado aparece un importante evento que correspondeal año hidrológico 1983-1984 que no fue evidente en la estación hidrométrica de Abapó. El año hidrológico 1983-1984 es un referente regional por las grandes inundaciones provocadas en diversas cuencas.

B) Debido a que una metodología de transformación lluvia – caudal no puede ser aplicable en este momento de una manera consistente, se optó por realizar la construcción de hidrogramas relativos tipos en función de la información básica disponible en caudales instantáneos registrados en la estación hidrométrica de Abapó. La ventaja de la metodología de los hidrogramas relativos es que tenemos una

aproximación del comportamiento del ingreso de los volúmenes de crecida en base a eventos reales que se suscitaron en la estación hidrométrica de Abapó, lo cual representa una huella digital de las crecidas de la cuenca, y permitirían mejores estimaciones de las zonas de inundación.

Para ello se eligieron los tres eventos de crecida más importantes y se construyeron los hidrogramas relativos de los mismos. Los hidrogramas relativos consisten de trazar una curva que en el eje de las abscisas tiene los valores de la relación del tiempo transcurrido en función del tiempo base del hidrograma, mientras que en el eje de las ordenadas posee los valores de la relación del caudal en función del caudal pico. De esta manera, para las crecidas del 17 de febrero de 1976, 31 de enero de 1979 y 6 de marzo de 1982 se construyeron los siguientes hidrogramas relativos.

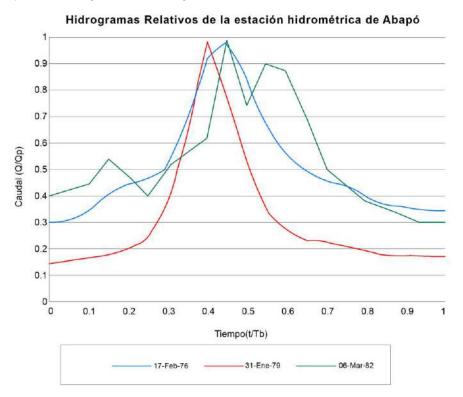


Figura N°24: Hidrogramas Relativos de la estación hidrométrica de Abapó
Fuente: CaryGlobal, 2008

Los Hidrogramas relativos presentados tienen parámetros que los definen en su magnitud absoluta y se presentan en la siguiente tabla N°14

63

Crecida	Tiempo base (días)	Caudal pico (m3/s)
17/02/1976	6.75	4206
31/01/1979	6.00	10990
06/03/1982	7.25	6234

Tabla N°14: Parámetros de los eventos de crecida para la construcción de los Hidrogramas Relativos de Abapó **Fuente:** CaryGlobal, 2008

Se observa que las crecidas importantes del Río Grande tuvieron una duración de su tiempo base aproximadamente igual, con un valor de 6.67 días en promedio, y se adopta tal valor como referencia para posteriormente construir hidrogramas de crecida de diseño. De los anteriores hidrogramas relativos presentados, se construyó un Hidrograma Relativo promedio y que se muestra en la siguiente tabla y figura N°24:

t/Tb	Q/Qp
0.00	0.29
0.05	0.30
0.10	0.32
0.15	0.38
0.20	0.38
0.25	0.37
0.30	0.47
0.35	0.63
0.40	0.84
0.45	1.00
0.50	0.70
0.55	0.64
0.60	0.57
0.65	0.48
0.70	0.40
0.75	0.37
0.80	0.33
0.85	0.30
0.90	0.29
0.95	0.28

Tabla N°15: Parámetros de los eventos de crecida para la construcción de los Hidrogramas Relativos de Abapó **Fuente:** CaryGlobal, 2008

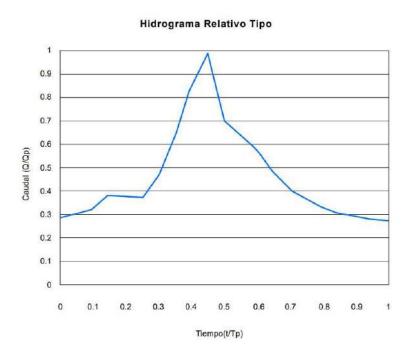


Figura N°25: Hidrograma Relativo Tipo de la Cuenca del Río Grande
Fuente: CaryGlobal, 2008

El Hidrograma Relativo Tipo presentado, sirve de base para la construcción de los Hidrogramas de Crecida de Diseño de la Cuenca del Río Grande.

Estos Hidrogramas se construyen únicamente multiplicando los valores del hidrograma relativo tipo por los valores de los caudales máximos instantáneos probabilísticos, y también por el valor del tiempo base adoptado de 6.67 días.

Se presentan los Hidrogramas de Crecida de Diseño en la tabla y figura siguientes:

Tier	npo	Caudal (m3/s) para diferentes periodos de retorno (años)				
Días	Horas	5	10	50	100	500
0.0	0.0	1509	1927	2846	3235	4133
0.3	8.0	1580	2017	2980	3387	4327
0.7	16.0	1686	2153	3181	3615	4619

1.0	24.0	1985	2535	3745	4256	5438
1.3	32.0	1967	2511	3709	4216	5386
1.7	40.0	1930	2465	3641	4139	5288
2.0	48.0	2443	3119	4608	5237	6691
2.3	56.0	3307	4222	6237	7089	9058
2.7	64.0	4404	5623	8307	9441	12063
3.0	72.0	5218	6663	9842	11186	14292
3.3	80.0	3667	4682	6917	7862	10044
3.7	88.0	3340	4265	6301	7161	9149
4.0	96.0	2985	3812	5631	6400	8177
4.3	104.1	2492	3182	4701	5343	6826
4.7	112.1	2098	2679	3958	4498	5748
5.0	120.1	1922	2454	3625	4120	5264
5.3	128.1	1710	2184	3226	3666	4684
5.7	136.1	1575	2011	2971	3377	4314
6.0	144.1	1512	1930	2851	3241	4141
6.3	152.1	1443	1843	2722	3094	3953
6.7	160.1	1423	1817	2684	3051	3898

Tabla N°16: Hidrogramas de Crecida de Diseño del Río Grande **Fuente:** CaryGlobal, 2008

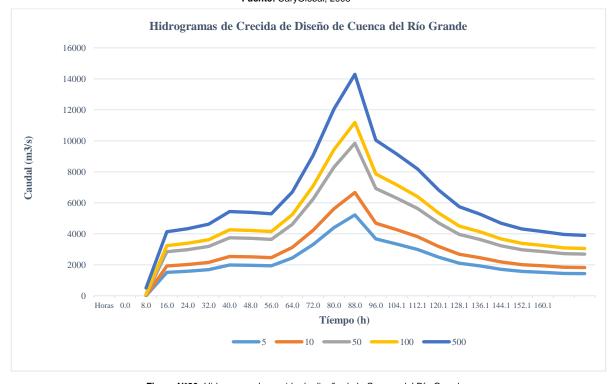


Figura N°26: Hidrograma de crecida de diseño de la Cuenca del Río Grande

Postulante: Karina N Fuente: CaryGlobal, 2008 65

Este Hidrograma será empleado en la modelación hidráulica de la Cuenca del Río Grande, en su paso por los municipios San Julián, Cuatro Cañadas y Okinawa Uno.

Considerando para el caso de estudio un periodo de 50 años y un caudal promedio de 10.000 m³/seg.

4.4 MAPA DE PENDIENTES DEL AREA DE ESTUDIO

A partir del MDT (Modelo Digital del Terreno), SRTM de 12 m., se generó el mapa de pendientes expresado en %.

La cobertura de pendientes proporciona una aproximación de la topografía del terreno, siendo la pendiente determinante para las velocidades de los caudales en el cauce principal del Rio Grande. Mientras que en las partes bajas y altas se observa pendientes de 0 a 15 %

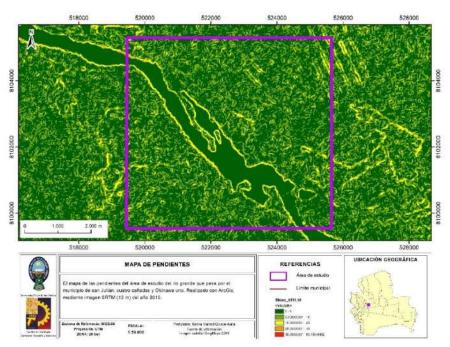


Figura № 27: Mapa de Pendientes del área de estudio del Rio Grande
Fuente: Elaboración Propia

Se puede observar que en el área de estudio la pendiente es de 02%.

4.5 MAPA DE COBERTURA Y USO ACTUAL DE LA TIERRA (COBUSO) DE AREA DE ESTUDIO.

El Mapa de cobertura y uso actual de la tierra de Bolivia (COBUSO-2010), es un instrumento técnico que describe en términos de cobertura de la tierra, todos los recursos existentes en nuestro País a escala Departamental y nacional, identificando el uso actual por cada categoría de cobertura. Elaborado por la Unidad Técnica Nacional de Información de la Tierra - UTNIT en base a imágenes de satélite Landsat 8 TM de alcance medio, correspondientes al periodo 2006 - 2010 haciendo un total de 60 escenas completas sobre las que se aplicaron técnicas de análisis de imágenes generando la cartografía final el 2011 a escala 1:1000000, aplicando el sistema de Clasificación de Cobertura de la Tierra FAO – 2008. El propósito del COBUSO 2010, es contribuir a la determinación y aplicación de Página 115 estrategias para garantizar la seguridad y soberanía alimentaria, puesto que muestra todas las áreas cultivadas y cultivables, promoviendo el respeto a nuestra madre tierra e identificando los recursos existentes en nuestro País como: bosques, pastizales, humedales, cultivos, salares y lagos. En la presente investigación el COBUSO nos sirve para la identificación del Número de Curva (CN), de la cuenca del Rio Grande.

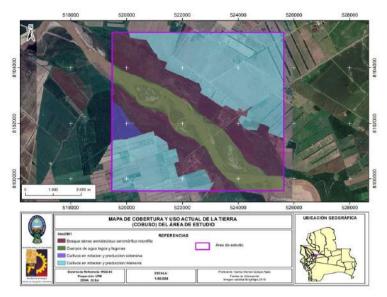


Figura Nº 28: Mapa de Cobertura y Uso de la Tierra del área de estudio. Fuente: UTNIT – Viceministerio de Tierras.

68

4.6 PROCESAMIENTO DE DATOS EN IBER

Para la realización de la modelización se realizaron varias pruebas inicialmente, y en el presente proyecto se realiza la explicación de la parte del área del canal donde se evidencia un posible desborde.

Una vez delimitada el área de estudio, en el software lber se crea el proyecto, abrimos la delimitación del área de estudio, e importamos la geometría seguimos los siguientes pasos:

Posteriormente se introdujo los datos al software Iber para la simulación correspondiente. Posteriormente se realiza la colapsó de la cobertura, que es como realizar el control topológico. Transformamos nuestro DEM (Modelo Digital del Terreno), el cual está en formato tiff a el formato ASCII, esto para que el programa Iber pueda leerlo.

Pre – proceso Geometría empleada

La geometría que se ha empleado para realizar los cálculos, es un modelo digital del terreno (MDT). La geometría importada al programa lber sobre la geometría se realizó en formato shapefile, procesada previamente en ArcGis, como se muestra en la siguiente figura:

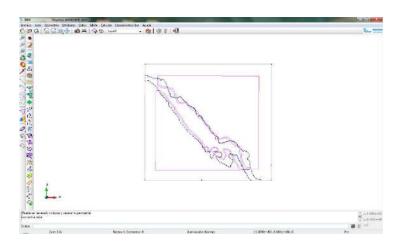


Figura N°29: Shapefie – Geometría del caso de estudio

Fuente: Elaboración propia

Condiciones iniciales

Para definir la rugosidad al terreno, es preciso observar los usos del suelo y una vista aérea de la cuenca. Las condiciones iniciales referido al uso de suelo para el caso de estudio están en función a los datos descritos en la siguiente tabla:

RUGOSIDAD – USO DEL SUELO				
Uso de suelo Coeficiente de manning				
Río	0.025			
Pradera	0.05			
Vegetación dispersa	0.08			

Tabla N°17: Uso de suelo **Fuente:** Elaboración propia

Una vez ingresados los datos de uso de suelo en la geometría empleada para el caso de estudio, se puede visualizar la siguiente figura:

Uso de suelo identificado con el programa arc gis 10.4

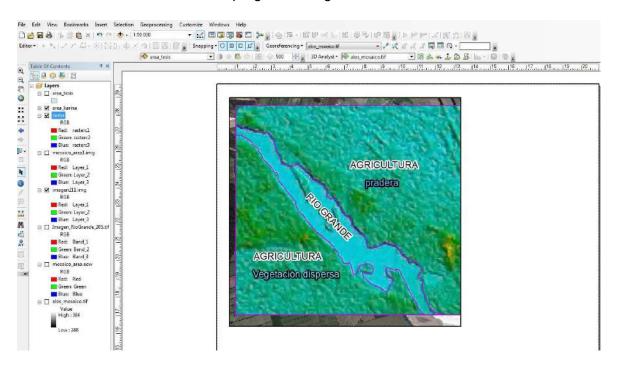


Figura N°30: Uso de suelo Fuente: Elaboración propia

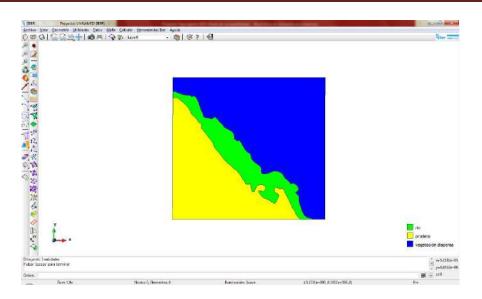


Figura N°31: Uso de suelo con el programa iber Fuente: Elaboración propia

Condiciones de contorno

Las condiciones hidrodinámicas – condiciones de contorno para el caso de estudio, definirán la dirección del río, contorno de entrada y salida, bajo los siguientes datos:

HIDRODINÁMICA – CONDICIONES DE CONTORNO				
Enti	rada			
Entrada	Caudal Total			
Régimen	Crítico/Subcrítico			
Cauda	al Total			
t (s)	Q (m3/s)			
0.0	10.000			
Entrada Num	1			
Sal	lida			
Condición del Flujo	Subcrítico			
Tipo	Vertedero			
Coeficiente Vertedero	1.6			
Vertedero	Altura			
Altura vertedero (m)	0.0			
Salida Número	1			

Tabla N°18: Hidrodinámica – Condiciones de Contorno

Fuente: Elaboración propia

La introducción de estos datos, se realizará como se muestra en la siguiente figura:

Figura N°32: Condiciones de contorno Fuente: Elaboración propia

Una vez definidas las condiciones de entrada se procedió a asignar el contorno de entrada en el shapefile, se realiza el mismo procedimiento para la salida.

Mallado

Iber permite hacer mallados de dos clases: malla estructurada y malla no-estructurada. Una malla estructurada se realiza en canales o cauces más o menos rectilíneos, mientras que una malla no-estructurada se realiza para geometrías más irregulares. Es por ello que en este caso se va a realizar una malla no estructurada debido a la irregularidad que presenta el cauce de rio objeto de estudio.

Se definirán elementos triangulares, cuyo tamaño de elemento se definirá lo más fino posible. Se ha procedido a hacer un estudio de sensibilidad del modelo cambiando los tamaños de malla y se ha llegado a la conclusión de que si la malla es muy fina, el tiempo de cómputo es mayor que si no lo es. Además, los resultados no distan muchos unos de otros si se usa una malla fina u otra algo más gruesa.

Por lo tanto se efectuó el mallado correspondiente, bajo los siguientes datos:

Malla				
Uso de suelo Tamaño				
Río	15			
Pradera	30			
Vegetación dispersa	50			

Tabla N°19: Datos para mallado **Fuente:** Elaboración propia

Ingresados estos datos se procede a generar la malla, obteniendo los siguientes resultados:

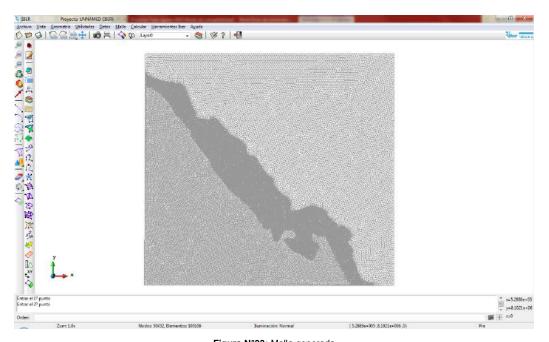


Figura N°33: Malla generada
Fuente: Elaboración propia

Elevación

La elevación del terreno se obtuvo a partir del modelo digital de terreno (DEM), ya teniendo el área de estudio río Grande en su paso por los municipios San Julián, Cuatro Cañadas y Okinawa Uno. La elevación del terreno es la parte más importante para la obtención de datos.

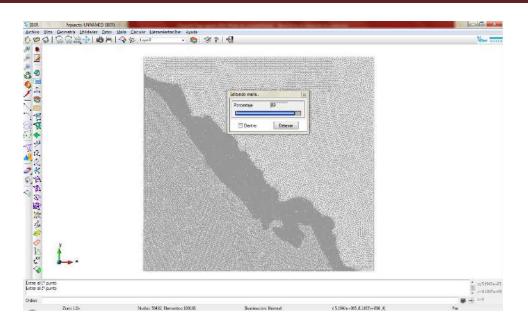


Figura N°34: Importación de datos ASCII para elevación del terreno Fuente: Elaboración propia

Proceso

Para el etapa del proceso o cálculo de la simulación se ingresaron los siguientes datos:

PROCESO						
Parámetros de tiempo						
Simulación	Nueva					
Instante inicial (s)	0					
Tiempo máximo de simulación (s)	14400					
Intervalo de Resultados (s)	30					
Genera	General					
Análisis	2D					
Número de procesadores	3					
Esquema Numérico	Primer Orden (Rápido)					
CFL	0.45					
Límite Seco – Mojado (m)	0.01					
Método de Secado	Por Defecto					

Tabla N°20: Datos ingresados para simulación

Fuente: Elaboración propia

Asimismo, los resultados requeridos seleccionados son:

- Calado
- Caudal Específico
- Número de Froude
- Mínima velocidad
- Máxima Cota de Agua

- Velocidad
- Cota del Agua
- Máximo calado
- Máximo caudal específico

Una vez ingresados todos los datos, se procedió a calcular, durante el proceso de cálculo se puede visualizar la información del proceso como se muestra en la siguiente figura:

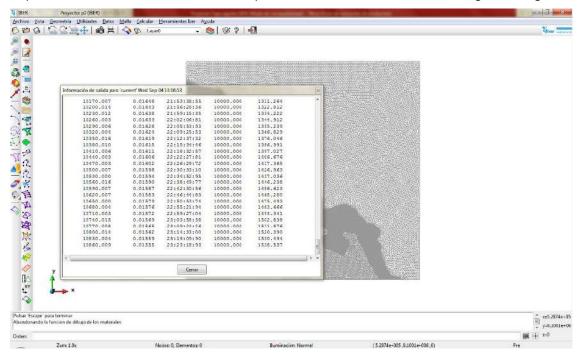


Figura N°35: Información del proceso de cálculo Fuente: Elaboración propia

Post - proceso

Una vez se haya ejecutado el proceso de cálculo se podrán visualizar los resultados obtenidos, mismos que se describirán en el siguiente Capítulo V, Resultados del Proyecto.

CAPITULO V

RESULTADOS

5.1 RESULTADOS OBTENIDOS EN IBER

Una vez se haya realizado la simulación, el módulo de post – proceso de Iber permite visualizar los resultados obtenidos tras el cálculo. Este módulo permite ver mapas de calados, de velocidades, vectores de velocidad, gráfica, perfiles transversales y longitudinales.

A continuación, se muestran los resultados que se han obtenido en su máximo. El (máximo caudal) se alcanza para un instante de simulación de 14.400 segundos (4 horas). Además, se ha realizado la simulación como se ha mencionado anteriormente, con la lluvia para un periodo de retorno de 50 años, de modo que se puede visualizar la llanura de inundación. Por lo tanto, se obtendrán los siguientes resultados:

- Calados
- Velocidades
- Caudal Especifico por unidad lineal (m²/s)
- Cota de agua
- Perfiles longitudinales y transversales
- Mapa de riesgos de inundación

5.1.1 Calados

Los calados máximos con un valor de probabilidad asociado, en términos de periodo de retorno, derivados de la modelación hidrológica e hidráulica bidimensional. Estos mapas indican la peligrosidad de la zona estudiada frente a eventos hidrometeorológicos extremos, que son de mucha importancia para evitar posibles desastres posteriormente.

- Reúne los calados máximos que han ocurrido en cada elemento de cálculo hasta ese instante de tiempo.
- Independientemente del momento de ocurrencia.
- En cada elemento se tiene el calado máximo.

El calado obtenido a partir de la simulación se muestra a continuación:

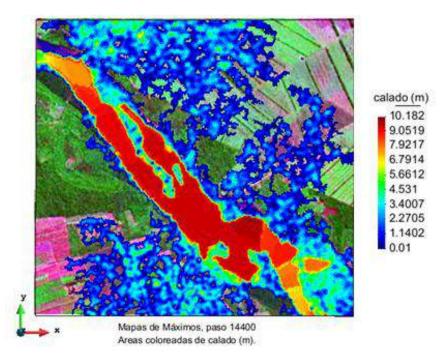


Figura N°36: Obtención de Calados Fuente: Elaboración propia

De los resultados obtenidos con el programa lber se puede observar que existe un desborde dentro del área de estudio, de acuerdo al caudal para un periodo de retorno de 50 años

5.1.2 Velocidades

En el mapa de velocidades se puede apreciar las zonas con mayores y menores velocidades del caso de estudio. Los resultados obtenidos se muestran a continuación:

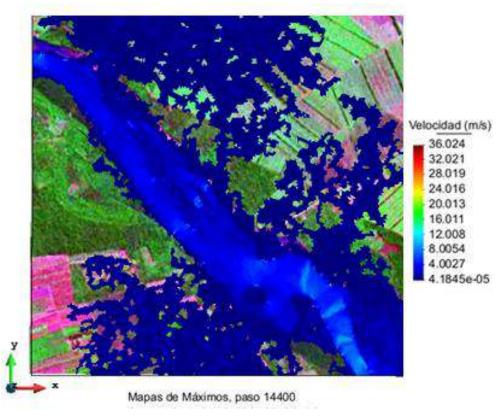


Figura N°37: Velocidades (m/s), en Iber. Fuente: Elaboración propia

5.1.3 Caudal Especifico

Se obtiene los caudales por unidad de longitud que se presenta en cada punto del caso de estudio, río Grande en su paso por los municipios San Julián, Cuatro Cañadas y Okinawa Uno, la zona con mayor caudal específico se sitúa en zonas donde se alcanzan los mayores calados (mayor sección llena).

Los caudales obtenidos para el caso de estudio se muestran a continuación:

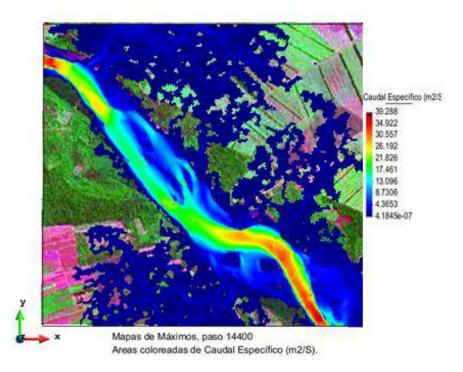
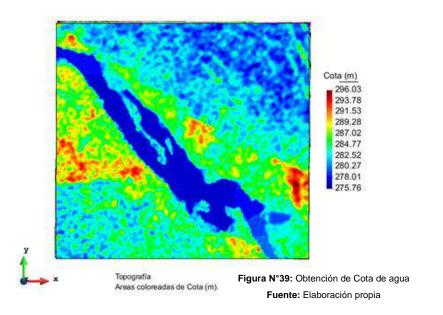



Figura N°38: Obtención de caudales por unidad lineal
Fuente: Elaboración propia

5.1.4 Cota de Agua

Asimismo, se pudo obtener la cota de agua donde por colores se diferencian las cotas de la zona de estudio. Para el caso de estudio se obtuvo

5.1.5 Perfiles Longitudinales y Transversales

El perfil longitudinal de un río es la representación gráfica de la línea que traza un curso desde su nacimiento hasta su nivel de base, y a lo largo de él se aprecian las diferentes competencias del flujo. Mientras mayor competencia posea el caudal, mayor capacidad de erosión y transporte poseerá el escurrimiento. En este caso, se trazó el perfil longitudinal de principio a fin del caso de estudio.

Se realizó un corte de sección longitudinal, como se muestra a continuación

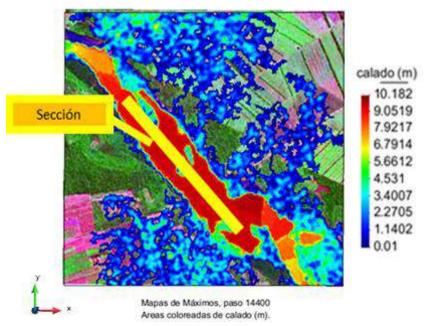


Figura 40: Secciones longitudinales

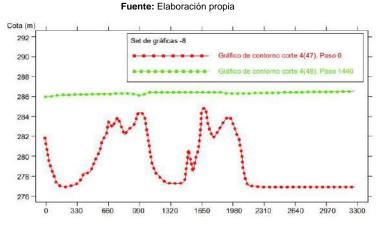


Figura N°41: Secciones longitudinales

Fuente: Elaboración propia

5.1.6 Perfiles Transversales.

Se realizó perfiles transversales, en dos lugares diferentes, a lo largo del tramo en área de estudio, identificando de este modo el comportamiento de la lámina de agua a lo largo de su recorrido.

Se genero dos cortes de secciones transversales como se muestra a continuación:

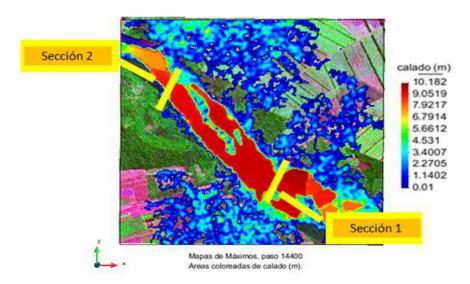


Figura N°42: Secciones transversales
Fuente: Elaboración propia

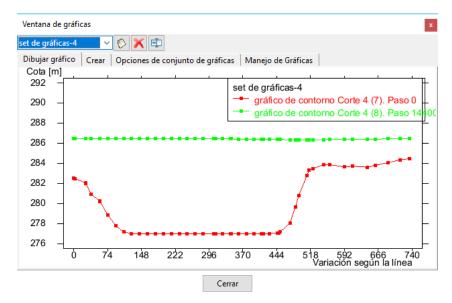
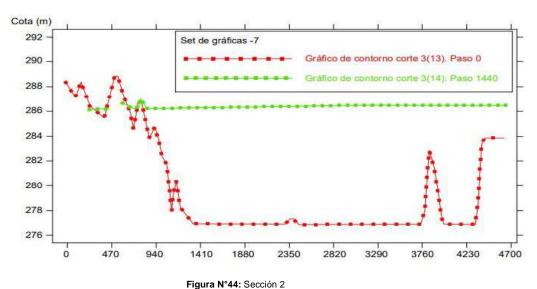



Figura N°43: Sección 1
Fuente: Elaboración propia

Fuente: Elaboración propia

De los perfiles transversales se puede identificar que en el perfil transversal 2, la cota de agua está a punto sobrepasada la canalización.

5.2 ANÁLISIS DE LA INUNDACIÓN.

La modelización hidráulica realizada en el programa Iber se evidencia que el Río grande que pasa por los Municipios San Julián, Cuatro Cañadas y Okinawa Uno se desborda, tomando en cuenta que el programa Iber permite bajar los resultados en formato raster de un determinado instante, y el instante que se describe actualmente es el último instante de la simulación, existe un instante dentro de la simulación en el que si se desborda el río.

5.3 CUANTIFICACIÓN DEL MODELADO DE LA INUNDACIÓN

Se cuantifico la Inundación, donde se muestra el desborde del Rio Grande.

Que se realizó el modelado con el programa Iber dado por la complejidad del programa podemos evidenciar que la superficie total es 3573.691 Ha. Donde la afectación se pudo sacar en porcentaje donde se muestra en la tabla N°21.

N°	Descripción	Superficie (Ha)	Porcentaje	Inundación 100%
1	Cuerpos de agua lagos y lagunas	647,270	18,11%	0%
2	Cultivos en rotación y producción intensiva (Izquierdo)	528,905	14,80%	10%
3	Cultivos en rotación y producción intensiva (Derecho)	1197,772	33,52%	25%
4	Cultivos en rotación y producción extensiva	89,104	2,49%	0%
5	Bosque denso semidecíduo xeromórfico micrófilo (Izquierdo)	402,950	11,28%	13%
6	Bosque denso semidecíduo xeromórfico micrófilo (Derecho)	707,691	19,80%	24%
	SUPERFICIE TOTAL	3573,691	100,00%	72%

Tabla N°21: Datos de simulación **Fuente:** Elaboración propia

5.4 MEDIDAS DE PREVENCIÓN DE INUNDACIÓN

- Los impactos socioeconómicos causados por los proyectos (incluyendo los cambios que se producen en la agricultura, el pastoreo y la pesca, como resultado del proyecto).
- El uso rural y urbano de la tierra (el uso controlado e incontrolado de la tierra en la zona aluvial y las cuencas hidrográficas del río).
- Los estudios de impacto ambiental de toda la infraestructura construida en la cuenca hidrográfica, así como sobre el monitoreo de las medidas de mitigación.
- Los ordenamientos territoriales y ecológicos de la cuenca hidrográfica.
- Datos sobre los cambios en el drenaje y los otros factores que intervienen en el flujo de las aguas provenientes de las lluvias.

- Los efectos de las medidas tomadas para controlar las inundaciones sobre la pesca de río, sobre la vegetación de la zona aluvial; sobre las tierras húmedas, y los hábitats y poblaciones de la fauna.
- Datos sobre el derrame de ríos (incluyendo registros anuales máximos) y del almacenamiento y regulación de los caudales de los ríos.
- Registros del caudal de los ríos, y en particular, de sus variaciones durante eventos climáticos extremos.
- Cuando no estén disponibles los datos estadísticos sobre los caudales máximos y la extensión de las inundaciones para los diferentes caudales, se puede recolectar la información histórica de los residentes y de los archivos locales, y analizar la geología de los depósitos aluviales, para ayudar a determinar el período y la extensión de las inundaciones del área.
- Mapas, en escala 1:100.000 o mayor, indicando las áreas susceptibles a inundación. Estos mapas son útiles para preparar los planes de uso del suelo y los reglamentos correspondientes.

Fotografía N°6: Medidas de Inundación Fuente: https://www.pinterest.com/

CAPITULO VI

CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- Se definió el área de trabajo, considerando una zona vulnerable del río Grande donde se tiene referencias de inundaciones anteriores, el área de estudio comprende el río Grande en su paso por los municipios de San Julián, Cuatro Cañadas y Okinawa Uno.
- Se describió las características de los suelos del entorno del caso de estudio, donde se diferenciaron dos zonas, a la derecha del río una zona poblada con vegetación dispersa mientras que a la izquierda del río se evidencia una zona de cultivo y vegetación. Por lo que para el uso de suelos en lber se consideró a la zona de la derecha del río como vegetación dispersa, y a la izquierda del río pradera.
- En la cuenca del río Grande se distinguen diferencias morfológicas entre la parte alta, media y baja, ingresando en la parte baja en dirección noreste como frontera entre Chuquisaca Cochabamba y Santa Cruz convirtiéndose en la parte alta en un río anastomosado; se distingue en la parte alta extremos climáticos que afectan la productividad como sequías y heladas, mientras que en la parte baja se tienen procesos de inundación, zona a la que pertenece el caso de estudio.
- Se definió el caudal de crecida máximo para un periodo de 50 años, mediante la simulación del proceso en Iber.
- A partir de la simulación en Iber se obtuvo un modelo de dinámica fluvial que contempla la obtención de mapa de calados, de velocidades, topografía del área de estudio, perfil longitudinal y transversal.
- Se elaboró un mapa de riesgo de inundaciones para el río Grande en su paso por los municipios de San Julián, Cuatro Cañadas y Okinawa Uno del departamento de Santa Cruz, cartografía que puede ser elevada a conocimiento público y de autoridades

85

competentes del área para la toma de decisiones en cuanto a planificación territorial y prevención en la zona de estudio.

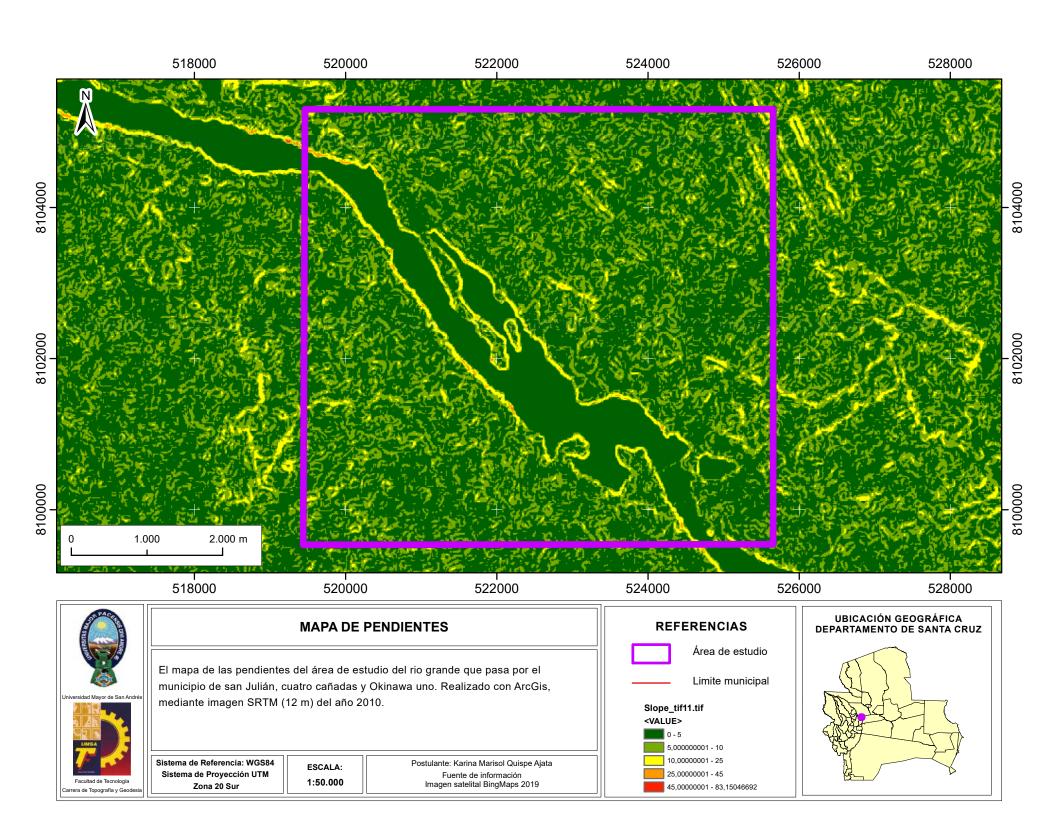
6.2 RECOMENDACIONES

- Se recomienda evaluar otras zonas vulnerables con riesgo de inundación a nivel nacional, para establecer un estudio similar al de la presente propuesta y en base a los resultados se puedan formular acciones de prevención en coordinación con autoridades competentes en el área.
- Se recomienda delimitar la zona de riesgo de manera apropiada, en función a antecedentes, estudio topográfico, verificación en campo, recopilación bibliográfica, encuestas (si corresponde), entre otros; de modo que los datos que se introduzcan al software sean fiables y permitan obtener resultados confiables.
- Datos actuales cuantificado del año 2021 en Bolivia sobre las inundaciones que pasaron y dignificados.

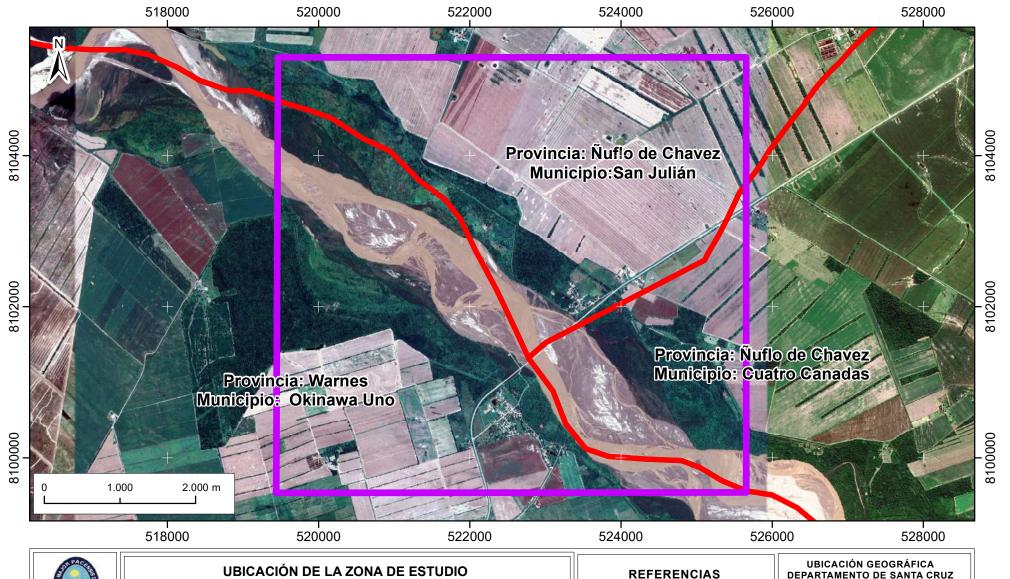
REPORTE NACIONAL POR MUNICIPIOS ENTRE EL 01 DE ENERO AL 09 DE MARZO DEL 2021						
Total de Municipios afectados	Familias afectadas	Familias damnificadas	Hectáreas afectadas	Viviendas afectadas	Fallecid@s	Desaparecid@s
96	54.114	20.961	327.309	1.762	9	1

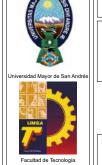
Figura N°45: Reporte Nacional 2021
Fuente: https://fundacionsolon.org/

BIBLIOGRAFÍA

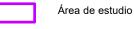

- ABI, A. B. (25 de febrero de 2019). Declaran alerta roja por posible desborde de ríos en el trópico. Los Tiempos.
- ALNAP, L. -A.-P. (2010). Inundaciones Aprendiendo de anteriores operaciones de emergencia y recuperación. Madrid España: Instituto de Estudios sobre Conflictos y Acción Humanitaria (IECAH).
- ANEAS, S. (2000). Riesgos y peligros: una visión desde la Geografía. Scripta Nova.
 Barcelona: Universidad de Barcelona.
- AYALA CARCEDO, F. J. (2002). Riesgos naturales. España: Ariel.
- BANCO MUNDIAL, D. d. (2010). Construyendo herramientas para evaluar vulnerabilidades y estrategias de adaptación al cambio climático en el sector de recursos hídricos de Bolivia.
 Estado Plurinacional de Bolivia.
- BARÓN, J. P. (2012). Análisis técnico y económico para la determinación del periodo de retorno óptimo de diseño para mitigación de inundaciones mediante herramientas computacionales. Bogotá Colombia: Trabajo de Grado.
- BECK, U. (2002). La sociedad del riesgo global . Madrid: Siglo XXI.
- BLADÉ, E., CEA, L., Corestein, G., Escolano, E., Puertas, J., Vasquez-Cendón, E., . . .
 Coll, A. (2012). Iber: herramienta de simulación numérica del flujo en ríos. Barcelona:
 Revista Internacional de Métodos Numéricos para cálculo y diseño en ingeniería.
- CARDONA, O. D. (1991). Evaluación de la amenaza, la vulnerabilidad y el riesgo. "Taller regional de capacitación para la administración de desastres". Bogotá Colombia: NAD/PNUD/OPS/UNDRO.
- CARYGLOBAL, S. (2008). Estudio hidrológico hidráulico con el fin de delimitar zonas inundables en la cuenca baja del río Grande. Santa Cruz de la Sierra: Acción contra el hambre.
- CELEMÍN, J. P. (2009). Elaboración de cartografía de riesgo de inundaciones y propuesta

- de mejora de conservacion en la cuenca y reserva MAB de mar Chiquita. Argentina: Universidad Internacional de Andalucia.
- CENAPRED, C. N. (2012). Inundaciones. México: Secretaría de Seguridad y Protección Ciudadana.
- CENAPRED, P. r. (2004). Fasciículo de Inundaciones. México: Centro Nacional de Prevención de Desastres.
- COLQUE, & ASOCIADOS, S. (2000). Estudio expedito de inundaciones del Río Grande en las zonas de San Julian y Berlin. Diseño de Obras de Emergencia y TDR´s para estudios futuros. Santa Cruz, Bolivia.
- CRICHTON, D. (1999). The Risk Triangle. Londres: Natural Disaster Managment, Tudor Rose.
- CRUZ, B. J. (2009). Formulación del riesgo conjunto, inundación sequía, bajo un esquema probabilístico, aplicado en la región hidrológica nazas-aguanaval (RH-36).
 México: Universidad Nacional Autónoma de México.
- CURI, M. (31 de Enero de 2018). Las lluvias afectan zona de mayor producción cruceña.
 La Razón, pág. 1.
- EFE, R. (9 de julio de 2012). Las inundaciones más devastadoras del siglo XXI. Obtenido de RT en español: https://actualidad.rt.com/actualidad/view/48797-Las-inundaciones-masdevastadoras-del-siglo-XXI
- ERN, C. E.-A. (2012). Descripción general de amenazas. America Latina: ERN-CAPRA.
- FERNANDEZ, C. (2016). Ocurrencia y Gestión de inundaciones en América Latina y el Caribe - Factores claves y experiencia adquirida. La Paz - Bolivia: BID Banco Interamericado de Desarrollo.
- FORTES, A. (2006). La evaluación y gestión de los riesgos por inundaciones. Madrid:
 Universidad Carlos III de Madrid.
- GARCÍA MENDIVELSO, D. A. (2017). Comparación de los resultados de la simulación de


- flujo de un modelo físico a escala con el modelo numérico utilizado por el software IBER 2D. Bogotá Colombia: Recursos Hidráulicos y Medio Ambiente.
- GARCIA, V. (2005). El riesgo como construcción social y la construcción social del riesgo.
 Desacatos.
- GONZALES, J. M. (2017). Potencial energético de las corrientes generadas por las mareas en las desembocaduras de los ríos y estuarios. Ingeniería Energética.
- GUERRA, E. (2006). Análisis multitemporal de la cobertura y uso de la tierra a través del sistema LCCS en la cuenca baja del Río Grande Santa Cruz. Cochabamba, Bolivia.
- IV FORO MUNDIAL DEL AGUA, B. (2006). Documento Temático 5.
- LAVELL, A. (2001). Sobre la Gestión del Riesgo: Apuntes hacia una definición.
- LOPEZ, J., & y Luján, J. (2000). Ciencia y política del riesgo. Madrid: Alianza.
- MARTOS, A. (2018). Estudio hidrológico, hidráulico y morfodinámico usando herramientas numéricas (Iber) de la cuenca del Barranco del Llorón (Almería). Sevilla: Escuela Técnica Superior de Ingeniería Universidad de Sevilla.
- OLCINA, J. (2006). Maestría en ordenación y desarrollo territorial: riesgos naturales y tecnológicos y ordenación del territorio. Universidad de Alicante.
- ORDAZ, M. (1996). Algunos conceptos del análisis de riesgo. México: Centro Nacional de Prevención de Desastres.
- SALAS, M. A. (1999). Obras de protección contra inundaciones. México: Centro Nacional de Prevención de Desastres.
- SANTAMARIA, J. (2004). Riesgo de inundaciones. Madrid España: Dirección general de protección civil y emergencias. Ministerio del interior.
- SAYERS, P., GOULDBY, J., SIMM, I., & MEADOWCROFT AND HALL, J. (2002). Risk, Performance and Uncertaninty in Flood and Coastal Defence A Review . Londres: Proceedings of the Institution of Civil Engineers .

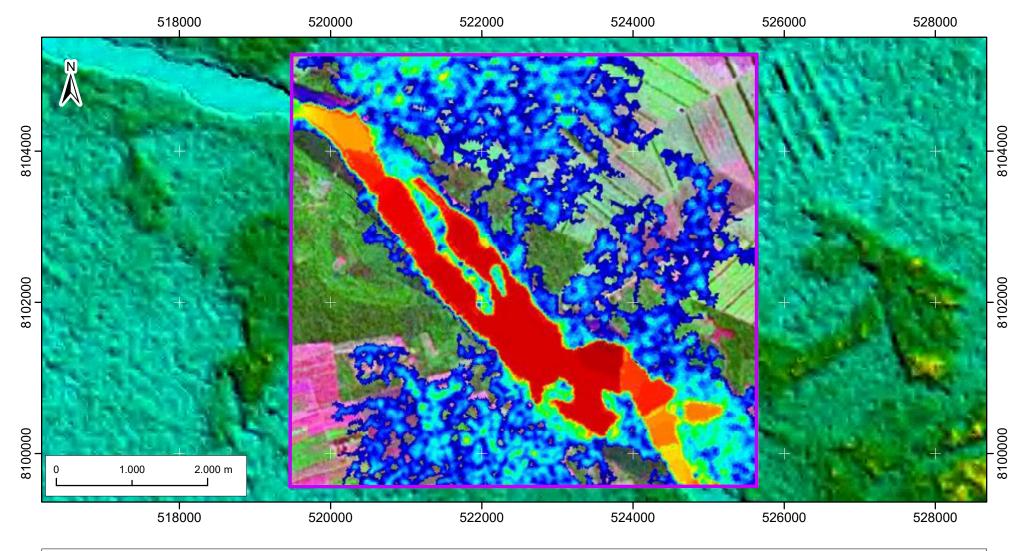

- SCHROTER, D., POLSKY, C., & PATT, A. G. (2005). Assessing vulnerabilities to the effects
 of global change: an eight steop approach. Mitigation and Adaptation Strategies for Global
 Change.
- VERA, J. M., & ALBARRACÍN, A. P. (2016). Metodología para el análisis de vulnerabilidad ante amenazas de inundación, remoción en masa y flujos torrenciales en cuencas hidrográficas. Colombia: Ciencia e Ingeniería Neogranadina.
- VONDERKOVÁ, I. (2017). Las mayores inundaciones azotaron a Chequia hace 15 años.
 Praga.
- ZEVENBERGEN, C., CASHMAN, A., EVELPIDOU, N., PASCHE, E., S., G., & ASHLEY,
 R. (2010). Urban Flood Managment Leiden The Netherlands: CRC press. China: Environmental Research and Risk Assessment.

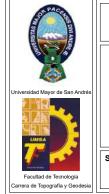
ANEXOS CARTOGRAFIA



El caso de estudio comprende una zona del rio Grande entre los municipios San Julián, Cuatro Cañadas y Okinawa Uno. El rio Grande también conocido como Guapay, río amazónico boliviano afluente del río Mamoré, que discurre en mayor parte por el departamento de Santa Cruz. Se encuentra aproximadamente en un área de estudio 6.89 km², describir en la dirección Norte con la Comunidad Ambaibo, Este: Comunidad Okinawa, Oeste Comunidad Madresitas y Sur Comunidad Okinawa Uno y Puerto Rojas y altura 256 m.s.n.m

ZONA DE ESTUDIO	DESCRIPCIÓN	LATITUD	LONGITUD	ESTE	NORTE
NORTE	Comunidad Ambaibo	171819.271S	62'47"16.99"O	522543.73	8105090.42
ESTE	Comunidad Okinawa	17°9'48.27"S	62'48'59.02"O	519526.58	8102358.54
OESTE	Comunidad Madresitas	17°9'4120"S	62'45'35.72"O	525532.74	8102569.25
SUR	Comunidad Okinawa Uno y Puerto Rojas	17*1117.74*S	62'47'30.37"O	522142.53	8099606.50


Sistema de Referencia: WGS84 Sistema de Proyección UTM Zona 20 Sur


ESCALA: 1:50.000 Postulante: Karina Marisol Quispe Ajata Fuente de información Imagen satelital BingMaps 2019 MAPA N°

Limite municipal

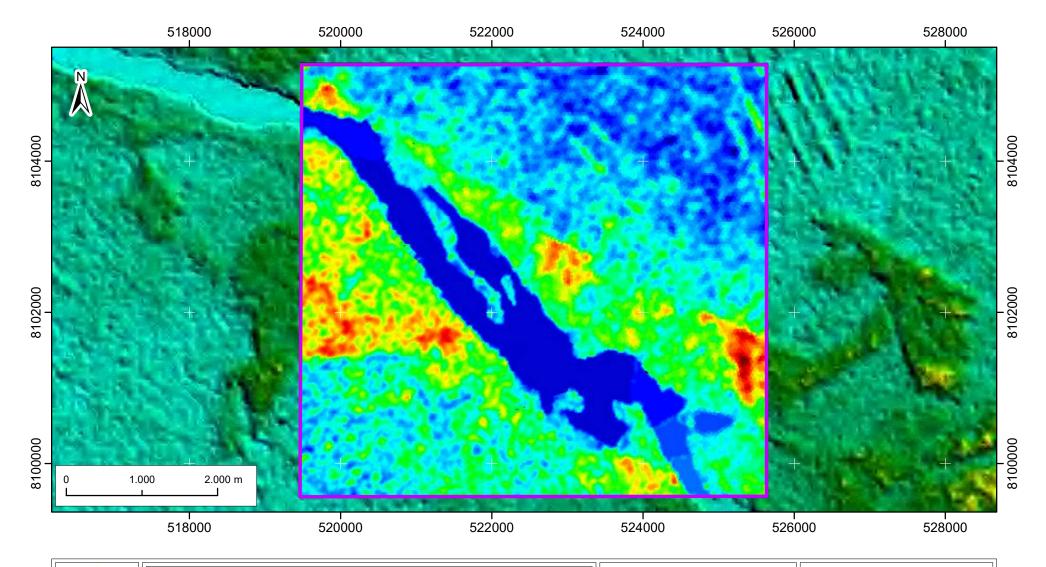
MAPA DE INUNDACIÓN DEL DESBORDÉ DE CANALIZACIÓN DEL CALADO

Mapa de inundación del desborde de la canalización del Rio Grande, que afecta al Puerto Benegas a la Comunidad Madrecitas y que pasa al medio del Rio el Puente Benegas se puede evidenciar como afecta a las laderas y la siembra de productos agrícolas y ganaderas.

Sistema de Referencia: WGS84 Sistema de Proyección UTM Zona 20 Sur ESCALA: 1:50.000 Postulante: Karina Marisol Quispe Ajata Fuente de información Imagen satelital BingMaps 2019 10.182 9.0519 7.9217 6.7914 5.6612 4.531 3.4007 2.2705 1.1402 0.01

MAPA N°

2


calado (m)

REFERENCIAS

Área

de estudio

MAPA DE INUNDACIÓN DEL DESBORDE DE LA CANALIZACIÓN DEL RÍO GRANDE

Mapa de inundación del desborde de la canalización del Rio grande, modelización Hidrológica realizada con los datos de la cuenca del Rio grande, para un periodo de retorno de 50 años,calculando un caudal pico de 10.000 m3/s. Modelización Hidráulica realizada con el programa

Iber, donde se identifica desborde del Rio grande que pasa por los (Municipios San Julián, Cuatro Cañadas y Okinawa Uno).

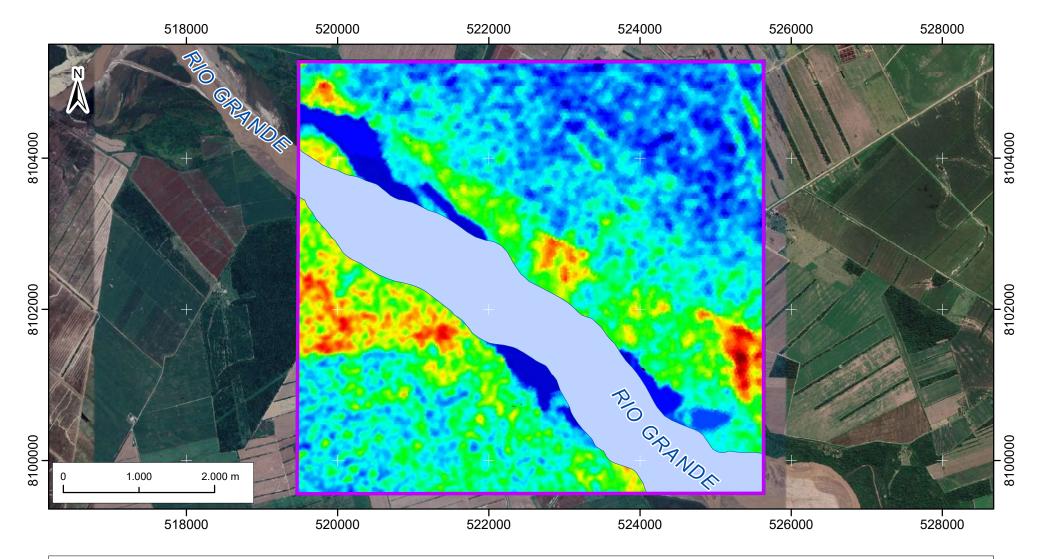
Sistema de Referencia: WGS84 Sistema de Proyección UTM Zona 20 Sur

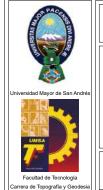
ESCALA: 1:50.000 Postulante: Karina Marisol Quispe Ajata Fuente de información Imagen satelital BingMaps 2019

296.03

REFERENCIAS

Área

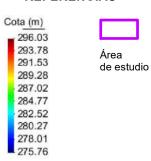

de estudio


Cota (m) 293.78 291.53 289.28 287.02 284.77 282.52 280.27 278.01 275.76

MAPA N°

3

MAPA DE INUNDACIÓN DEL DESBORDE DE CANALIZACIÓN Y AFECTACIÓN DEL RÍO A LA POBLACIÓN


Mapa de riesgos de inundación del desborde de la canalización del Río Grande, que pasa por los tres Municipios: San Julián, Cuatro Cañadas y Okinawa Uno, en un periodo de 50 años se puede evidenciar en la actualidad que ha tenido diferentes cambios con el trascurso del tiempo que la inundación afecta a lo agrícola, ganadería y pastizal del borde del rio y la comunidad Madresita y Puerto Benegas.

Sistema de Referencia: WGS84 Sistema de Proyección UTM Zona 20 Sur

ESCALA: 1:50.000 Postulante: Karina Marisol Quispe Ajata Fuente de información Imagen satelital BingMaps 2019 MAPA N°

4

REFERENCIAS

ANEXO REPORTE IBER

Anexo 1. Información de salida del proceso de simulación

Iber - COMPUTATIONS STARTED

```
PROJECT NAME: PRUEBA 2 RG
05:09:2019
15:20:23
Version of Iber.exe: 2.4.3
WARNING: There are some elements without initial condition
The initial water depth in these elements was set to zero
Calculating element connectivities
   10.%
   20.%
   30.8
   40.%
   50.%
   60.8
   70.8
   80.8
   90.%
  100.8
Calculating edge connectivities
   10.%
   20.%
   30.%
   40.%
   50.%
   60.%
   70.%
   80.8
   90.8
  100.%
  100.%
NUMERICAL SCHEME: Roe 1st Order
Initial volume:
                            44.05 m3
Simulation time
                    Time step
                                    Time
                                                  Qin
                                                               Qout
                    1.00000
                               15:20:35:03
                                                  0.000
                                                               0.000
         0.000
        30.082
                     0.33135
                               15:20:39:67
                                              10000.000
                                                               0.000
        60.003
                     0.35271
                               15:20:46:48
                                              10000.000
                                                               0.000
                               15:20:57:53
        90.159
                     0.34732
                                              10000.000
                                                               0.000
                               15:21:04:51
       120.299
                     0.34177
                                              10000.000
                                                               0.000
       150.281
                     0.34726 15:21:12:48
                                              10000.000
                                                               0.000
       180.163
                     0.35451 15:21:26:10
                                              10000.000
                                                              0.000
       210.101
                     0.35873
                               15:22:00:84
                                              10000.000
                                                               0.000
                               15:22:17:76
15:22:27:14
       240.079
                    0.36212
                                              10000.000
                                                               0.000
       270.016
                     0.36225
                               15:22:27:14
                                              10000.000
                                                               0.000
       300.153
                    0.36395
                               15:22:35:62 10000.000
                                                               0.000
```

330.024	0.36468	15:22:48:08	10000.000	0.000
360.328	0.36554	15:22:54:47	10000.000	0.000
390.353	0.36670	15:23:04:44	10000.000	0.000
420.067	0.36699	15:23:16:03	10000.000	0.000
		15:23:23:89	10000.000	
450.186	0.36757			0.000
480.224	0.36566	15:23:43:62	10000.000	0.000
510.255	0.36692	15:23:56:26	10000.000	0.000
540.151	0.36663	15:24:04:20	10000.000	0.000
570.212	0.36678	15:24:10:05	10000.000	0.000
600.020	0.35930	15:24:27:86	10000.000	0.000
630.194	0.36727	15:24:34:50	10000.000	0.000
660.357	0.36721	15:24:40:24	10000.000	0.000
690.150	0.36737	15:24:45:96	10000.000	0.000
720.342	0.36744	15:24:53:86	10000.000	0.000
750.005	0.36735	15:25:02:61	10000.000	0.000
780.323	0.36731	15:25:09:86	10000.000	0.000
810.094	0.36755	15:25:19:33	10000.000	0.000
840.362	0.36750	15:25:27:30	10000.000	0.000
870.078	0.36764	15:25:31:97	10000.000	0.000
900.225	0.36768	15:25:37:21	10000.000	0.000
930.356	0.36784	15:25:44:27	10000.000	0.000
960.092	0.36791	15:25:48:71	10000.000	0.000
990.017	0.36782	15:25:55:16	10000.000	0.000
1020.115	0.36801	15:26:03:37	10000.000	0.000
1050.368	0.36814	15:26:11:28	10000.000	0.000
1080.062	0.36775	15:26:16:62	10000.000	0.000
1110.120	0.36803	15:26:21:48	10000.000	0.000
1140.270	0.36787	15:26:27:38	10000.000	0.000
1170.048	0.35522	15:26:35:74	10000.000	0.000
1200.198	0.34920	15:26:42:03	10000.000	
				0.000
1230.319	0.35956	15:26:46:40	10000.000	0.000
1260.234	0.28927	15:26:54:59	10000.000	0.000
1290.131	0.36815	15:27:02:75	10000.000	0.000
1320.364	0.36855	15:27:07:48	10000.000	0.000
1350.311	0.36843	15:27:16:39	10000.000	0.000
1380.101	0.36883	15:27:23:14	10000.000	0.000
1410.160	0.36873	15:27:30:13	10000.000	0.000
1440.128	0.36891	15:27:36:66	10000.000	0.000
1470.208	0.36885	15:27:44:10	10000.000	0.000
1500.018	0.36905	15:27:49:57	10000.000	0.000
1530.119	0.36890	15:27:53:93	10000.000	0.000
1560.134	0.22292	15:28:01:53	10000.000	0.000
1590.275	0.36915	15:28:08:86	10000.000	0.000
1620.301	0.36906	15:28:17:20	10000.000	0.000
1650.295	0.36931	15:28:23:80	10000.000	0.000
1680.014	0.36945	15:28:33:28	10000.000	0.000
1710.185	0.18659	15:28:40:57	10000.000	0.000
1740.193	0.36955	15:28:47:24	10000.000	0.000
1770.137	0.36931	15:28:55:22	10000.000	0.000
1800.196	0.36951	15:29:03:58	10000.000	0.000
1830.133	0.36940	15:29:11:85	10000.000	0.000
1860.225	0.35230	15:29:23:85	10000.000	
				0.000
1890.080	0.20817	15:29:30:30	10000.000	0.000
1920.327	0.36961	15:29:36:79	10000.000	0.000

1950.065	0.36975	15:29:45:37	10000.000	0.000
1980.101	0.25785	15:29:52:24	10000.000	0.000
2010.031	0.36937	15:29:58:73	10000.000	0.000
2040.312	0.36972	15:30:05:23	10000.000	0.000
2070.266	0.36997	15:30:12:23	10000.000	0.000
2100.243	0.36960	15:30:18:11	10000.000	0.000
2130.016	0.33405	15:30:22:51	10000.000	0.000
2160.136	0.36967	15:30:29:20	10000.000	0.000
2190.273	0.36971	15:30:35:39	10000.000	0.000
2220.196	0.19753	15:30:42:11	10000.000	0.000
2250.169	0.31985	15:30:49:42	10000.000	0.000
2280.197	0.36990	15:30:57:20	10000.000	0.000
2310.032	0.26673	15:31:04:12	10000.000	0.000
2340.170	0.36972	15:31:10:20	10000.000	0.000
2370.226	0.29557	15:31:17:39	10000.000	0.000
2400.209	0.28553	15:31:25:10	10000.000	0.000
2430.147	0.36994	15:31:30:14	10000.000	0.000
2460.298 2490.252	0.36982 0.36990	15:31:37:10	10000.000	0.000
2520.076	0.36985	15:31:43:26 15:31:48:96	10000.000	0.000
2550.255	0.35047	15:31:55:20	10000.000	0.000
2580.233	0.36979	15:32:00:59	10000.000	0.000
2610.078	0.30806	15:32:06:65	10000.000	0.000
2640.048	0.37000	15:32:12:19	10000.000	0.000
2670.178	0.37001	15:32:17:80	10000.000	0.000
2700.140	0.37009	15:32:22:77	10000.000	0.000
2730.053	0.37000	15:32:30:92	10000.000	0.000
2760.344	0.37038	15:32:37:63	10000.000	0.000
2790.191	0.32762	15:32:43:72	10000.000	0.000
2820.015	0.37000	15:32:51:24	10000.000	17.127
2850.198	0.30163	15:32:58:04	10000.000	116.487
2880.306	0.30831	15:33:04:11	10000.000	576.759
2910.048	0.29569	15:33:10:70	10000.000	832.138
2940.146	0.28221	15:33:17:86	10000.000	1038.879
2970.124	0.26477	15:33:24:05	10000.000	1188.974
3000.081	0.25243	15:33:29:48	10000.000	1324.329
3030.107 3060.107	0.24451	15:33:35:09 15:33:42:17	10000.000	1451.642 1569.321
3090.107	0.23666 0.22952	15:33:42:17	10000.000	1680.456
3120.124	0.22932	15:33:58:77	10000.000	1786.760
3150.018	0.22074	15:34:06:19	10000.000	1885.012
3180.187	0.21664	15:34:12:21	10000.000	1990.745
3210.119	0.21104	15:34:20:69	10000.000	2098.766
3240.147	0.20073	15:34:30:38	10000.000	2203.914
3270.167	0.19434	15:34:38:38	10000.000	2307.598
3300.148	0.18626	15:34:47:12	10000.000	2407.478
3330.179	0.18166	15:34:54:37	10000.000	2502.054
3360.004	0.17383	15:35:02:34	10000.000	2594.956
3390.088	0.16638	15:35:09:64	10000.000	2684.567
3420.121	0.15941	15:35:19:24	10000.000	2771.773
3450.080	0.15361	15:35:28:26	10000.000	2857.996
3480.109	0.14883	15:35:38:12	10000.000	2940.232
3510.090	0.14528	15:35:48:99	10000.000	3018.658
3540.118	0.14210	15:35:58:32	10000.000	3092.964

3570.100	0.13950	15:36:09:69	10000.000	3168.853
3600.091	0.13697	15:36:19:90	10000.000	3239.916
3630.108	0.13471	15:36:29:33	10000.000	3311.206
3660.047	0.13273	15:36:38:94	10000.000	3378.947
3690.083	0.13084	15:36:50:97	10000.000	3442.774
3720.045	0.12681	15:37:03:25	10000.000	3503.747
3750.110	0.12732	15:37:12:55	10000.000	3559.977
3780.094	0.12594	15:37:21:17	10000.000	3611.746
3810.108	0.12180	15:37:32:64	10000.000	3663.711
3840.041	0.12066	15:37:41:94	10000.000	3712.577
3870.044	0.11941	15:37:55:57	10000.000	3759.517
3900.097	0.11802	15:38:07:27	10000.000	3805.466
3930.062	0.11692	15:38:18:17	10000.000	3849.996
3960.108	0.11599	15:38:27:79	10000.000	3891.509
3990.045	0.11164	15:38:39:34	10000.000	3933.921
4020.060	0.11077	15:38:49:29	10000.000	3975.763
4050.076	0.11005	15:39:00:40	10000.000	4017.410
4080.000	0.10929	15:39:13:47	10000.000	4059.525
4110.075	0.10872	15:39:27:21	10000.000	4101.748
4140.018	0.10843	15:39:39:34	10000.000	4143.236
4170.068	0.10654	15:39:50:65	10000.000	4183.955
4200.074	0.10460	15:40:01:26	10000.000	4223.372
4230.026	0.10359	15:40:12:98	10000.000	4260.157
4260.024	0.10266	15:40:27:25	10000.000	4297.460
4290.068	0.10178	15:40:41:17	10000.000	4334.496
4320.049	0.10136	15:40:52:89	10000.000	4370.416
4350.057	0.10065	15:41:05:89	10000.000	4406.200
4380.094	0.09881	15:41:17:14	10000.000	4443.029
4410.049	0.09828	15:41:32:30	10000.000	4476.010
4440.027	0.09760	15:41:45:67	10000.000	4508.893
4470.071	0.09672	15:42:00:39	10000.000	4541.297
4500.087	0.09501	15:42:15:40	10000.000	4572.717
4530.048	0.09355	15:42:29:23	10000.000	4603.835
4560.056	0.09010	15:42:42:10	10000.000	4633.243
4590.000	0.08925	15:42:56:56	10000.000	4660.790
4620.074	0.08827	15:43:10:58	10000.000	4688.582
4650.004	0.08733	15:43:26:19	10000.000	4714.852
4680.019	0.08668	15:43:40:98	10000.000	4742.031
4710.043	0.08599	15:43:54:62	10000.000	4768.774
4740.083			10000.000	4794.908
	0.08526	15:44:07:78		
4770.066	0.08464	15:44:20:49	10000.000	4820.894
4800.078	0.08403	15:44:40:43	10000.000	4847.357
4830.050	0.08344	15:44:56:46	10000.000	4873.707
4860.065	0.08288	15:45:11:43	10000.000	4899.388
4890.081	0.08458	15:45:24:76	10000.000	4926.151
		15:45:37:94	10000.000	
4920.003	0.08140			4951.274
4950.057	0.08155	15:45:52:43	10000.000	4977.647
4980.077	0.08052	15:46:06:73	10000.000	5004.402
5010.002	0.07995	15:46:20:72	10000.000	5031.180
5040.040	0.07942	15:46:35:56	10000.000	5058.418
5070.040	0.07895	15:46:48:47	10000.000	5085.886
5100.022	0.07906	15:47:02:88	10000.000	5113.483
5130.049	0.07765	15:47:17:23	10000.000	5141.702
5160.020	0.07835	15:47:32:89	10000.000	5169.390

5190.023	0.07745	15:47:49:42	10000.000	5197.337
5220.072	0.07654	15:48:05:67	10000.000	5224.747
5250.000	0.08998	15:48:19:05	10000.000	5252.787
5280.066	0.07305	15:48:33:28	10000.000	5280.017
5310.065		15:48:48:22	10000.000	
	0.07637			5305.890
5340.056	0.07250	15:49:04:23	10000.000	5333.226
5370.008	0.06920	15:49:18:65	10000.000	5359.574
5400.009	0.06324	15:49:34:68	10000.000	5385.148
5430.011	0.06216	15:49:51:84	10000.000	5410.389
5460.035	0.05690	15:50:11:98	10000.000	5434.587
5490.018		15:50:29:01	10000.000	
	0.06096			5458.892
5520.057	0.06057	15:50:47:00	10000.000	5482.148
5550.028	0.05851	15:51:04:69	10000.000	5505.831
5580.012	0.06120	15:51:22:34	10000.000	5530.767
5610.031	0.06105	15:51:40:23	10000.000	5552.466
5640.030	0.06040	15:51:58:22	10000.000	5574.658
5670.033	0.05946	15:52:15:19	10000.000	5598.294
5700.056	0.05948	15:52:32:94	10000.000	5618.562
5730.006	0.05922	15:52:50:93	10000.000	5639.574
5760.051	0.05889	15:53:08:98	10000.000	5660.797
5790.036	0.05956	15:53:27:29	10000.000	5681.325
5820.012	0.06039	15:53:44:98	10000.000	5702.484
5850.029	0.06184	15:54:16:87	10000.000	5726.187
5880.046	0.06244	15:54:39:00	10000.000	5744.078
5910.027	0.06325	15:54:55:92	10000.000	5764.457
5940.029	0.06388	15:55:13:05	10000.000	5784.109
5970.062	0.06348	15:55:30:10	10000.000	5803.836
6000.018	0.06352	15:55:47:40	10000.000	5822.874
6030.044	0.05866	15:56:05:51	10000.000	5843.747
6060.041	0.05857	15:56:23:61	10000.000	5860.750
6090.042	0.05933	15:56:41:80	10000.000	5877.323
6120.058	0.06220	15:57:00:11	10000.000	5897.257
6150.051	0.05942	15:57:20:56	10000.000	5915.644
6180.050	0.06028	15:57:37:95	10000.000	5932.503
6210.020	0.05618	15:57:56:41	10000.000	5950.838
6240.015	0.05464	15:58:14:65	10000.000	5967.092
6270.015	0.05719	15:58:33:79	10000.000	5984.098
6300.040	0.05575	15:58:53:70	10000.000	6001.331
6330.007	0.05286	15:59:12:72	10000.000	6017.859
6360.035	0.05032	15:59:35:88	10000.000	6035.627
6390.028	0.04953	15:59:55:93	10000.000	6052.611
6420.026	0.05298	16:00:16:97	10000.000	6069.894
6450.054	0.05734	16:00:36:21	10000.000	6086.722
6480.049	0.05721	16:00:58:18	10000.000	6103.151
6510.036	0.05840	16:01:16:05	10000.000	6119.406
6540.031	0.05775	16:01:38:10	10000.000	6135.223
6570.049	0.05078	16:01:59:76	10000.000	6151.054
6600.035	0.04955	16:02:19:91	10000.000	6167.213
6630.004	0.05009	16:02:43:82	10000.000	6182.939
6660.040	0.05131	16:03:04:18	10000.000	6197.387
6690.048	0.06635	16:03:23:99	10000.000	6212.925
6720.037	0.06756	16:03:40:25	10000.000	6227.796
6750.052	0.06829	16:03:56:91	10000.000	6242.241
6780.058	0.06795	16:04:12:43	10000.000	6256.319

6810.063	0.06740	16:04:28:78	10000.000	6270.509
6840.009	0.06787	16:04:44:39	10000.000	6281.460
6870.050	0.06725	16:05:01:40	10000.000	6292.029
6900.063	0.06645	16:05:20:16	10000.000	6306.030
6930.032	0.06562	16:05:36:27	10000.000	6319.054
6960.026	0.06521	16:05:55:19	10000.000	6330.808
6990.024	0.06455	16:06:12:91	10000.000	6343.679
7020.039	0.06375	16:06:32:78	10000.000	6356.692
7050.058	0.06310	16:06:50:44	10000.000	6369.514
7080.028	0.06236	16:07:11:28	10000.000	6382.210
7110.052	0.06188	16:07:28:74	10000.000	6395.133
7140.025	0.06117	16:07:48:56	10000.000	6407.660
7170.045	0.06053	16:08:10:76	10000.000	6420.159
7200.038	0.05962	16:08:30:50	10000.000	6432.008
7230.025	0.05412	16:08:47:97	10000.000	6444.134
7260.057	0.05878	16:09:07:69	10000.000	6455.848
7290.046	0.05829	16:09:26:18	10000.000	6467.182
7320.052	0.05828	16:09:44:95	10000.000	6478.281
7350.039	0.05747	16:10:03:99	10000.000	6488.969
7380.037	0.05733	16:10:22:83	10000.000	6499.342
7410.010	0.05636	16:10:41:68	10000.000	6511.194
7440.013	0.05052	16:11:02:63	10000.000	6522.560
7470.040	0.04985	16:11:24:12	10000.000	6533.412
7500.003	0.04925	16:11:45:48	10000.000	6544.357
7530.041	0.04820	16:12:10:40	10000.000	6555.170
7560.023	0.04772	16:12:32:08	10000.000	6565.943
7590.015	0.04703	16:12:58:26	10000.000	6576.634
7620.002	0.04651	16:13:20:62	10000.000	6587.348
7650.017	0.04651	16:13:45:90	10000.000	6597.866
7680.013	0.04574	16:14:10:27	10000.000	6608.231
7710.004	0.04532	16:14:33:30	10000.000	6618.462
7740.002	0.04505	16:15:05:24	10000.000	6628.769
7770.007	0.04461	16:15:27:94	10000.000	6638.914
7800.021	0.04444	16:15:51:61	10000.000	6649.038
7830.004	0.04411	16:16:15:95	10000.000	6659.026
7860.041	0.04374	16:16:40:50	10000.000	6669.073
7890.033	0.04344	16:17:05:08	10000.000	6678.774
7920.022	0.04092	16:17:31:88	10000.000	6688.340
7950.001	0.04066	16:18:04:02	10000.000	6697.629
7980.037	0.04174	16:18:29:82	10000.000	6706.679
8010.004	0.04441	16:18:55:36	10000.000	6715.410
8040.044	0.04996	16:20:57:78	10000.000	6724.570
8070.050	0.05028	16:23:18:44	10000.000	6732.889
8100.012	0.04967	16:23:40:35	10000.000	6741.400
8130.034	0.05086	16:24:04:99	10000.000	6749.842
8160.019	0.05230	16:24:26:71	10000.000	6758.092
8190.038	0.05205	16:24:48:74	10000.000	6766.425
8220.033	0.05186	16:25:15:20	10000.000	6774.476
8250.031	0.04899	16:25:37:17	10000.000	6782.516
8280.047	0.04919	16:26:01:37	10000.000	6790.335
8310.049	0.04900	16:26:24:02	10000.000	6798.115
8340.036	0.04872	16:26:46:05	10000.000	6805.832
8370.044				
	0.04735	16:27:09:25	10000.000	6813.244
8400.009	0.04719	16:27:32:82	10000.000	6820.997

8430.021	0.04714	16:28:06:29	10000.000	6828.463
8460.046	0.04711	16:28:55:20	10000.000	6835.974
8490.017	0.04689	16:29:51:11	10000.000	6843.346
8520.007	0.04688	16:30:34:16	10000.000	6850.519
8550.031	0.04702	16:31:15:06	10000.000	6857.631
8580.013	0.04706	16:31:53:25	10000.000	6864.332
8610.034	0.04719	16:33:14:93	10000.000	6871.327
8640.038	0.04743	16:33:39:68	10000.000	6877.935
8670.015	0.04775	16:34:03:25	10000.000	6884.527
8700.028	0.04773	16:34:26:97	10000.000	6891.190
8730.042	0.04830	16:34:50:79	10000.000	6897.606
		16:35:14:32		6903.980
8760.020	0.04867		10000.000	
8790.016	0.04856	16:35:38:64	10000.000	6910.065
8820.036	0.04775	16:36:05:89	10000.000	6916.188
8850.032	0.04705	16:36:29:22	10000.000	6922.343
8880.011	0.04650	16:36:54:28	10000.000	6928.495
8910.001	0.04606	16:37:22:91	10000.000	6934.470
8940.033	0.04566	16:37:46:50	10000.000	6940.313
8970.034	0.04525	16:38:12:87	10000.000	6946.309
9000.021	0.04491	16:38:39:70	10000.000	6952.159
9030.022	0.04465	16:39:04:66	10000.000	6958.004
9060.027	0.04439	16:39:29:57	10000.000	6963.844
9090.044	0.04416	16:39:54:84	10000.000	6969.643
9120.012	0.04399	16:40:22:38	10000.000	6975.389
9150.042	0.04383	16:40:47:85	10000.000	6981.070
9180.009	0.04367	16:41:16:22	10000.000	6986.681
9210.004	0.04353	16:41:40:96	10000.000	6992.260
9240.040	0.04340	16:42:08:11	10000.000	6997.745
9270.020	0.04330	16:42:35:34	10000.000	7003.066
9300.034	0.04322	16:43:03:54	10000.000	7008.474
9330.010	0.04309	16:43:31:29	10000.000	7013.682
9360.036	0.04298	16:44:22:73	10000.000	7018.829
9390.036	0.04285	16:44:49:42	10000.000	7023.978
9420.004	0.04278	16:45:15:50	10000.000	7028.946
9450.042	0.04253	16:45:41:54	10000.000	7033.711
9480.022	0.04227	16:46:09:27	10000.000	7038.545
9510.011	0.04210	16:46:36:44	10000.000	7043.472
9540.034	0.04398	16:47:02:37	10000.000	7048.011
9570.011	0.03540	16:47:31:58	10000.000	7052.785
9600.010	0.04537	16:47:58:97	10000.000	7056.793
9630.007	0.03868	16:48:41:42	10000.000	7062.279
9660.022	0.04308	16:49:33:55	10000.000	7066.166
9690.002	0.04201	16:50:48:72	10000.000	7070.925
9720.031	0.04181	16:53:40:13	10000.000	7075.316
9750.001	0.04150	16:54:09:61	10000.000	7079.869
9780.005	0.04108	16:54:36:13	10000.000	7084.291
9810.000	0.04097	16:55:09:42	10000.000	7088.740
9840.036	0.04069	16:55:38:38	10000.000	7093.074
9870.024	0.04064	16:56:07:21	10000.000	7097.338
9900.016	0.03957	16:56:35:29	10000.000	7101.664
9930.026	0.03779	16:57:06:37	10000.000	7105.883
9960.001	0.03752	16:57:36:98	10000.000	7110.064
9990.022	0.03742	16:58:06:95	10000.000	7114.339
10020.005	0.03749	16:58:36:53	10000.000	7118.693

10050.010	0.03697	16:59:07:63	10000.000	7122.698
10080.019	0.03674	16:59:39:07	10000.000	7126.560
10110.025	0.03619	17:00:11:90	10000.000	7130.520
10140.024	0.03620	17:00:42:97	10000.000	7134.333
10170.001	0.03613	17:01:14:42	10000.000	7138.117
10200.014	0.03617	17:01:54:91	10000.000	7141.870
10230.029	0.03502	17:02:28:63	10000.000	7145.770
10260.036	0.03677	17:02:59:66	10000.000	7149.647
10290.002	0.03692	17:02:33:00	10000.000	7153.336
10320.008	0.03681	17:04:21:67	10000.000	7157.265
10350.010	0.03674	17:05:00:24	10000.000	7160.997
10380.007	0.03663	17:05:41:05	10000.000	7164.790
10410.034	0.03654	17:06:22:89	10000.000	7168.700
10440.024	0.03644	17:06:53:09	10000.000	7172.342
10470.002	0.03631	17:07:24:02	10000.000	7176.049
10500.008	0.03624	17:07:59:35	10000.000	7179.757
10530.009	0.03612	17:07:33:33	10000.000	7183.320
10560.007	0.03606	17:09:03:17	10000.000	7186.848
10590.000	0.03606	17:09:37:54	10000.000	7190.391
10620.019	0.03565	17:10:44:00	10000.000	7193.964
10650.013	0.03468	17:11:45:14	10000.000	7197.349
10680.004	0.03457	17:12:49:09	10000.000	7200.803
10710.000	0.03457	17:13:37:14	10000.000	7204.270
10740.005	0.03444	17:14:11:34	10000.000	7207.618
10770.029	0.03441	17:14:45:14	10000.000	7211.056
10800.001	0.03436	17:15:17:22	10000.000	7214.458
10830.026	0.03439	17:15:51:18	10000.000	7217.895
10860.027	0.03435	17:16:26:05	10000.000	7221.403
10890.014	0.03430	17:17:00:29	10000.000	7224.784
10920.019	0.03423	17:17:34:55	10000.000	7228.105
10950.009	0.03417	17:18:08:07	10000.000	7231.472
10980.011	0.03409	17:18:48:67	10000.000	7234.916
11010.003	0.03398	17:19:53:94	10000.000	7238.208
11040.008	0.03394	17:21:01:12	10000.000	7230.200
11070.026	0.03392	17:22:05:13	10000.000	7244.825
11100.017	0.03392	17:22:39:96	10000.000	7248.116
11130.022	0.03387	17:23:13:53	10000.000	7251.335
11160.016	0.03386	17:23:47:69	10000.000	7254.524
11190.002	0.03389	17:24:20:94	10000.000	7257.663
11220.013	0.03388	17:24:55:39	10000.000	7260.794
11250.016	0.03389	17:25:27:82	10000.000	7263.842
11280.011	0.03387	17:26:01:19	10000.000	7266.927
11310.031	0.03385	17:26:35:01	10000.000	7269.994
11340.010	0.03384	17:27:10:54	10000.000	7272.997
11370.019	0.03383	17:28:06:69	10000.000	7275.904
11400.024	0.03381	17:29:19:78	10000.000	7278.882
11430.026	0.03383	17:30:09:88	10000.000	7281.735
11460.025	0.03383	17:30:57:70	10000.000	7284.503
11490.023	0.03380	17:31:56:20	10000.000	7287.474
11520.029	0.03328	17:32:33:88	10000.000	7290.264
11550.012	0.03320	17:32:33:00	10000.000	7293.072
11580.005	0.03321	17:33:43:53	10000.000	7295.753
11610.005	0.03317	17:34:19:77	10000.000	7298.498
11640.017	0.03313	17:34:55:94	10000.000	7301.203

11670.006	0.03311	17:35:30:19	10000.000	7303.871
11700.004	0.03311	17:36:05:56	10000.000	7306.489
11730.013	0.03309	17:36:39:06	10000.000	7309.006
11760.032	0.03305	17:37:45:34	10000.000	7311.617
11790.030	0.03302	17:38:47:97	10000.000	7314.054
11820.007	0.03301	17:39:42:38	10000.000	7316.489
11850.029	0.03300	17:41:03:11	10000.000	7318.877
11880.031	0.03294	17:42:22:31	10000.000	7321.275
11910.007	0.03295	17:43:03:33	10000.000	7323.420
11940.025	0.03291	17:43:37:64	10000.000	7325.715
11970.023	0.03286	17:44:11:72	10000.000	7327.995
12000.032	0.03284	17:44:47:84	10000.000	7330.076
12030.019	0.03282	17:45:24:52	10000.000	7332.297
12060.019	0.03281	17:46:01:49	10000.000	7334.479
12090.032	0.03278	17:46:35:50	10000.000	7336.583
12120.026	0.03278	17:47:08:52	10000.000	7338.786
12150.032 12180.019	0.03274	17:47:41:35	10000.000	7340.804
12210.020	0.03274 0.03269	17:48:16:47 17:48:51:49	10000.000	7342.895 7344.946
12240.000	0.03209	17:49:26:92	10000.000	7347.020
12270.027	0.03270	17:50:01:93	10000.000	7349.047
12300.003	0.03266	17:50:35:28	10000.000	7350.954
12330.026	0.03262	17:51:08:62	10000.000	7353.060
12360.030	0.03260	17:51:44:50	10000.000	7354.890
12390.019	0.03259	17:52:19:89	10000.000	7356.732
12420.002	0.03616	17:52:53:82	10000.000	7358.845
12450.008	0.03569	17:53:24:35	10000.000	7360.481
12480.028	0.03584	17:53:54:85	10000.000	7362.273
12510.027	0.03575	17:54:29:32	10000.000	7363.855
12540.010	0.03573	17:55:02:70	10000.000	7365.472
12570.028	0.03591	17:55:33:64	10000.000	7367.394
12600.023	0.03606	17:56:08:56	10000.000	7369.252
12630.034	0.03462	17:56:40:56	10000.000	7370.784
12660.013	0.03462	17:57:12:59	10000.000	7372.201
12690.023 12720.016	0.03477 0.03485	17:57:45:42 17:58:18:36	10000.000	7373.958 7375.713
12750.023	0.03467	17:58:49:56	10000.000	7377.096
12780.025	0.03481	17:59:21:00	10000.000	7377.096
12810.012	0.03487	17:59:54:12	10000.000	7380.677
12840.018	0.03480	18:00:27:68	10000.000	7382.080
12870.029	0.03490	18:00:59:05	10000.000	7383.566
12900.020	0.03487	18:01:31:98	10000.000	7385.138
12930.000	0.03460	18:02:05:39	10000.000	7386.707
12960.028	0.03098	18:02:39:38	10000.000	7388.071
12990.026	0.03125	18:03:15:93	10000.000	7389.333
13020.018	0.03108	18:03:50:67	10000.000	7390.627
13050.008	0.03114	18:04:26:30	10000.000	7392.085
13080.013	0.03112	18:05:02:71	10000.000	7393.368
13110.030	0.03118	18:05:37:46	10000.000	7394.694
13140.001	0.03121	18:06:15:06	10000.000	7395.970
13170.016 13200.020	0.03116 0.03114	18:06:52:00 18:07:29:02	10000.000	7397.368 7398.496
13230.006	0.03114	18:08:04:59	10000.000	7400.037
13260.028	0.03131	18:08:39:66	10000.000	7401.154
	0.00101	_0.00.00.00		, 101.101

13290.003	
13320.019 0.03128 18:09:52:54 10000.000 7403.6	
13350.015 0.03144 18:10:29:64 10000.000 7404.8	
13380.005 0.03163 18:11:04:59 10000.000 7406.1	-
13410.023 0.03167 18:11:39:34 10000.000 7407.4	
13440.029 0.03179 18:12:15:13 10000.000 7408.4	
13470.021 0.03166 18:12:49:80 10000.000 7409.5	
13500.027 0.03178 18:13:24:64 10000.000 7410.7	
13530.027 0.03176 18:13:59:75 10000.000 7411.8	
13560.019 0.03174 18:14:34:57 10000.000 7412.9	
13590.024 0.03204 18:15:13:42 10000.000 7414.1	
13620.031 0.03187 18:15:49:27 10000.000 7415.1	
13650.002 0.03210 18:16:25:02 10000.000 7416.2	
13680.028 0.03202 18:16:59:69 10000.000 7417.3	02
13710.009 0.03205 18:17:33:93 10000.000 7418.3	24
13740.020 0.03211 18:18:14:65 10000.000 7419.4	30
13770.007 0.03209 18:18:53:32 10000.000 7420.4	40
13800.019 0.03215 18:19:28:94 10000.000 7421.3	40
13830.022 0.03242 18:20:05:32 10000.000 7422.2	95
13860.021 0.03239 18:20:42:74 10000.000 7423.1	09
13890.030 0.03254 18:21:31:98 10000.000 7424.1	84
13920.011 0.03258 18:22:12:55 10000.000 7425.2	13
13950.001 0.03261 18:22:51:57 10000.000 7426.1	11
13980.029 0.03267 18:23:30:03 10000.000 7427.0	99
14010.028 0.03278 18:24:11:52 10000.000 7428.0	99
14040.006 0.03277 18:24:50:48 10000.000 7428.8	24
14070.023 0.03276 18:25:30:62 10000.000 7429.6	22
14100.009 0.03284 18:26:18:05 10000.000 7430.5	45
14130.018 0.03291 18:27:02:62 10000.000 7431.4	79
14160.001 0.03294 18:27:46:65 10000.000 7432.4	50
14190.015 0.03296 18:28:25:69 10000.000 7433.2	85
14220.008 0.03295 18:29:05:74 10000.000 7434.0	40
14250.007 0.03298 18:29:43:73 10000.000 7434.8	40
14280.021 0.03308 18:30:25:95 10000.000 7435.6	78
14310.016 0.03310 18:31:09:85 10000.000 7436.5	
14340.010 0.03307 18:31:59:42 10000.000 7437.4	
14370.029 0.03233 18:32:38:20 10000.000 7438.2	
14400.012 0.03228 18:33:18:27 10000.000 7438.9	67

05:09:2019

18:33:21

COMPUTATION FINISHED SUCCESSFULLY!