UNIVERSIDAD MAYOR DE SAN ANDRÉS
FACULTAD DE AGRONOMÍA
CARRERA DE INGENIERÍA AGRONÓMICA

TESIS DE GRADO

EFECTOS DE LA CENIZA EN EL MANEJO ECOLÓGICO DE TOMATE
(Lycopersicon esculentum) EN COROICO

CRUZ ALEJANDRO COARITE PUJRO

LA PAZ – BOLIVIA
2006
EFECTOS DE LA CENIZA EN EL MANEJO ECOLÓGICO DE TOMATE
(Lycopersicon esculentum) EN COROICO

Tesis de Grado como requisito parcial para optar el Título de Ingeniero Agrónomo

CRUZ ALEJANDRO COARITE PUJRO

Tutor:
Ing. Rogelia Quispe Ticona

Asesor:
Ing. Paulino Ruiz Huanca

Comité Revisor:
Ph. D. Vladimir Orsag Céspedes
Ph. D. Abul Kalam Kurban

APROBADA

Decano:
Ing. M.Sc. Ing. Jorge Pascuali Cabrera
DEDICATORIA:

Por su cariño, comprensión y apoyo incondicional:
A mis padres: Ramón y Manuela
A mis hermanos: Juan, Braulio y Lupe.
AGRADECIMIENTOS

Expreso mis mas sinceros agradecimientos a la directa colaboración de las siguientes Instituciones y personas:

A la Universidad Mayor de San Andrés; A la Facultad de Agronomía por forjarme en sus aulas y a sus Docentes por darme la formación profesional.

Al Servicio Departamental Agropecuario de la Prefectura de La Paz por apoyar a la realización de este trabajo.

A mi Tutor Ing. Rogelia Quispe Ticona y Asesor Ing. Paulino Ruiz Huanca por su apoyo y acertados consejos durante la realización del trabajo en campo y en la redacción de este trabajo.

Al Ing. Víctor Churquina por sus consejos, apoyo e ideas aportadas para la elaboración de este trabajo de tesis.

A los miembros del tribunal revisor: Dr. Vladimir Orsag y Dr. Abul Kalam, por sus acertadas observaciones para la conclusión de la redacción del trabajo de investigación.

A mis compañeros y amigos de la Facultad de Agronomía: Sergio, Narciso, Cristóbal, Ramiro, Roberto, Milenka, Paulina, Beatriz, Elizabeth por su amistad y camaradería. En especial a Silbia por su compañía y apoyo incondicional.
ÍNDICE GENERAL

CONTENIDO ... i
ÍNDICE DE CUADROS ... vi
ÍNDICE DE FIGURAS ... vii
ÍNDICE DE ANEXOS ... ix
RESUMEN ... x

1. INTRODUCCIÓN ... 1
 1.1 OBJETIVOS ... 2
 1.2 HIPÓTESIS ... 2

2. REVISIÓN BIBLIOGRÁFICA ... 3
 2.1 Efectos de la ceniza de madera ... 3
 2.1.1 Fertilización con ceniza de madera ... 3
 2.1.2 Control de plagas y enfermedades con ceniza de madera ... 5
 2.2 Manejo ecológico ... 6
 2.2.1 Elección y siembra de semillas ... 6
 2.2.2 Sustratos para el almaciguero .. 6
 2.2.3 Preparación del suelo .. 7
 2.2.4 Transplante .. 8
 2.2.5 Fertilización orgánica .. 8
 2.2.6 Control de plagas y enfermedades ... 9
 2.3 Cultivo de tomate ... 10
 2.3.1 Origen .. 10
 2.3.2 Importancia del cultivo de tomate .. 10
 2.3.3 Tipos de planta ... 12
 2.3.4 Características botánicas .. 13
 2.3.4.1 Sistema radicular ... 13
 2.3.4.2 Tallo principal ... 13
 2.3.4.3 Hoja ... 13
2.3.4.4 Flor .. 13
2.3.4.5 Fruto .. 14
2.3.5 Taxonomía .. 14
2.3.6 Condiciones agroecológicas para el cultivo .. 14
2.3.6.1 Temperatura .. 15
2.3.6.2 Fotoperíodo .. 15
2.3.6.3 Condiciones de suelo ... 15
2.3.7 Fertilización .. 16
2.3.8 Labores culturales .. 16
2.3.8.1 Poda ... 16
2.3.8.2 Tutorado .. 16
2.3.8.3 Aporcado .. 17
2.3.8.4 Siembra .. 17
2.3.8.5 Transplante .. 17
2.3.9 Densidad de plantación .. 17
2.3.10 Cosecha .. 18
2.3.11 Plagas y enfermedades .. 18

3. LOCALIZACION Y CARÁCTERISTICAS DEL ÁREA
DE ENSAYO .. 20

3.1 Ubicación geográfica ... 20
3.2 Clima .. 20
3.3 Fisiografía .. 23
3.4 Suelos .. 23
3.5 Características ecológicas ... 24
3.5.1 Vegetación predominante .. 24
3.5.2 Cultivos predominantes .. 26
4. MATERIALES Y METODOS .. 27

4.1 Materiales .. 27

4.1.1 Material genético ... 27

4.1.2 Material de campo .. 28

4.1.3 Insumos ... 28

4.2 Metodología .. 28

4.2.1 Muestreo y análisis de suelo ... 28

4.2.2 Muestreo y análisis de la ceniza de madera 28

4.2.3 Preparación del terreno ... 29

4.2.4 Siembra .. 29

4.2.5 Preparación de la almaciguera .. 30

4.2.6 Transplante al lugar definitivo .. 32

4.2.7 Labores culturales .. 32

4.2.7.1 Tutorado ... 32

4.2.7.2 Poda .. 33

4.2.7.3 Fertilización ... 33

4.2.7.4 Control de plagas y enfermedades 33

4.2.8 Cosecha ... 36

4.3 Procedimiento experimental .. 37

4.3.1 Diseño experimental ... 37

4.3.2 Modelo estadístico .. 37

4.3.3 Tratamientos ... 38

4.3.4 Características de la unidad experimental 38

4.3.5 Variables de respuesta ... 40

4.3.5.1 Días a la emergencia ... 40

4.3.5.2 Altura de planta ... 40

4.3.5.3 Peso de materia verde y seca 40

4.3.5.4 Número de días a la floración 40

4.3.5.5 Número de frutos por planta 41

4.3.5.6 Días a la cosecha ... 41

4.3.5.7 Peso de frutos ... 41
4.3.5.8	Rendimiento por hectárea	41
4.3.5.9	Diámetro de tallo	41
4.3.5.10	Análisis económico	41

5. **RESULTADOS Y DISCUSIONES**

5.1 Suelo
5.1.1 Propiedades físicas
5.1.2 Propiedades químicas
5.2 Análisis químico de la ceniza de madera
5.3 Evaluación de los variables de respuesta
5.3.1 Porcentaje de germinación
5.3.2 Días a la primera floración
5.3.3 Altura de planta
5.3.4 Diámetro de tallo
5.3.5 Días a la primera cosecha
5.3.6 Número de frutos por planta
5.3.6.1 Número de frutos de mayor tamaño
5.3.6.2 Número de frutos de tamaño mediano
5.3.6.3 Número de frutos de menor tamaño
5.3.6.4 Número de frutos por planta
5.3.7 Peso de frutos
5.3.7.1 Peso de frutos de mayor tamaño
5.3.7.2 Peso de frutos de tamaño mediano
5.3.7.3 Peso de frutos de menor tamaño
5.3.7.4 Peso de frutos por planta
5.3.8 Rendimiento
5.3.9 Materia verde
5.3.10 Materia seca
5.4 Análisis de correlación y regresión simple
5.5 Análisis económico de la relación Beneficio-Costo

iv
6. CONCLUSIONES Y RECOMENDACIONES ... 83

6.1 Conclusiones .. 83
6.2 Recomendaciones .. 85

7 BIBLIOGRAFÍA ... 86

ANEXOS .. 90
<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Efecto de la aplicación de cenizas vegetales y residuos caseros</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Valor nutritivo de la porción com estilble, de 100 gramos de tomate</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Principales plagas del tomate</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Principales enfermedades del tomate</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Análisis físico de suelos del terreno experimental</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Análisis químico de suelo del terreno experimenta l</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>Análisis de varianza para altura de planta</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Análisis de varianza para el diámetro de tallo</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Análisis de varianza para el número de frutos de mayor tamaño</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>Prueba de Duncan para el número de frutos de mayor tamaño</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Análisis de varianza para el número de frutos de tamaño mediano</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Prueba de Duncan para el número de frutos de tamaño mediano</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>Análisis de varianza para el número de frutos de menor tamaño</td>
<td>59</td>
</tr>
<tr>
<td>14</td>
<td>Análisis de varianza para el número de frutos por planta</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>Prueba de Duncan para el número de frutos por planta</td>
<td>61</td>
</tr>
<tr>
<td>16</td>
<td>Análisis de varianza para el peso de frutos de mayor tamaño</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>Prueba de Duncan para el peso de frutos de mayor tamaño</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>Análisis de varianza para el peso de frutos de tamaño mediano</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>Prueba de Duncan para el peso de frutos de tamaño mediano</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>Análisis de varianza para el peso de frutos de menor tamaño</td>
<td>68</td>
</tr>
<tr>
<td>21</td>
<td>Análisis de varianza para el peso de frutos por planta</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>Prueba de Duncan para el peso de frutos por planta</td>
<td>70</td>
</tr>
<tr>
<td>23</td>
<td>Análisis de varianza para el rendimiento</td>
<td>73</td>
</tr>
<tr>
<td>24</td>
<td>Prueba de Duncan para el rendimiento</td>
<td>73</td>
</tr>
<tr>
<td>25</td>
<td>Análisis de varianza para el peso de materia verde</td>
<td>75</td>
</tr>
<tr>
<td>26</td>
<td>Prueba de Duncan para el peso de materia verde</td>
<td>76</td>
</tr>
<tr>
<td>27</td>
<td>Análisis de varianza para el peso de materia seca</td>
<td>77</td>
</tr>
<tr>
<td>28</td>
<td>Prueba de Duncan para el peso de materia seca</td>
<td>78</td>
</tr>
<tr>
<td>29</td>
<td>Coeficientes de correlación y regresión simple</td>
<td>79</td>
</tr>
<tr>
<td>30</td>
<td>Análisis de la relación Beneficio-Costo</td>
<td>81</td>
</tr>
<tr>
<td>31</td>
<td>Presupuesto de costos para una hectárea</td>
<td>82</td>
</tr>
<tr>
<td>ÍNDICE DE FIGURAS</td>
<td>Página</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Figura 1. Variedad de crecimiento determinado</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Figura 2. Variedad de crecimiento indeterminado</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Figura 3. Climadiagrama de la zona de Coroico</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Figura 4. Temperatura promedio de Coroico del periodo marzo-agosto del 2004</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Figura 5. Precipitación promedio mensual en mm para Coroico de marzo-agosto de 1996 a 2002 y de marzo-agosto del 2004</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Figura 6. Localización de Coroico, Provincia Nor Yungas</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Figura 7. Tomate, variedad “Río grande”</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Figura 8. Germinadero con plántulas de tomate</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Figura 9. Almaciguera con plántulas recién transplantadas</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Figura 10. Plántulas en la almaciguera</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Figura 11. Plántula, transplantada con su pan de tierra</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Figura 12. “Pulguilla saltona”</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Figura 13. Diabrotica sp.</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Figura 14. Larva de Heliotis sp.</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Figura 15. Adulto de Heliotis sp.</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Figura 16. Hojas atacadas por el tizón tardío</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Figura 17. Fruto atacado por el tizón tardío</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Figura 18. Frutos cosechados para seleccionar</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Figura 19. Croquis de campo</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Figura 20. Composición de nutrientes en la ceniza de madera</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Figura 21. Días a la primera floración</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Figura 22. Altura de planta de la tomatera</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Figura 23. Diámetro de tallo de la tomatera</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Figura 24. Días a la primera cosecha de frutos</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Figura 25. Número de frutos de mayor tamaño, expresado en porcentaje en relación al número total de frutos por planta</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Figura 26. Número de frutos de tamaño mediano, expresado en porcentaje en relación al número total de frutos por planta</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>
Figura 27. Número de frutos de menor tamaño, expresado en por ciento en relación al número total de frutos por planta .. 58
Figura 28. Número de frutos por planta de las tomateras 60
Figura 29. Incremento del peso de los frutos mayor tamaño de los tratamientos con ceniza en relación al testigo.............................. 63
Figura 30. Incremento del peso de frutos de tamaño mediano de los tratamientos con ceniza en relación al testigo................................ 66
Figura 31. Incremento del peso de frutos de menor tamaño de los tratamientos con ceniza en relación al testigo.............................. 68
Figura 32. Peso de frutos de tomate por planta 69
Figura 33. Rendimiento de los tratamientos.. 72
Figura 34. Correlación y regresión para número de frutos por planta 79
Figura 35. Correlación y regresión para materia seca 80
<table>
<thead>
<tr>
<th>Anexo</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Análisis físico-químico de suelos</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>Análisis químico de la ceniza de madera</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>Plantas como repelentes de plagas y enfermedades</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>Productos para controlar plagas y enfermedades</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>Fases fenológicas del tomate</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>Número de frutos por planta</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Peso de frutos total por planta en gramos/planta</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>Rendimiento de frutos en kg/ha</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>Temperatura y precipitación pluvial, mensual, de la zona de ensayo</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>Estación Experimental de Coroico</td>
<td>97</td>
</tr>
<tr>
<td>11</td>
<td>Plantas de tomate en crecimiento</td>
<td>98</td>
</tr>
<tr>
<td>12</td>
<td>Planta de tomate con flores y fruto</td>
<td>98</td>
</tr>
<tr>
<td>13</td>
<td>Adición de ceniza para posterior mezcla con la tierra y aporcado</td>
<td>99</td>
</tr>
<tr>
<td>14</td>
<td>Cantidad de ceniza utilizada en los tratamientos</td>
<td>99</td>
</tr>
</tbody>
</table>
RESUMEN

Los “efectos de la ceniza en el manejo ecológico de tomate (Lycopersicon sculentum) en Coroico”, se efectuó en la comunidad San Pedro de la Loma, que pertenece al municipio de Coroico, Provincia Nor Yungas del Departamento de La Paz, ubicado a una altitud de 1630 m y geográficamente a 16° 08’ 00” de latitud Sur y 67° 46’ 00” de longitud Oeste.

Entre una de las alternativas para una producción más saludable, se tiene a la ceniza de madera, un material disponible para los agricultores, ya que ellos tienen la costumbre de efectuar la cocción de sus alimentos en fogones de leña; se utilizó este residuo en el cultivo de la tomatera con el objetivo de estudiar los efectos de la ceniza de madera en el manejo ecológico de tomate, para ello se efectuó la siembra en un semillero, después se transplantó las plántulas de 10 días a la almaciguera, donde permanecieron aproximadamente un mes, para después ser transplantados a campo definitivo, en hoyos, como recomienda el método de labranza mínima individual, con una distancia de 0,7 m entre plantas, 1,05 m entre líneas y a una densidad de 13600 Plantas /ha, todo ello bajo el diseño de bloques al azar.

Se aplicaron tratamientos con ceniza en una proporción de 800 kg/ha, 1500 kg/ha, 2200 kg/ha y 2900 kg/ha, esta aplicación fue fraccionada y empleado en la almaciguera, el transplante, la floración y durante la formación de frutos.

Según el análisis de varianza, se encontraron diferencias significativas respecto al testigo, en las variables, materia verde, materia seca, número de frutos, peso de frutos por planta y rendimiento, con la aplicación de 2200 y 2900 kg/ha de ceniza; obteniéndose el mejor rendimiento de 15800 kg/ha de frutos con el tratamiento 3 y 10785 kg/ha con el testigo. En tanto la relación B/C para testigo fue de 1,51, para el tratamiento 4 de 1,99 y para el tratamiento 3 con 2,11, lo que nos indica que es conveniente la producción de tomate con la adición de ceniza de madera a otros abonos orgánicos, como la gallinaza que se utilizó en este trabajo.
INTRODUCCION

El tomate, *Lycopersicon esculentum* Mill, es uno de los cultivos hortícolas más importantes en el país. En el año 2000 la productividad fue de 84.190 t/año a nivel nacional y de 4.200 t/año en el departamento de La Paz (INE, MACA, 2000), fluctuando esta producción de acuerdo a la demanda por esta hortaliza. Desde un punto de vista alimenticio el tomate, por su versatilidad de consumo es una de las más importantes por su contenido nutricional, por contener vitaminas y minerales que se demandan en la alimentación humana.

Como es una de las hortalizas de mayor consumo, es importante que el productor de tomate incorpore nuevas tecnologías orgánicas, para obtener mayores ingresos, dejando atrás las prácticas tradicionales, que busca un elevado rendimiento de frutos, que tienen como consecuencia un aumento llamativo en el uso de los fertilizantes inorgánicos, insecticidas y otros agroquímicos, que causan contaminación en el ambiente como el suelo, fuentes de agua, ser humano, etc., alterando los procesos naturales, haciéndolos mas vulnerables.

Con el uso de estas tecnologías ecológicas en el manejo de la tomatera, se pretende excluir el uso de agroquímicos, así como parte del manejo ecológico, está el uso de productos orgánicos que la naturaleza nos provee, para la fertilización y control de plagas.

Entre las fuentes alternativas de fertilizantes para una producción ecológica, se tiene el compost, estiércol, abonos verdes, humus de lombriz, residuos de cosechas y cocina; la ceniza de madera que se obtiene por la quema de rastrojos y madera o leña en fogones de leña, está generalmente compuesto de calcio, magnesio, potasio, hierro, manganeso, cobre, boro, cinc y sodio, que son normalmente conocidos como “cenizas vegetales”; esta ceniza en combinación con otros abonos orgánicos, como por ejemplo la gallinaza, pueden proveer una nutrición mineral balanceada a la planta de tomate, aumentando su capacidad para protegerse o ser mas tolerante a plagas.
Como complemento a la fertilización, está el uso de controles biológicos, como los organismos entomopatógenos y antagonistas de hongos, el uso de productos obtenidos a través de infusiones, maceración, etc., de plantas que tienen acción repelente o controladora de plagas, teniendo también las cenizas de madera éstas propiedades. Con todo esto se tiene un manejo ecológico, para obtener frutos más sanos que colaboren a la salud del hombre y el ambiente.

1.1 OBJETIVOS

1.1.1 Objetivo general

- Estudiar los efectos de la ceniza de madera en el manejo ecológico del cultivo de tomate.

1.1.2 Objetivos específicos

- Determinar la dosis adecuada de ceniza para el cultivo de tomate.
- Evaluar el efecto de la ceniza en la productividad del cultivo de tomate.
- Analizar la relación beneficio / costo en el manejo ecológico del cultivo de tomate.

1.2 Hipótesis

- Las diferentes dosis de ceniza, no afectan en el desarrollo de las plantas de tomate.
- No se observa el efecto de la ceniza en la productividad del cultivo de tomate
- Las relaciones beneficio / costo en el manejo ecológico del cultivo de tomate son similares.
2. REVISIÓN BIBLIOGRÁFICA

2.1 Efectos de la ceniza de madera

2.1.1 Fertilización con ceniza de madera

Suquilanda (1996), señala que el abonado o fertilización de los suelos, no es un descubrimiento reciente, los chinos, los griegos y los romanos, utilizaron para ello abonos de animales, margas y cenizas de vegetales.

Según Tisdale (1991), el fósforo, calcio, magnesio, potasio, hierro, manganeso, molibdeno, cobre, boro, cinc, cloro, sodio, cobalto, vanadio y sílice, son las “cenizas vegetales” que quedan como residuo mineral después de la combustión del carbón, hidrógeno, oxígeno y nitrógeno.

También Lange (1988), señala que la ceniza es el residuo de la combustión de la madera en fogones de leña y hornos que se utilizan en la fabricación artesanal de ladrillos, tejas y cerámica, teniendo como propiedades fisicoquímicas:

Químicas: El contenido de K_2O alcanza al 8% y Ca al 19,2%. Presenta un pH de 11 que es elevado, considerándose como fuertemente alcalino, característica que puede ser utilizada como un neutralizante eficaz de la acidez del suelo, siendo una alternativa a la cal agrícola (Ogden, 1990).

Físicas: Es un producto de consistencia blanda y es empleada en forma de polvo fino, no necesita de un proceso para ser utilizado; se lo mezcla de forma directa con otros ingredientes en la preparación de abonos orgánicos. Otra característica que tiene es una alta higronecopacidad y baja aireación (Centro de Estudios Ecológicos Argentinos, 2002).

Aubert (1997), nos sugiere que si hubiera una carencia de potasio, aportemos preferentemente cenizas de madera, a razón de 1,0 a 1,5 t/ha ó de 0,5 a 1,0 t/ha (Suquilanda, 1996), a otros abonos orgánicos y/o al suelo, por ser la ceniza un fertilizante precioso, rico en potasio, calcio y oligoelementos; el aporte al suelo debe ser localmente y no al voleo, (Ogden, 1990)
Complementando Negrete (2004) indica que la ceniza de leña se añade al montón de compost, para enriquecerlo con componentes nutritivos como ser el potasio y para reducir su acidez y mejorar su rendimiento.

En una investigación en Cuba, donde se utilizó la ceniza de residuos de caña (paja y bagazo), como principal alternativa proveedora de potasio y la cachaza como dador de nitrógeno, para la producción de banano y plátano, García (2001) nos indica que como resultado de las aplicaciones de cachaza asociada con ceniza vegetal, fueron en todos los casos significativamente superiores al testigo absoluto. También se tuvo un efecto inhibidor sobre el desarrollo de los nemátodos y su influencia positiva en la conformación de un sistema radicular vigoroso y sano.

Las aplicaciones mejoraron notablemente las propiedades del suelo, más vinculadas al crecimiento y desarrollo del plátano y banano, como la materia orgánica, nitrógeno total y potasio, con marcada repercusión en el rendimiento y sus componentes principales. El mismo autor menciona en el Cuadro 1 el efecto conseguido con residuos caseros y ceniza en el suelo.

Cuadro 1. Efecto de la aplicación de cenizas vegetales y residuos caseros sobre las propiedades del suelo y rendimiento del cultivo de banano. Información promedio de 10 parcelas experimentales.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>pH</th>
<th>MO</th>
<th>N total</th>
<th>K₂O</th>
<th>Ca</th>
<th>Peso racimo</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testigo</td>
<td>7,1</td>
<td>1,9</td>
<td>0,12</td>
<td>0,65</td>
<td>20,1</td>
<td>8,2</td>
<td>6,7</td>
</tr>
<tr>
<td>Ceniza+cachaza</td>
<td>7,7</td>
<td>3,9</td>
<td>0,23</td>
<td>2,50</td>
<td>22,5</td>
<td>18,4</td>
<td>14,9</td>
</tr>
</tbody>
</table>

Fuente: García, 2001
2.1.2 Control de plagas con ceniza

Para el control de insectos plaga y patógenos, hay algunas alternativas como, preparados de plantas, caldo bóordeles, caldo sulfocálculo, destacándose el caldo de ceniza de madera que nos ayuda a controlar diabroticas, pulguillas, cochinillas de frutales; para prevenir algunas plagas fungosas, como el mildiu, oidium y roya (Ramírez, 2001).

Igualmente INTA (2002), nos indica, para evitar el ataque de gusanos a las verduras, especialmente de hoja, podemos rodearlos con ceniza de madera, o bien preparando una dilución en agua, asperjar las plantas.

Por ejemplo se tienen investigaciones realizadas en Perú, para el control de plagas con ceniza de madera:

Abanto (1998), nos informa de los resultados para el control de Empoasca sp. y Epitrix sp. en el cultivo de la papa; encontrando que la intensidad del ataque de Epitrix y Empoasca disminuyeron progresivamente, a medida que se combinan las trampas amarillas, el bioabono con ceniza o cal. Obteniéndose los mismos resultados con las cigarritas y la pulguilla.

Fernández (1996), en los estudios del comportamiento en campo de las cenizas de pencas de Opuntia ficus-indica, para el control de larvas de Spodoptera frugiperda en el maíz, los resultados fueron que la ceniza provocó una inhibición de la alimentación actuando como repelente hasta en un 61%.

También se toma en cuenta que la acción de la ceniza de madera, no sea directamente sobre las plagas y las enfermedades, sino indirectamente, al acrecentar la resistencia de las plantas que necesitan nutrirse de algo diferente (Ogden, 1990).

Villarroel (1997), indica que la ceniza es rica en potasio, este elemento hace a la planta más resistente al ataque de los insectos, esto se debe, a que las paredes celulares son más gruesas y los tejidos firmes; al faltar en la planta y los frutos, se presenta una mayor acumulación de productos nitrogenados y de azúcares solubles, haciendo a la
planta susceptible al ataque de plagas, por ejemplo en plantas de tomate que no recibieron potasio en relación al nitrógeno y fósforo son atacados por *Pseudomonas solanacearum*, al igual que por ciertos virus, provocando el obscurecimiento interno de los frutos; por el contrario en papa, cuando se emplea potasio a la siembra o al aporque disminuye la incidencia de *Phytophthora infestans*.

2.2 Manejo ecológico

2.2.1 Elección y siembra de las semillas

Cornejo (2002), indica que en el proceso de producción orgánica de las hortalizas en un huerto, el tratamiento de las semillas es un principio que guía los posteriores trabajos, por lo cual, la elección de buenas semillas nos garantiza que el producto final tenga las características deseadas por el consumidor.

La siembra a realizarse en el huerto puede ser de carácter directo o indirecto. En la siembra **directa**, se depositan las semillas en el suelo, para que allí germinen, se desarrollen y fructifiquen. Esta práctica se realiza cuando las semillas tienen un tamaño grande o medio y pueden ser manipuladas con facilidad y depositadas convenientemente en el suelo.

La siembra **indirecta**, se realiza con cultivos, cuyas semillas son muy pequeñas y difíciles de manipular, haciéndose necesario elaborar almácigos o semilleros, donde las plantitas crecerán protegidas hasta el momento del transplante a campo definitivo. Esta práctica permite ahorrar semillas y escoger las plantas mejor conformadas y vigorosas (Suquilanda, 1996).

2.2.2 Sustratos para el almaciguero

Domínguez (2001) define como sustrato para viveros, como aquel o aquellos materiales que nos van a servir de soporte y alimento de la planta durante su desarrollo inicial. Teniéndose en cuenta que:

- Debemos utilizar materiales naturales, obtenidos y manipulados de forma natural.
• Los substratos elaborados, no tendrán ningún tipo de desinfección química artificial o no autorizada.
• No podrán llevar ningún tipo de fertilización química.

Los substratos más usados en la agricultura ecológica son:

La Turba, que se forma por la descomposición parcial de la vegetación en zonas húmedas pantanosas, en medios anaeróbios y generalmente ácidos, así, es una mezcla, de restos vegetales y materia orgánica en diversos estados de descomposición. Existen diversos tipos de turbas según su lugar de formación, o sea características del entorno y vegetación que la formaron (Domínguez, 2001).

La Tierra del bosque, conocida como mantillo forestal, este sustrato está constituida por restos orgánicos de diversos tamaños, se lo puede emplear directamente o sometiéndolo a un proceso de compostaje, lo cual es más recomendable; dependiendo su origen sus características pueden variar, encontrándose sustancias fitotóxicas como los fenoles de coníferas, elevada salinidad, pH bajo y escasez de nutrientes (Domínguez, 2001).

El Compost, según Silguy (1999), consiste en inducir una fermentación aerobia a una mezcla de materias orgánicas (estiércol de animales, residuos de cocina, paja turba, restos de corteza y de poda, etc.) a fin de transformarlas en una masa homogénea de estructura grumosa, rica en humus y en microorganismos.

2.2.3 Preparación del suelo

En la preparación del suelo, uno de los sistemas que se utiliza en la agricultura ecológica, es la labranza mínima, al respecto Altieri (1997), nos indica que este sistema reduce la pérdida de suelo; conserva su humedad, al cubrir con residuos vegetales el 50 % ó más de la superficie del suelo después de la siembra ó trasplante; reduce el consumo de energía; controla eficazmente la erosión y solo produce una reducida compactación del mismo.
Socasi (2002), señala que al utilizar este modo de preparación del suelo, solamente se coloca el abono orgánico en el lugar donde estará la planta y no así en todo el terreno, teniéndose un ahorro de fertilizantes.

2.2.4 Transplante

El transplante consiste en trasladar las plantitas que han crecido en el almácigo, al lugar definitivo de cultivo, una vez que han alcanzado el tamaño adecuado. Si el transplante es a raíz desnuda se lo debe realizar en horas de la tarde, o en días nublados, para evitar que las plantitas se marchiten por acción de los rayos solares (Suquilanda, 1996).

Otra variante, es el transplante con pan de tierra, como nos indica Socasi (2002), una vez preparado el sustrato de la almaciguera, se divide este en bloques de 6 x 6 cm, 8 x 8 cm, ó hasta 6 x 8 cm, con la ayuda de un machete o cuchillo y, en cuyo centro se hace el transplante de las plantitas obtenidas en el semillero, permaneciendo en la almaciguera hasta que tengan la altura adecuada; el transplante a lugar definitivo se lo puede realizar a cualquier hora del día, introduciéndose los bloques con las plantitas en los hoyos preparados, evitándose el daño a las raíces de las plántulas.

2.2.5 Fertilización orgánica

Según Suquilanda (1996), mantener la fertilidad del suelo de modo natural es el componente más importante del método de agri/horticultura orgánica. Hay una gama de fertilizantes orgánicos que pueden dividirse en tres grupos, aquellos que usan estiércol: el estiércol madurado, el té de estiércol, humus de lombriz, el estiércol de cuerno de vaca, etc.; los que se usan como abono verde (leguminosas), incluyen el cultivo asociado de leguminosas con otros cultivos y los que usan biomasa: el compost, estiércol de ortiga grande, residuos de cosechas, abonos líquidos fermentados, etc.

Para complementar a estos fertilizantes orgánicos, se pueden usar como aditivos la ceniza de madera, huesos molidos, cáscara de huevo, etc., que contribuyen de
manera considerable a la fertilización orgánica, con la adición de: potasio, fósforo, calcio, hierro, etc. (Restrepo, 1994).

2.2.6 Control de plagas

Se tiene diferentes prácticas para el manejo ecológico de plagas de los cultivos, entre ellos tenemos:

Altieri (1997), nos sugiere a la rotación de cultivos como una práctica para controlar insectos, hierbas y patógenos, por quebrar de forma efectiva el ciclo de vida de las plagas, en la mayoría de los casos, una rotación al año es suficiente, dependiendo de las condiciones ambientales y de determinados agentes patógenos ó especies de insectos, aumentándose la eficacia de esta práctica con la duración y frecuencia de las rotaciones.

Los monocultivos son casi siempre propensos a las plagas, por lo que el mismo autor menciona que la diversidad vegetal: reduce las enfermedades al incrementar las especies y/o la diversidad genética de los sistemas de cultivo; reduce las plagas, debido a que existen más parásitos y depredadores, además las plagas tienen mayor dificultad, para ubicarse, permanecer y reproducirse en sus huéspedes predilectos cuando estos hospederos están más dispersos en el espacio y se encuentran enmascarados, debido a estímulos visuales y químicos emanados de los cultivos asociados.

Según Suquilanda (1996), con la incorporación de materia orgánica al suelo, se tiene un suelo saludable, que dará cultivos sanos y resistentes al ataque de plagas. La materia orgánica adecuadamente descompuesta aparte de macro y micronutrientes, tiene vitaminas y antibióticos que contribuyen al desarrollo de los cultivos y a controlar las poblaciones de plagas y microorganismos patógenos.

La extracción y empleo de algunas sustancias implicadas en los mecanismos de defensa de las plantas puede ayudar a incrementar la resistencia de los cultivos, por ejemplo los extractos preparados de cola de caballo, cebolla y ajo, se emplean contra las plagas criptógámicas; los extractos de ortiga, consuelda mayor, helecho, ajenjo y
manzanilla se han utilizado contra pulgones y otras plagas. Gran parte del efecto de los extractos de plantas sobre las plagas, se produce por el fortalecimiento estructural de las plantas, incrementando su resistencia a la penetración de micelios de hongos y a las picaduras de insectos chupadores, o bien estimulando un desarrollo vigoroso para superar un ataque, (Lampkin, 1998).

El mismo autor indica, que se puede completar el control de plagas, con productos minerales y químicos que son permitidos en la agricultura ecológica, entre estos tenemos: el silicato de sodio, azufre, cal y el cobre, para el uso contra plagas criptogámicas; el jabón de potasa y los aceites minerales ó vegetales, que también pueden usarse para el control de insectos plaga.

Otro modo de control de plagas es el control biológico, que según Suquilanda (1996), consiste en la utilización de cualquier agente biológico de control natural, entre estos tenemos: bacterias: Bacillus thuringiensis; hongos: Beauveria bassiana, Verticilium lecanni, Metharrizium anisopliae, Gliocladium virens y Trichoderma viride; virus: virus de la poliedrosis granular y virus de la poliedrosis nuclear: nemátodos: Neoplectana carpocapse; insectos parasitoides: avispas como el Trichograma sp., para el control de lepidópteros en cultivos de tomate.

2.3 Cultivo del tomate

2.3.1 Origen

Huerres (1991), nos indica que el tomate se considera originario de Amerita del Sur, ya que todas las especies silvestres relacionadas con éste son nativas de la región andina, que hoy comparten Chile, Colombia, Ecuador, Bolivia y Perú, y que probablemente se originó en tipos silvestres del denominado tomate cereza (Lycopersicon esculentum var. Ceraciforme), que se puede hallar en forma espontánea en zonas tropicales y subtropicales de esta región (Menezes, 1992).

2.3.2 Importancia del cultivo de tomate

La importancia alimenticia de esta hortaliza se basa en su contenido de minerales y vitaminas, elementos indispensables para el desarrollo y correcto funcionamiento de
los diferentes órganos humanos, ocupando un lugar preponderante con relación al desarrollo económico y social de la agricultura a nivel mundial, (Huerres, 1991).

En el Cuadro 2 se muestra, los atributos nutritivos de esta hortaliza, comparando varios autores:

Cuadro 2. Valor nutritivo de la porción comestible de 100 g de tomate.

<table>
<thead>
<tr>
<th>COMPONENTES:</th>
<th>Maroto</th>
<th>Huerres</th>
<th>Juscaffresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>94 %</td>
<td>94,3 %</td>
<td>94 %</td>
</tr>
<tr>
<td>Hidratos de carbono</td>
<td>4 g</td>
<td>3,61 g</td>
<td>4 g</td>
</tr>
<tr>
<td>Grasas</td>
<td>-</td>
<td>0,51 g</td>
<td>0,40 g</td>
</tr>
<tr>
<td>Proteínas</td>
<td>1 g</td>
<td>-</td>
<td>1 g</td>
</tr>
<tr>
<td>Cenizas</td>
<td>0,3 g</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Otros (ácidos, licopenos, etc.)</td>
<td>0,7g</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitamina A</td>
<td>1700 UI</td>
<td>0,52 mg</td>
<td>1250 UI</td>
</tr>
<tr>
<td>Vitamina B₁</td>
<td>0,10 mg</td>
<td>0,10 mg</td>
<td>0,06 mg</td>
</tr>
<tr>
<td>Vitamina B₂</td>
<td>0,02 mg</td>
<td>0,05 mg</td>
<td>0,08 mg</td>
</tr>
<tr>
<td>Vitamina C</td>
<td>0,21 mg</td>
<td>29,3 mg</td>
<td>0,23 mg</td>
</tr>
<tr>
<td>Calcio</td>
<td>13 mg</td>
<td>8,9 mg</td>
<td>14 mg</td>
</tr>
<tr>
<td>Fósforo</td>
<td>27 mg</td>
<td>24,8 mg</td>
<td>23 mg</td>
</tr>
<tr>
<td>Hierro</td>
<td>0,5 mg</td>
<td>1,15 mg</td>
<td>5 mg</td>
</tr>
<tr>
<td>Sodio</td>
<td>3 mg</td>
<td>-</td>
<td>5 mg</td>
</tr>
<tr>
<td>Potasio</td>
<td>244 mg</td>
<td>-</td>
<td>300 mg</td>
</tr>
<tr>
<td>Calorías</td>
<td>22</td>
<td>21,2</td>
<td>19</td>
</tr>
<tr>
<td>Niacina</td>
<td>0,60 mg</td>
<td>0,79 mg</td>
<td>-</td>
</tr>
<tr>
<td>Azufre</td>
<td>-</td>
<td>-</td>
<td>14 mg</td>
</tr>
</tbody>
</table>

2.3.3 Tipos de planta

Según Maroto (1992), existen dos tipos fundamentales de crecimiento:
Cultivares con tallos de crecimiento **determinado** ó definido, como se muestra en la Figura 1, en los que el crecimiento del tallo principal, una vez que ha producido lateralmente varios pisos de inflorescencias, normalmente, entre 1 a 2 hojas, detiene su crecimiento como consecuencia de la formación de una inflorescencia terminal.

Cultivares con tallos de desarrollo **indeterminado** ó indefinido, que se indica en la Figura 2, que tienen la particularidad de poseer siempre en su ápice un meristemo de crecimiento, que produce un alargamiento continuado del tallo principal, originando inflorescencias solamente en posición lateral, normalmente cada tres hojas.

![Figura 1. Variedad de crecimiento determinado](image1)

![Figura 2. Variedad de crecimiento indeterminado](image2)
2.3.4 Características botánicas

Esta hortaliza, es una planta perenne de porte arbustivo, que se cultiva en forma anual. Puede desarrollarse en forma rastrera, semierecta ó erecta.

2.3.4.1 Sistema radicular

Rodríguez (1984), señala que el sistema radicular de esta planta, presenta una raíz principal, pivotante que crece unos 3 cm al día hasta alcanzar los 60 cm de profundidad, simultáneamente se producen raíces adventicias y ramificaciones que pueden llegar a formar una masa densa y de cierto volumen. Sin embargo la raíz pivotante, puede ser modificada por las prácticas culturales, pudiendo desaparecer después del transplante, si este es a raíz desnuda, siendo mucho más importante el desarrollo horizontal de la raíz adventicia.

2.3.4.2 Tallo principal

El tallo, es un eje con grosor que oscila entre 2 a 4 cm en su base, sobre el que se van desarrollando hojas, tallos secundarios (ramificación simpodial) e inflorescencias. En sección presenta una epidermis, provista de estomas, pelos glandulares, corteza ó cortex (las células exteriores son fotosintéticas y las internas son colenquimáticas), cilindro vascular y tejido medular (Infoagro, 2003).

2.3.4.3 Hoja

Según Rodríguez (1984), las hojas son compuestas e imparipinada, se insertan sobre los diversos nudos, en forma alterna. El limbo se encuentra fraccionado en 7, 9 hasta 11 foliolos. Al igual que el tallo están provistos de glándulas secretoras que desprenden un líquido de aroma muy característico.

2.3.4.4 Flor

CENTA (2001), indica que la flor del tomate es de color amarillo, consta de 5 o más pétalos y de 5 a 6 estambres; se agrupan en inflorescencias de tipo racimoso,
compuesto de 4 a 12 flores. Las inflorescencias se desarrollan cada 2 a 3 hojas en las axilas.
Las variedades de tomate de crecimiento determinado inician su floración entre los 55 a 60 días después de sembrados, mientras que los de crecimiento indeterminado, entre los 65 a 75 días.

2.3.4.5 Fruto

Según Menezes (1992), los frutos son bayas de tamaño y forma muy variable, dependiendo de la variedad, hay frutos de tamaño igual a la cereza hasta frutos que pueden llegar a pesar más de 500 g. Los frutos son: redondos, elongados, periformes o globulares achatados; pueden ser uniloculares (muy raros), biloculares, triloculares o pluriloculares, los frutos mas grandes, generalmente tienen muchos lóculos, de forma y distribución irregular, mientras que los pequeños tienen pocos lóculos y distribución uniforme; la coloración de la bayas puede ser rojo vivo, rosada o amarilla.

2.3.5 Taxonomía

El tomate según Huerres (1991), pertenece a la:

- División: *Macrophyllphyta*
- Subdivisión: *Magnoliophytina*
- Clase: *Paeonopsida*
- Orden: *Scruphulariales*
- Familia: *Solanaceae*
- Genero: *Lycopersicon*
- Especie: Aparece con diferentes denominaciones:
 - *Lycopersicon lycopersicum*, (L.) Karsten
 - *Lycopersicon esculentum*, Mill (Huerres, 1991)

2.3.6 Condiciones agroecológicas para el cultivo

Según Menezes (1992), la planta de tomate es tolerante a las variaciones climáticas y puede desarrollarse en climas tropicales de altura, subtropical y templado; exige buenas condiciones de temperatura, luminosidad y humedad relativa, pudiendo influir
directamente en la duración del ciclo de la planta, el cuajado de los frutos, la incidencia de plagas y enfermedades, la calidad de frutos y la producción.

2.3.6.1 Temperatura

La temperatura influye en todas las funciones vitales de la planta, como son la transpiración, fotosíntesis, germinación, etc., las temperaturas óptimas según el ciclo de vida son: temperaturas diurnas de 18 a 25 °C, en las fases de floración y fructificación; temperaturas nocturnas de 13 a 24 °C, en la fase de floración y fructificación; temperatura ideal para el desarrollo vegetativo, esta entre 21 a 23 °C; temperatura en que paraliza su desarrollo, se encuentra a los 12 °C (Rodríguez, 1984).

2.3.6.2 Fotoperiodo

El tomate es indiferente al fotoperiodo, pudiéndose desarrollar tanto en apocalas de días cortos como de días largos, pero es considerado una planta de días cortos. Se toma en cuenta la importancia de la luz como factor de producción, al estar asociada con su duración, intensidad y longitud de onda; plantas sometidas a altas intensidades de luz, generalmente presentan enrollamiento fisiológico de las hojas inferiores, a su vez, altas luminosidades promueven o aumentan el tenor de vitamina C de los frutos (Menezes, 1992).

2.3.6.3 Condiciones de suelo

Juscafresa (1987), señala que la tomatera es una planta que se adapta fácilmente a toda clase de tierras, sea cual sea la naturaleza y propiedades físicas del suelo, mientras estos sean profundas, de pH comprendido entre 6 y 7 y ricas en materia orgánica, pero vegetan en terrenos pobres en cal y magnesio.

La falta de humedad en el suelo, altera el metabolismo general de la planta, produciendo el fenómeno de absorción de agua de los frutos, por las diferentes partes del vegetal, produciendo así el agrietamiento del fruto, por el contrario un exceso de humedad en el suelo impide la adecuada circulación de aire por los poros de este, asfixiando las raíces, lo que produce el amarillamiento del follaje, y si esto se mantiene
por cierto tiempo, se afecta la floración, fructificación y finalmente los rendimientos (Huertas, 1991).

2.3.7 Fertilización

La fertilización, puede variar bastante según la variedad cultivada, el rendimiento que se quiera obtener, y en función de las técnicas de cultivo a emplearse; como término medio, se tiene para una hectárea: 30 t de estiércol, 50 kg de nitrogeno (N), 80 a 100 kg de fósforo (P_2O_5) y 200 a 250 kg de potasio (K_2O), como abonado de fondo (Maroto, 1995).

Por otra parte CENTA (2001), señala que la extracción de nutrientes por la planta de tomate, en forma decreciente es: potasio, nitrogeno, calcio, azufre, magnesio y fósforo; indicando, que los requerimientos para una hectárea son de: 150 kg de nitrógeno, 200 kg de fósforo, 275 kg de potasio, 150 kg de calcio, 25 kg de magnesio y 22 kg de azufre.

2.3.8 Labores culturales

2.3.8.1 Poda

Infoagro (2003), nos indica que es una práctica imprescindible para las variedades de crecimiento indeterminado, se lo realiza a los 15 a 20 días después del transplante, con la aparición de los primeros tallos laterales, que son eliminados, al igual que las hojas mas viejas, para facilitar la aireación y posterior aporcado; con ésta labor se determina el número de brazos (tallos) a dejar por planta, lo más frecuente son 1 a 2 brazos, aunque en tomates cherry suelen dejarse 3 y hasta 4 tallos. En tanto que la poda en variedades de crecimiento determinado, debe realizarse con mas precaución, al igual el desbrotado debe realizarse algo mas retrasado que los de crecimiento indeterminado (Maroto, 1992).
2.3.8.2 Tutorado

Consiste en instalar un soporte a la planta para un mejor manejo y poder obtener frutos de calidad y, para evitar que las hojas y sobre todo los frutos toquen el suelo, mejorando así la aireación general de la planta, favoreciendo el aprovechamiento de la radiación y la realización de las labores culturales, esta actividad se realiza después del transplante (CENTA, 2001).

2.3.8.3 Aporcado

Se lo realiza entre los 25 a 35 días después del transplante, con esto se logra mayor fijación de las plantas al suelo y ayuda eliminar malezas, durante el ciclo del cultivo pueden realizarse 2 a 3 aportes (CENTA, 2001). Esta labor cultural favorece que la planta emita raíces adventicias, facilitando su desarrollo y anclaje (Maroto, 1992).

2.3.8.4 Siembra

CENTA (2001), recomienda la siembra en almácigos o en bandejas, asegurando con ello el transplante de plantas bien desarrolladas y libres de enfermedades; el semillero o almacigo debe estar cerca del terreno donde se realizará el transplante definitivo, debe tener buena ubicación respecto al sol (orientación norte-sur), estar localizado en terreno plano, con buen drenaje y fuente de agua cercana.

2.3.8.5 Transplante

El transplante, debe ser realizado en horas más frescas del día y con suelo húmedo, para evitar un estrés hídrico muy pronunciado, cuando las plantas presentan 4 a 5 hojas definitivas o entre los 25 a 30 días después de la siembra, al momento del transplante, las plantas deben quedar enterradas en el surco a la misma profundidad en que se encontraban en el almacigo (Menezes, 1992).

2.3.9 Densidad de plantación

Menezes (1992), señala, que el espaciamiento del cultivo depende de diversos factores, entre los que se destacan: la variedad, la fertilidad natural del suelo, destino
del cultivo, el sistema de conducción, las condiciones de temperatura y humedad durante el ciclo del cultivo, por lo cual en variedades de mesa o consumo en fresco, la densidad debe variar de 24 37 mil plantas por hectárea, y para la industria, la población de plantas varía entre 40 y 70 mil por hectárea.

2.3.10 Cosecha

CENTA (2001), indica que al momento de la cosecha se debe considerar el grado o índice de madurez, distinguiéndose dos tipos de madurez: la fisiológica y la comercial, la primera se refiere cuando el fruto ha alcanzado el máximo crecimiento y maduración, la segunda es aquella que cumple con las condiciones que requiere el mercado, si son para procesamiento se cosechan cuando están completamente maduros (maduración roja), ya que son procesados lo más pronto posible, si es destinada al mercado fresco, depende de los procedimientos de la comercialización y de la distancia al mismo, por ejemplo para un embarque a larga distancia se cosecha el tomate cuando esta en “maduración verde” (Gordón, 1992).

2.3.11 Plagas y enfermedades

En los Cuadros 3 y 4 se muestran las principales plagas y enfermedades del tomate:

Cuadro 3. Principales plagas del tomate

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polilla del tomate...........</td>
<td>Tuta absoluta (Meyrick)</td>
</tr>
<tr>
<td>Gusano del fruto.............</td>
<td>Heliothis zea (Bodie)</td>
</tr>
<tr>
<td></td>
<td>Heliothis virescens</td>
</tr>
<tr>
<td>Pulgones......................</td>
<td>Aulacorthum solani</td>
</tr>
<tr>
<td></td>
<td>* Macrosiphum euphorbiae*</td>
</tr>
<tr>
<td></td>
<td>Aphis gossypii</td>
</tr>
<tr>
<td>Pulguilla saltona...............</td>
<td>Epitrix cucumeris</td>
</tr>
<tr>
<td>Catarinita....................</td>
<td>Diabrotica sp</td>
</tr>
<tr>
<td>Trips de California..........</td>
<td>Frankliniella occidentalis</td>
</tr>
<tr>
<td>Mosquita blanca...............</td>
<td>Trialeurodes vaporariorum</td>
</tr>
<tr>
<td>Eríofoido del tomate..........</td>
<td>Aculops lycopersici</td>
</tr>
</tbody>
</table>

Cuadro 4. Principales enfermedades del tomate

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mal del talluelo</td>
<td>Pythium, Rhizoctonia, Fusarium y Phytophthora</td>
</tr>
<tr>
<td>Mancha gris de la hoja</td>
<td>Stemphylium solani</td>
</tr>
<tr>
<td>Marchites o fusariosios</td>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>Moho de la hoja</td>
<td>Cladosporium fulvium</td>
</tr>
<tr>
<td>Tizón tardío (mildiu)</td>
<td>Phytophthora infestans</td>
</tr>
<tr>
<td>Tizón temprano</td>
<td>Alternaria solani</td>
</tr>
<tr>
<td>Podredumbre gris o botritis</td>
<td>Botrytis cinerea</td>
</tr>
<tr>
<td>Oído ceniza u oidiopsis</td>
<td>Leveillula taurica</td>
</tr>
<tr>
<td>Septoriosis</td>
<td>Septoria lycopersici</td>
</tr>
<tr>
<td>Antracnosis del tomate</td>
<td>Colletotrichum coccodes phomoides</td>
</tr>
<tr>
<td>Marchites bacteriana</td>
<td>Pseudomonas y Xanthomonas</td>
</tr>
<tr>
<td>Pudrición bacteriana</td>
<td>Erwinia carotovora</td>
</tr>
<tr>
<td>Cancro bacteriano del tomate</td>
<td>Clavibacter michiganensis</td>
</tr>
<tr>
<td>Virus bronceado del tomate (TSWV)</td>
<td></td>
</tr>
<tr>
<td>Virus del rizado amarillo del tomate</td>
<td></td>
</tr>
<tr>
<td>Virus del mosaico del tomate</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: Agrios (1996)
3. LOCALIZACIÓN Y CARACTERÍSTICAS DEL ÁREA DE ENSAYO

3.1 Ubicación geográfica

El estudio se realizó en la Estación Experimental de Coroico, que se muestra en el Anexo 10, dependiente del Servicio Departamental Agropecuario de la Prefectura de La Paz. La estación se encuentra ubicada en la comunidad de San Pedro de la Loma, provincia Nor Yungas del Departamento de La Paz. Geográficamente se sitúa entre los 16° 08’ 00” de latitud Sur, 67° 46’ 00” de longitud Oeste como se muestra en la Figura 6 y a una altitud de 1630 m.

El municipio de Coroico, limita al Norte con la provincia Caranavi y provincia Murillo, al Oeste con la provincia Murillo, al Este con Arapata, perteneciente a la segunda sección de la provincia Nor Yungas, al Sur con la provincia Sud Yungas y Millahuaya, que pertenece a la segunda sección de la provincia Nor Yungas.

3.2 Clima

Montes de Oca (1997), menciona que la precipitación comúnmente no sobrepasa los 2000 mm; con una precipitación media anual de 1228 mm, y la temperatura promedio anual fluctúa entre los 17 °C a 24 °C y su promedio ambiental 20 °C, en la zona se tiene un clima semicálido, sin cambio térmico invernal bien definido, sin estación seca.

Con datos climáticos proporcionados por el Servicio Nacional de Meteorología e Hidrológía de Carmen Pampa, se tiene el climadiagrama de la Figura 3, en el cual se puede observar las variaciones de precipitación pluvial y de temperatura media mensual de los años 1996 hasta 2002, en Anexo 9 tenemos datos de temperatura y precipitación pluvial de los meses en que se llevó el ensayo de marzo a agosto del 2004.

En la Figura 3, se observa que entre los meses de marzo y agosto se presentaron periodos húmedos y muy húmedos, siendo predominante los meses húmedos.
Figura 3. Climadiagrama de la zona de Coriico

FUENTE: Elaboración con datos de la Estación Meteorológica de Carmen Pampa.

- PERIODO HÚMEDO
- PERIODO DE MÁXIMA PRECIPITACIÓN (Mayor a 100 mm)
- CURVA DE PRECIPITACIONES MEDIAS MENSUALES
- CURVA DE TEMPERATURAS MEDIAS MENSUALES
Con relación a las temperaturas registradas durante el ensayo, que se muestra en el Anexo 9 y Figura 4, se tiene una media máxima durante el mes de abril, con una temperatura de 25,28 °C, presentándose la mínima promedio en el mes de mayo con una temperatura de 10,48 °C, con un promedio de los 6 meses en relación a la temperatura promedio de 16,5 °C.

Figura 4. Temperaturas promedio de Coroico del periodo marzo-agosto de 2004

Las precipitaciones pluviales registradas durante los meses de marzo y agosto del 2004, fueron de 778,68 mm, con un promedio de 129 mm por mes, la máxima precipitación se registró en abril con 217 mm; en junio se tuvo la menor precipitación pluvial con 68 mm que se indica en el Anexo 9 y Figura 5. Durante el mes de julio se presentó un incremento de la precipitación pluvial en relación a los anteriores años; de un promedio de 7 años, se registró 56.29 mm, comparando este dato con la precipitación de julio del 2004, donde se registró 116.9 mm, se tuvo un incremento del 100 %.
3.3 Fisiografía

Morales (1990), indica que la zona de Coroico se encuentra entre 2500 y 1500 m de altitud, encontrándose densamente habitada y cultivada.

La formación se encuentra sobre laderas de fuerte pendiente, en valles aluviales relativamente amplios y quebradas profundas. En general los suelos en los que prospera la formación son superficiales y pedregosos.

3.4 Suelos

Soto (1976), citado por Alcázar (1997), nos indica que los suelos de la zona donde se encuentra la Estación Experimental de Coroico, son suelos originarios de un material esquisto micáceo, con una capa superficial de textura media, estructura angular, con un color que varía de pardo a pardo débil, debido a la influencia de materia orgánica.

La sección de 20 a 25 cm de profundidad, presenta una textura franco arcillo-limosa, estructura bloque subangular. En cuanto a las características químicas se consideran a estos suelos de moderado a fuertemente lixiviados, con una saturación de bases que
varía de muy bajo a moderado, su reacción es fuertemente ácida, con un pH de 4.6 a 5.2, el contenido de materia orgánica en condiciones naturales es moderado.

Complementando a lo anterior, IBTA (1979), señala que los suelos de la estación experimental de Coroico, presenta una textura y profundidad variables, que por lo general, son ácidos, pobres en nitrógeno, fósforo, calcio y magnesio, mientras que son ricos en cobre, cinc y molibdeno, con una gruesa capa orgánica y humus de tipo Mull. Su capacidad para uso agrícola tiene ligeras y moderadas limitaciones.

3.5 Características ecológicas

De acuerdo a la clasificación del Mapa Ecológico de Bolivia, citado por Alcazar (1997), Coroico se caracteriza por presentar los pisos ecológicos de: bosque húmedo subtropical, bosque húmedo montano bajo subtropical y el último piso ecológico identificado es, bosque muy húmedo montano bajo subtropical.

3.5.1 Vegetación predominante

Morales (1990), menciona, que debido a la colonización de muchos años de esta zona, su capa de vegetación se encuentra fuertemente alterada, originalmente crecía en esta zona un bosque de mediana altura, con una diversidad de especies; actualmente se puede encontrar un bosque montañoso que presenta un mosaico de comunidades en diferentes etapas de sucesión, de los cuales las familias más importantes son la: Moraceae, Sapotaceae, Lauraceae, Euphorbiaceae, Meliaceae, Sapindaceae, Rubiaceae, Leguminosae (especialmente del género Inga) y Araliaceae. Especies típicas son: Dendropanax sp, Poulsenia armata, Clarisia racemosa, Tetragastris altisima y Cinchona officinalis. En lugares empobrecidos, con suelos ácidos, solamente se mantiene un pastizal alto que se quema a menudo.
Figura 6. Localización del área de estudio, Coroico, Provincia Nor Yungas, Departamento de La Paz

Localización del Área de Estudio

FUENTE: INE (1999)
3.5.2 Cultivos predominantes

La producción agrícola del Municipio tiene plantaciones de café y coca entre los cultivos con mayor superficie; en menor proporción están el plátano, yuca, hualusa, hortalizas, racacha, maíz, piña y palta, la producción de café y coca es destinada a la comercialización, mientras que los cultivos restantes son para el consumo doméstico. Su producción de cítricos es importante, la mandarina y naranja, son muy requerida en mercados regionales y urbanos (INE, 1999).
4. **MATERIALES Y METODOS**

4.1 **Materiales**

4.1.1 **Material genético**

Se utilizó semillas de la variedad “Rió Grande”, que se muestran en la Figura 7, originario de las regiones paulistas del Brasil, ésta es de doble propósito, tanto para la industrialización como para consumo en fresco, son plantas de tipo determinado, muy productivas y rústicas que permiten espaciamientos más estrechos, lográndose una mayor densidad de plantas. Sus frutos pueden ser cosechados mecánicamente o manualmente, estos son consistentes, de tamaño mediano, de forma cuadrada oval, con ápice ligeramente apuntado, de buen tamaño y muy firmes, presentan una coloración rojiza exterior e interiormente, contando de 2 a 3 lóculos.

![Figura 7. Variedad “Rió grande”](image)

Este cultivar es de ciclo medio a tardío, iniciándose su floración a los 45 días después del transplante, la maduración de sus frutos a los 110 días después del transplante y su rendimiento es de 50 a 110 t/ha (Sobrino, 1989). Son plantas resistentes al Verticillium, Fusarium y Alternaria; siendo su costo de producción menor a los costos de producción de las variedades de crecimiento indeterminado, pudiendo bajar los precios de éstos (Collao, 1997).
4.1.2 Material de campo

Entre los materiales de campo que se utilizaron tenemos: pala, chontilla, martillo, sierra, machete, carretilla, mochila de aspersión de 20 litros, cámara fotográfica, balanza de precisión, cinta métrica, flexómetro, calibrador, lienzo, bolsas de polietileno, estacas, yutes y regadera.

4.1.3 Insumos

Los insumos utilizados fueron: ceniza de madera, gallinaza, caldo sulfocálcico, conocido con el nombre comercial de biosulfocal, *Trichoderma spp*, conocido en el comercio como tricodamp, azufre, sulfato de cobre, cal, ajo, hojas de paico y de sach’a.

4.2 Metodología

4.2.1 Muestreo y análisis de suelo

Se obtuvieron 20 muestras de suelo al azar utilizando el método en zig-zag, a 25 cm de profundidad de toda el área donde se realizó el ensayo, así como recomienda Chilon (1996), las muestras tomadas se agruparon y mezclaron para así obtener una muestra compuesta homogénea; posteriormente se procedió a realizar el cuarteo y se seleccionó una muestra de aproximadamente 1 kg para el respectivo análisis físico-químico. El análisis se realizo en el Instituto Boliviano de Ciencia y Tecnología Nuclear (IBTEN).

4.2.2 Muestreo y análisis de la ceniza de madera

La ceniza de madera se recolectó en parte de la comunidad de San Pedro de la Loma, siendo completada, con la obtenida por la quema de troncos y ramas provenientes de la limpieza del terreno; esta ceniza recolectada fue el resultado por la combustión de madera de *siquile* (*Inga sp*), *el cafeto* (*Coffea arabica*) y en menor proporción otras especies propias de la zona.
La ceniza recolectada, previamente se tamizó para eliminar trozos de carbón y otros materiales, luego se agrupó y se mezcló hasta obtener una muestra homogénea compuesta, luego se realizó el cuarteo y se seleccionó una muestra de aproximadamente 1 kg, para el respectivo análisis químico, que se hizo en el IBTEN (Instituto Boliviano de Ciencia y Tecnología Nuclear).

4.2.3 Preparación del terreno

La preparación del terreno, se efectuó en los meses de febrero, marzo y abril, limpiando los arbustos y pequeños árboles, con un machete y hacha, seguido de un deshierbe superficial, todo este material orgánico derribado, se corto en pequeños trozos y fueron esparcidos sobre la superficie del suelo, para protegerlo de la erosión y al descomponerse mejorar su estructura y fertilidad.

Tres semanas antes del transplante, nuevamente se realizó un deshierbe con una chontilla, luego utilizando el método de labranza mínima individual, el cual consiste en solo preparar el suelo alrededor donde se transplantará la plántula, se removió el suelo en forma de hoyos cónicos, con un diámetro de 30 a 35 cm y a una profundidad de 25 a 30 cm aproximadamente.

4.2.4 Siembra

Para la siembra, se construyó un germinadero de madera, que se muestra en la Figura 8, con dimensiones de 0,80 m de largo, 0,50 m de ancho y una altura de 0,10 m, posteriormente se procedió al llenado de la caja con limo arena recogido de un pequeño río, que pasa por las cercanías de la Estación; el sustrato fue desinfectado previamente por “solarización”, el cual consistió en extender el limo arena sobre yutes, para que el sol caliente el sustrato y vaya eliminando los patógenos, se removió cada cierto tiempo, esta labor duró 7 horas aproximadamente.

Se sembró con una densidad de 2 semillas por 5 cm², en surcos de 1 cm de profundidad, que se hicieron en el limo arena, utilizándose 1500 semillas aproximadamente, posteriormente se cubrió el germinadero con un yute para la protección de las semillas y se mantuvo húmedo el sustrato mediante riegos diarios.
4.2.5 Preparación de la almaciguera

Para la almaciguera, que se muestra en la Figura 9 y 10, se realizó el deshierbe de un área de 8 m², posteriormente se niveló el terreno con la ayuda de una picota, pala y rastrillo, sobre esta superficie se construyó un marco de madera, con las medidas de 6,6 m de largo, 1 m de ancho y una altura de 0,15 m, luego se procedió a dividirlo en 5 partes para los respectivos tratamientos. Por encima de este marco de madera, se hizo una semisombra de 1 m de altura, para proteger del sol, por unos días, a las plántulas recién transplantadas del germinadero.

Posteriormente se procedió a preparar el sustrato para la almaciguera, cuya composición fue de 50 % de tierra del lugar, 20 % de tierra negra y 30 % de gallinaza con su cama (cascarilla de arroz). Esta composición se obtuvo después de realizar pruebas de plasticidad, para evitar que se disgreguen los cubos de sustrato con las plántulas, en el momento del transplante definitivo.

La tierra del lugar y la tierra negra, fueron previamente cernidas y recogidas de los predios de la Estación, la gallinaza se obtuvo de una de las granjas, que se encuentran en las cercanías de la comunidad de San Pedro, la que fue cernida para separar los
grumos de mayor tamaño, sin ser separada de su cama, posteriormente se procedió a la mezcla de estos tres componentes, en las cantidades ya establecidas, más 0,5 kg de azufre y 0,5 kg cal; terminada esta labor se procedió al llenado del marco de madera con este sustrato, para luego añadirse ceniza de madera, previamente calculada para cada tratamiento y Trichoderma sp, un hongo antagonista de hongos patógenos, en una cantidad de 40 g por m² y, finalmente se niveló el sustrato.

Para terminar, se realizó un riego abundante del sustrato, logrando que éste se compacte un poco, y con la ayuda de un machete se lo dividió en bloques de 10 por 10 cm, en cuyo centro se hizo el transplante de las plantitas de tomate de 8 a 10 días obtenidas del germinadero, aquí permanecieron las plántulas hasta que alcanzaron una altura entre 20 a 25 cm, lo que sucedió aproximadamente en un mes.
4.2.6 Transplante al lugar definitivo

Para el transplante al lugar definitivo, se realizaron las labores que se indican en la preparación del terreno, después de realizar los hoyos a distancias de 1,05 entre líneas y 0,70 m entre plantas, se procedió a la fertilización con gallinaza y ceniza de madera, éste último de acuerdo a los tratamientos, luego se transportó la almaciguera hasta los hoyos, los cubos de sustrato con su plántulas de tomate, se introdujeron en los hoyos, como se muestra en la Figura 11, para luego ser cubiertos con la tierra del hoyo, gallinaza y ceniza mezclados previamente, dejándolos unos 5 cm bajo nivel aproximadamente, para facilitar el riego o para retener el agua de lluvia.

Figura 11. Plántula transplantada con su pan de tierra

4.2.7 Labores culturales

4.2.7.1 Tutorado

Según bibliografía consultada, las variedades de tomate de crecimiento determinado no necesitan tutoraje, pero se observó en campo, que era necesario hacerlo, porque las plantas tendían a caer a ras del suelo; posteriormente cuando los frutos
comenzaron a aumentar de tamaño, por el mismo peso de estos, tendieron a caer al suelo con su rama, por lo cual fue necesario amarrarlo a su respectivo tutor, labor que consistió en instalar un soporte para la planta, se lo realizó a 1 mes después del transplante.

4.2.7.2 Poda

Se realizo una poda mínima de: brotes, que consistió en la eliminación de algunas brotes axilares, cuando estos estaban pequeños (6 a 10 cm de longitud), especialmente los que se hallaban cerca de la superficie del terreno y así evitar enfermedades o ataque de plagas, este trabajo se realizó inmediatamente después del transplante; follaje, favoreciendo así la aireación de la planta, para evitar la incidencia de enfermedades y permitir un buen desarrollo de la planta.

4.2.7.3 Fertilización

Para la fertilización se utilizó 8 t/ha de gallinaza, proveniente de una de las granjas que existen alrededor de la comunidad de San pedro de la Loma.

4.2.7.4 Control de plagas y enfermedades

Al adquirir semilla certificada de una semillera de la ciudad de La Paz, se pudo observar que no se presentó ninguna enfermedad en el germinadero, durante los 10 días, desde la siembra hasta el transplante a la almaciguera.

Donde se observó la presencia de plagas fue en la almaciguera, se detectó la presencia de insectos de follaje, como la “pulguilla saltona” (Epitrix sp.), que se muestra en la Figura 12, un pequeño escarabajo, que en su estadio adulto causa daños en las hojas, en los cuales producen numerosos agujeros finos y redondos. Otro insecto que se presentó, fue la “tortuguilla” (Diabrotica sp.), los adultos se muestran en la Figura 13, se alimentan de follaje y yemas, haciendo agujeros irregulares, pudiendo defiolar las plantas cuando estas todavía están pequeñas.
Figura 12. Pulguilla saltona (*Epitrix* sp.)

Figura 13. *Diabrotica* sp.

Para el control de estos dos insectos se utilizó repelentes naturales, los cuales fueron, el *Allium sativum* y *Cestrum parqui* conocido como Andrés waylla, los cuales se machacaron, en un batán, 250 g de dientes de ajo y 250 g de hojas de Andrés waylla, que se dejaron reposar durante 24 horas en 2 litros de agua por separado, como sugiere Ramírez, (2001), paralelamente se preparó una solución jabonosa, disolviendo ¼ barra de jabón en 1 litro de agua; después de filtrar, los preparados de ajo, Andrés waylla y jabón, se mezclaron el extracto de ajo y Andrés waylla con la solución jabonosa, por separado, diluyéndose posteriormente en 10 litros de agua. Ambos repelentes se asperjaron por separado sobre las plántulas de la almaciguera, con un intervalo de 15 días.

En cuanto a enfermedades, en la almaciguera, las plántulas de tomate, fueron afectadas, solamente por el “tizón temprano” (*Alternaria solani*), que se presento días antes del transplante al terreno definitivo, por las condiciones de alta humedad que se dieron esos días, por causa de las lluvias propias de la estación de otoño, para su control, se utilizo el caldo sulfocálcico, conocido en el mercado como “biosulfocal”, en una proporción de ½ litro de caldo sulfocalcico para 20 litros de agua, asperjándose cada 7 días, en la almaciguera y hasta días antes de la primera floración de las plantas de tomate. El caldo sulfocalcico, también es utilizado para el control de plagas, por lo
cual ayudo en el control de insectos que atacaron a las plantas, en la almaciguera y en el terreno definitivo.

En el campo definitivo, las plantas de tomate, fueron afectadas por las dos plagas mencionadas anteriormente, notándose que a medida que las plantas de tomate aumentaban de tamaño y de follaje, fueron disminuyendo su número, hasta ser mínima su presencia, por lo cual el daño causado en las hojas por estas ya no fue significativo.

Cuando las plantas estaban en plena floración y con los primeros frutos, se presento otra plaga, conocido como gusano de fruto (Heliotis sp), que se puede apreciar en las Figuras 14 y 15, la larva de esta lepidóptera, causa daños al principio, a las hojas, para luego taladrar los frutos, que permitieron la entrada de patógenos dañando los frutos; para el control de esta larva, se utilizo las hojas de sach’a (Derris elliptica), el mismo fue preparado de la misma manera que se preparó el repelente con ajo, asperjándose cada 7 días inicialmente y después cada 15 días. También se pudo observar, que el preparado de ajo, es un excelente repelente de las larvas de este insecto.

![Figura 14. Larva de Heliotis sp.](image1)

![Figura 15. Adulto de Heliotis sp.](image2)

En relación a las enfermedades, solo se presentaron dos: el tizón temprano (Alternaria solani) y el tizón tardío (Phytophthora infestans), el que se presentó con mayor
incidencia fue el tizón tardío, en la fase de fructificación de la planta de tomate, como se observa en las Figuras 16 y 17.

![Figura 16. Hojas atacadas por el Tizón tardío](image1)

![Figura 17. Fruto afectado por el Tizón tardío](image2)

Ambos se controlaron en sus inicios con una poda sanitaria, el cual consiste en eliminar las hojas atacadas por la enfermedad, sacarlas fuera del área de cultivo y quemarlas.

Otros productos que se utilizaron: azufre en polvo, en una proporción de 100 gramos por 20 litros de agua, asperjado cada 15 días; el caldo bórdeles, que es una solución a base de sulfato de cobre y cal apagada, que nos sirve para controlar enfermedades causadas por hongos (CIPCA, 2002), se asperjo al igual que el azufre cada 15 días.

4.2.8 Cosecha

La cosecha se efectuó manualmente, por la tarde, para evitar la humedad procedente del rocío de las mañanas, porque favorece a la descomposición y putrefacción del fruto; se cosechó en la etapa “verde maduro o pintón”, para reducir pérdidas ocasionadas por el transporte. Posterior a la cosecha, se mantuvo a los frutos bajo techo (sombreado) y fresco para evitar los rayos solares, para después ser clasificados por tamaño para la venta.
4.3 Procedimiento experimental

4.3.1 Diseño experimental

El diseño experimental utilizado fue el de bloques al azar, con 5 tratamientos y 4 repeticiones sugerido por Calzada (1982).

4.3.2 Modelo estadístico

Para evaluar los efectos, se utilizó el siguiente modelo lineal aditivo:

\[X_{ij} = \mu + \beta_j + \alpha_i + \epsilon_{ij} \]

Donde:

- \(X_{ij} \) = una observación
- \(\mu \) = promedio general del ensayo
- \(\beta_j \) = efecto del \(j \)-ésimo bloque
- \(\alpha_i \) = efecto del \(i \)-ésimo tratamiento
- \(\epsilon_{ij} \) = error experimental
4.3.3 Tratamientos

Se formularon 5 tratamientos, teniendo en cuenta que el cultivo de tomate necesita de 200 a 250 kg de K₂O (Maroto, 1995).

Morales (2002), nos indica que la ceniza de madera contiene carbonato de potasio, en una proporción de 5 a 25 %, teniendo en cuenta estos datos se formularon los tratamientos con ceniza:

<table>
<thead>
<tr>
<th>Transplante (Kg/ha)</th>
<th>Floración (Kg/ha)</th>
<th>Formación de frutos (kg/ha)</th>
<th>Total de ceniza (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento 0 = 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tratamiento 1 = 200</td>
<td>300</td>
<td>300</td>
<td>800</td>
</tr>
<tr>
<td>Tratamiento 2 = 370</td>
<td>565</td>
<td>565</td>
<td>1500</td>
</tr>
<tr>
<td>Tratamiento 3 = 550</td>
<td>825</td>
<td>825</td>
<td>2200</td>
</tr>
<tr>
<td>Tratamiento 4 = 720</td>
<td>1090</td>
<td>1090</td>
<td>2900</td>
</tr>
</tbody>
</table>

Cada tratamiento se aplicó de forma fraccionada desde la almaciguera, en el momento del transplante al lugar definitivo, en la floración y durante la formación de los frutos.

4.3.4 Características de la unidad experimental

El ensayo se realizó como se muestra en el croquis de la Figura 19.

Las características del ensayo fueron:

- Número de tratamientos: 5
- Número de repeticiones: 4
- Área total del experimento: 446,25 m²
- Área neta del experimento: 367,5 m²
- Área de los pasillos: 78,8 m²

Bloques:

- Número de bloques: 4
- Largo de bloque: 26.25 m
- Ancho de bloque: 3.5 m
- Área de bloque: 91.88 m²
- Pasillo entre bloques: 1 m
Parcelas:

- Número total de parcelas: 20
- Número de parcelas por bloques: 5
- Largo de parcelas: 5.25 m
- Ancho de parcelas: 3.5 m
- Área de parcela: 18.38 m²
- Distancia entre plantas: 0.7 m
- Distancia entre líneas: 1.05 m

Figura 19. Croquis del campo experimental

Lectura:

- T_1 = tratamiento testigo
- T_2 = tratamiento 2
- T_3 = tratamiento 3
- T_4 = tratamiento 4
- T_5 = tratamiento 5
4.3.5 Variables de respuesta

Para el presente estudio se realizaron las determinaciones de:

4.3.5.1 Días a la emergencia

Para los días a la emergencia se seleccionaron un número de semillas, utilizando como sustrato arena, previamente desinfectada, colocado la arena en placas Petri, se realizó la siembra de 100 semillas con tres repeticiones en 3 placas Petri, para luego ser colocados en sitios protegidos, no siendo indispensable la presencia de luz. Se determinó el número de días, desde la siembra hasta que el 50 % de las plántulas hubiera emergido, para luego ser transplantadas a la almaciguera.

4.3.5.2 Altura de planta

Se realizaron registros de las alturas de las tomateras, desde la superficie del suelo hasta el ápice terminal de la planta, estas lecturas se tomaron en el campo experimental, después de la primera cosecha de frutos, dicha magnitud se expresó en centímetros, todo ello como promedio general de 7 plantas por unidad experimental.

4.3.5.3 Peso de materia fresca y seca

Para la materia fresca se obtuvo 3 muestras por unidad experimental, para luego ser pesadas, después se obtuvieron 200 g de cada muestra recolectada por unidad experimental, para la determinación de la materia seca, estas muestras se dejaron secar al ambiente y terminándose de secar en un horno a 80 °C por 24 horas.

4.3.5.4 Número de días a la floración

Se registraron los días transcurridos desde el transplante a campo definitivo a la primera floración, tomando en cuenta, que el 50 % de las plantas mostraran sus primeras flores en cada unidad experimental.
4.3.5.5 Número de frutos por planta

Se procedió a contar el número de frutos de 7 plantas muestreadas al azar, a lo largo de la producción, para después clasificar los frutos en 3 tamaños: grande de 80 a 100 gramos; mediano de 60 a 79 gramos y menor de 40 a 59 gramos.

4.3.5.6 Días a la cosecha

Se contaron los días transcurridos desde el transplante a campo definitivo hasta la primera cosecha de frutos.

4.3.5.7 Peso de frutos

Para esta variable, se clasificaron en 3 tamaños los frutos, pesándose por separado cada grupo, para después hallar el total, esto se hizo a lo largo de la producción de la tomatera, esta expresado en g/planta. Los datos se obtuvieron de 7 plantas, por unidad experimental, muestreadas al azar.

4.3.5.8 Rendimiento por hectárea

Se evaluó con el peso total de cada unidad experimental, para luego ser expresada en kilogramos por hectárea (kg/ha), no se tomo en cuenta los bordes de la unidad experimental.

4.3.5.9 Diámetro de tallo

Las lecturas de los diámetros del tallo de las plantas, se realizaron con la ayuda de un calibrador, en 7 plantas, por unidad experimental, el mismo se expresó en centímetros.

4.3.5.10 Análisis económico

El análisis económico (B/C), se realizo con el propósito de identificar los tratamientos que mas beneficios presentan. Todos los datos de producción (mano de obra, siembra y otros), fueron calculados para la superficie de una hectárea, con los rendimientos obtenidos para cada uno de los tratamientos.
4.3.6 Análisis de datos

Los datos fueron analizados estadísticamente y económicamente; en lo que se refiere al análisis estadístico, se hizo un “análisis de varianza”, el cual nos muestra las diferencias “significativas” o “no significativas”, posteriormente se efectuó la prueba de Duncan, para establecer diferencias y similitudes.

El análisis económico fue evaluado mediante los parámetros económicos de: “Beneficio bruto”, “Beneficio neto” y la relación “Beneficio / costo”. Los análisis económicos de ensayos agrícolas tienen por objeto de comparar los costos y beneficios para determinar cual de los posibles tratamientos tiene un rendimiento aceptable; una vez conocido los costos y beneficios, deben asignarse un precio y determinarse sus valores económicos.
5. RESULTADOS Y DISCUSIONES

5.1 Suelo

De acuerdo al análisis físico-químico de suelos, que se muestra en Anexo 1, efectuado en el Instituto Boliviano de Ciencia y Tecnología Nuclear (IBTEN), las mismas presentaron las siguientes propiedades físico-químicas:

5.1.1 Propiedades físicas

Las características físicas que se muestra en el Cuadro 5 de la capa arable del sitio experimental, corresponden a una textura arcillo limoso con 12 % arena, 47 % arcilla y 41 % limo, además se pudo observar presencia de grava en un 13,6 %. La tomatera es una planta que se adapta fácilmente a toda clase de suelos, como nos indica Juscafresa (1987).

Cuadro 5. Análisis físico de suelo del terreno experimental.

<table>
<thead>
<tr>
<th>ANÁLISIS FÍSICO</th>
<th>PARAMETROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena</td>
<td>12 %</td>
</tr>
<tr>
<td>Limo</td>
<td>41 %</td>
</tr>
<tr>
<td>Arcilla</td>
<td>47 %</td>
</tr>
<tr>
<td>Clase Textural</td>
<td>YL</td>
</tr>
</tbody>
</table>

FUENTE: IBTEN

5.1.2 Propiedades químicas

El análisis químico de suelo de la parcela experimental que se muestra en el Cuadro 6, nos indica que se encontró un pH de 5,51, que significa que el suelo presenta una acidez media (Gordón, 1992), al respecto Juscafresa (1987), señala que la planta de tomate se cultiva en suelos con un pH de 6 a 7, que son ligeramente acidas.

Tomando en cuenta los parámetros y normas indicados por Chilon (1996), el suelo presento una conductividad eléctrica de 0,069 mS/cm, por lo cual el suelo no presenta problemas de salinidad, al respecto Maroto (1995), menciona que por debajo de 8
mS/cm no hay grandes diferencias en los rendimientos, al contrario al incrementarse la CE, disminuye el diámetro, el peso fresco y el peso seco de los frutos; en relación a la capacidad de intercambio cationico (CIC), se tuvo un valor de 4,65, interpretándose como un valor muy bajo, también se encontró una saturación de bases del 88,83 %, indicando un valor alto, en relación a la saturación de aluminio, se hallo un 11,18 %, en base a los parámetros consultados es un valor bajo. El contenido de calcio intercambiable es bajo con un valor de 2,87 meq/100 gr de suelo.

Cuadro 6. Análisis químico de suelo del terreno experimental.

<table>
<thead>
<tr>
<th>ANÁLISIS QUÍMICO</th>
<th>PARAMETROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5,51</td>
</tr>
<tr>
<td>Conductibilidad eléctrica</td>
<td>0,069 mS/cm</td>
</tr>
<tr>
<td>Materia orgánica</td>
<td>2,55%</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>0,14%</td>
</tr>
<tr>
<td>Fósforo</td>
<td>38,03 ppm</td>
</tr>
<tr>
<td>Potasio</td>
<td>0,48 meq/100 gr suelo</td>
</tr>
<tr>
<td>Calcio</td>
<td>2,87 meq/100 gr suelo</td>
</tr>
<tr>
<td>Magnesio</td>
<td>0,71 meq/100 gr suelo</td>
</tr>
<tr>
<td>Sodio</td>
<td>0,07 meq/100 gr suelo</td>
</tr>
<tr>
<td>CIC</td>
<td>4,65</td>
</tr>
</tbody>
</table>

FUENTE: IBTEN

El análisis químico también nos indica que la fertilidad de suelo, tiene un parámetro de nivel medio, al tener 2,55 % de materia orgánica, con un valor medio de contenido de nitrógeno total de 0,14 %. El contenido de fósforo asimilable fue de 38,03 ppm (valor alto), el potasio encontrado fue de 0,48 meq/100 gr, indicándonos un nivel medio.

5.2 Análisis químico de la ceniza de madera

De acuerdo al análisis de ceniza, que se muestra en Anexo 2, efectuado en el Instituto Boliviano de Ciencia y Tecnología Nuclear (IBTEN), con muestras de ceniza tomadas en el lugar del ensayo, se obtuvo resultados que se hallan en la Figura 20, la misma presenta las siguientes propiedades químicas:
La ceniza de madera presenta un pH de 11,09, que se puede interpretar como fuertemente alcalino, por la cantidad de bases que contiene la ceniza. Sobre un 100% de ceniza, tenemos: 5,18 % de potasio, 1,79 % de calcio, 0,24 % de magnesio, 0,19 % de sodio y 3,18 % de materia orgánica, siendo los tres primeros macronutrientes esenciales para el crecimiento óptimo de las plantas.

5.3 Evaluación de los variables de respuesta

En la evaluación de las variables de respuesta para el cultivo de tomate, se tomaron en cuenta: el número de días a la floración, altura de tallo (cm), diámetro de tallo (cm), días a la primera cosecha, número de frutos por planta, peso de frutos por planta (g), rendimiento de frutos (kg/ha), peso de materia verde (g) y peso de materia seca (g), para ello se determinó la existencia de diferencias significativas entre tratamientos utilizando el programa estadístico Sas System.

5.3.1 Porcentaje de germinación

Los resultados que se tuvieron fueron: a los de 5 días se tuvo la emergencia del 92 % del total de semillas sembradas, a los 8 días, ya en estado de “fósforo”, las plántulas
estuvieron listas para ser transplantadas a la almaciguera, todas ellas libre de enfermedades.

5.3.2 Días a la primera floración

Para esta variable los rangos de variación fueron de 35 a 41 días después del transplante a campo definitivo, el testigo (T₁) fue el primero en presentar la floración en más del 50 % de sus plantas de tomate; los tratamientos 3, 5, 4 y 2, presentaron flores en más del 50 % de las tomateras entre los 37 y 41 días.

La Figura 21 representa los promedios de días a la floración, observándose un comportamiento similar en los tratamientos 3, 5, 4 y 2, registrándose un ligero retraso en el tratamiento 2, contrariamente el testigo presento flores en sus plantas 3 días antes que los otros tratamientos.
Figura 21. Días a la primera floración de las plantas de tomate

Uno de los macronutrientes que más influye en la floración es el fósforo, su falta retarda la diferenciación de las yemas florales, la determinación del número y tamaño de las semillas (Menezes, 1992).

La diferencia entre tratamientos a la primera floración no fue significativa porque el requerimiento nutricional que influye en esta fase fisiológica, fue cubierto con la adición de la gallinaza y con ceniza de madera, que contiene fósforo (P₂ O₅), (Suquilanda, 1996); asimismo el análisis de suelo de la parcela indicó un valor alto de 38,03 ppm de este elemento presente en el suelo de la parcela.

Posiblemente los nutrientes contenidos en la ceniza (Potasio y calcio) que fueron añadidos al suelo de la parcela, pudieron variar el pH del suelo de una acidez media (5,5), hasta un pH cercano a la neutralidad, mejorando el aprovechamiento del fósforo por parte de la planta de tomate (Wilson y Loomis, 1992), lo que influiría posteriormente en un mayor número de flores.

También la primera floración fue influida por las condiciones ambientales del lugar de cultivo de la tomatera, al respecto Rodríguez (1984), menciona que se precisan de 56
a 76 días desde la emergencia de las plantas hasta que se inician los botones florales, influyendo en esta fase la temperatura ambiente. Asimismo Menezes (1992), indica que las fases de floración y fructificación son favorecidas por temperaturas diurnas de 18 a 25 ºC y nocturnas de 13 a 24 ºC, el número de flores y el tamaño de la inflorescencia son reducidos por temperaturas nocturnas muy bajas, por el contrario el aumento de temperaturas, deficiencias de fotoasimilados o un aumento excesivo de la respiración interactúan conjuntamente y afectan al desarrollo de las flores.

Valero (2004), en su ensayo realizado en la provincia Caranavi, encontró que la variedad “Rió grande” presento a los 52 días sus primeras flores después del transplante, con una temperatura promedio 23,5 ºC. Lo mismo Alcazar (1997), en su estudio sobre variedades de tomate en la zona de Coroico, obtuvo una media de 49,5 días a la floración después del transplante.

El promedio de días a la floración de los 5 tratamientos, de este trabajo fue de 39 días después del transplante, siendo el número de días aproximados a los encontrados por los autores citados con relación a esta variable; con respecto a la temperatura se tuvo una media de 16,5 ºC durante los meses que se llevó a cabo este trabajo, encontrándose dentro de la temperatura adecuada para esta fase fisiológica.

5.3.3 Altura de la planta

Los resultados de esta variable se muestran en la Figura 22, donde se observa que la altura de planta varía entre los 110,16 y 120,32 cm y un promedio de 115,2 cm en todos los tratamientos, al respecto Huerres (1991) indica que la tomatera alcanza una altura de 40 a 200 cm, dependiendo de la variedad que se cultive.
En base a estos resultados se realizó el análisis de varianza ANVA que se indica en el Cuadro 7, mostrando que no existen diferencias significativas entre tratamientos para la variable altura de planta, igualmente no existen diferencias significativas entre bloques.

Cuadro 7. Análisis de varianza para altura de planta

<table>
<thead>
<tr>
<th>FUENTE DE VARIACIÓN</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>78,98845</td>
<td>26,32948</td>
<td>0,23</td>
<td>0,8760 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>116,21885</td>
<td>29,05471</td>
<td>0,25</td>
<td>0,9040 NS</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>1393,1926</td>
<td>116,0993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>1588,39997</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El coeficiente de variación obtenido para la variable altura es 9,5 %, lo que indica que los datos son confiables, debido a que su valor es menor al 30 %, exigido para trabajos en campo.
Basándonos en estos resultados podemos indicar, que la tomatera no responde al efecto de los tratamientos con ceniza de madera, presentando semejanza en la altura de planta en todos los tratamientos.

5.3.4 Diámetro de tallo

Los resultados para esta variable se muestran en la Figura 23, donde se observa que el diámetro de tallo muestra cierta homogeneidad, sin embargo se puede distinguir un menor diámetro en el testigo en relación a los tratamientos con ceniza, el diámetro del testigo fue de 1,27 cm y de 1,43 cm del tratamiento 4.

Figura 23. Diámetro de tallo de las tomateras en cm

Al realizar el análisis de varianza ANVA, para el diámetro de tallo de la tomatera que se muestra en el Cuadro 8, se encontró que el coeficiente de variación para esta variable fue de 6,8 % lo cual indica que los datos son confiables, puesto que su valor es menor al 30 %, porcentaje considerado como limite para trabajos en campo, recomendado por Calzada (1982).
Cuadro 8. Análisis de varianza para el diámetro de tallo

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>0,035495</td>
<td>0,011831</td>
<td>1,42</td>
<td>0,2856 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>0,06688</td>
<td>0,016720</td>
<td>2,00</td>
<td>0,1579 NS</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>0,10008</td>
<td>0,008340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>0,202455</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 6,8 %

También nos indica, que no existen diferencias significativas entre bloques, lo que indica que las diferencias en terreno no influyeron en esta variable, al igual, no existen diferencias significativas entre tratamientos, lo que nos indica que el diámetro de tallo del tomate, presentó una similitud en esta variable en todos los tratamientos.

5.3.5 Días a la primera cosecha

En esta variable los rangos de variación en días, fueron de 79 a 86 días, después del transplante a campo definitivo hasta la cosecha de los primeros frutos.

En el testigo (T₁), fue donde se cosecharon los primeros frutos en el 50 % de las plantas correspondientes a este tratamiento, en los tratamientos con ceniza comenzó la cosecha días mas tarde que el testigo, siendo ultimo el tratamiento 2 donde se cosecho los primeros frutos.

En la Figura 24, se observa los promedios de los días a la primera cosecha de frutos de los 5 tratamientos, en el podemos observar, que en el testigo se empezó a cosechar entre los 77 a 81 días, teniendo un promedio de 79 días a la primera cosecha.
Del tratamiento 3, se cosecho el 50 % de sus primeros frutos entre los días 76 y 84, siendo su promedio 80 días, el tratamiento 5 obtuvo un promedio de 82 días para su primera cosecha, desde el transplante a campo definitivo, al igual el tratamiento 4, tuvo como promedio 84 días desde el transplante y por último el tratamiento 2 con 86 días a la primera cosecha, siendo la diferencia en días con el testigo de 7 días en referencia a esta variable.

Según Huerres (1991), las cosechas comienzan a los 70 días aproximadamente después del transplante en las variedades determinadas.

Mallea (2004), indica en el trabajo realizado con esta variedad, los días a la primera cosecha fueron de 67 días como promedio, después del transplante a campo definitivo. En tanto Machicado (2000), obtuvo su primera cosecha del cultivar “Rió grande” a los 120 días como promedio, bajo ambiente protegido, en el altiplano norte.

Podemos indicar que los días a la primera cosecha, al igual que la floración, están influenciados por el ambiente, y la disposición de nutrientes que se pueda hallar en el suelo, por eso las diferencias en días con Machicado de 40 días de adelanto y con
Mallea de 15 días de retraso en relación con el trabajo realizado en Coroico, se tiene en ambos casos temperaturas y humedad diferente en el Altiplano norte, San Buenaventura y Coroico; entonces la formación y cosecha de las primeros frutos están dentro de los límites establecidos para esta variedad, que es de ciclo medio a tardía (Sobrino, 1989).

5.3.6 Número de frutos por planta

5.3.6.1 Número de frutos de mayor tamaño

Conforme a los resultados obtenidos para esta variable, que se tiene en la Figura 25, se puede apreciar que el tratamiento 5, tiene el 31,03 % de frutos de mayor tamaño, del total de sus frutos por planta, mientras que el testigo tiene el 23,63 % del total de sus frutos, existiendo una diferencia del 7,4 % con el tratamiento 5. Asimismo se puede apreciar que los tratamientos con ceniza tienen mayor porcentaje de frutos de mayor tamaño en relación al testigo.

Si bien el tratamiento 5 tuvo mayor número de frutos de mayor tamaño que el tratamiento 4, este obtuvo mayor número de frutos por planta que el tratamiento 5, siendo esta diferencia del 1,4 %.
Figura 25. Número de frutos de mayor tamaño, expresado en porcentaje en relación al número total de frutos por planta

En base a estos resultados se realizó el análisis de varianza ANOVA, para el número de frutos de mayor tamaño por planta de la tomatera que se muestra en el Cuadro 9.

Cuadro 9. Análisis de varianza para número de frutos de mayor tamaño.

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>6,48172</td>
<td>2,16057</td>
<td>2,63</td>
<td>0,0983 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>25,2947</td>
<td>6,32369</td>
<td>7,69</td>
<td>0,0026 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>9,87403</td>
<td>0,82284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>41,65052</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 24,7 %
NS: No significativo
** Altamente significativo

En el se muestra que el coeficiente de varianción para esta variable de respuesta fue de 24,7 %, indica que los datos son confiables puesto que su valor es menor a 30 %. El análisis de varianza muestra que no existen diferencias significativas entre bloques,
encontrándose diferencias altamente significativas a un nivel de 1 % de probabilidad entre tratamientos.

Al realizar la prueba de Duncan al 5 % de probabilidad, para la comparación de medias de los diferentes tratamientos con ceniza de madera, para la variable de número de frutos de primera, que se tiene en el cuadro 10.

Cuadro 10. Prueba de Duncan para el número de frutos de mayor tamaño

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio Número de frutos</th>
<th>DUNCAN (α = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>5,0375</td>
<td>a</td>
</tr>
<tr>
<td>T5</td>
<td>4,965</td>
<td>a</td>
</tr>
<tr>
<td>T1</td>
<td>3,0725</td>
<td>b</td>
</tr>
<tr>
<td>T3</td>
<td>3,0350</td>
<td>b</td>
</tr>
<tr>
<td>T2</td>
<td>2,250</td>
<td></td>
</tr>
</tbody>
</table>

Esta prueba muestra que, el número aproximado de 5,04 frutos corresponde al tratamiento 4, seguido por el tratamiento 5 con el mismo número de frutos aproximadamente, observándose un segundo grupo formado por el testigo y los tratamientos 3, 2, con un número de 3,07; 3,04 y 2, 25 frutos respectivamente.

Se obtuvo una diferencia del tratamiento 4 en referencia al testigo de 2 frutos, y de tres frutos con el tratamiento 2. Los frutos de mayor tamaño son los recolectados en la primera y segunda cosecha, resultados de las primeras flores, su número fue afectado por la presencia de la plaga gusano de fruto (*Heliotis sp*) y la enfermedad tizón tardío (*Phytophthora infestans*).

5.3.6.2 Número de frutos de tamaño mediano

Los resultados evaluados para el número de frutos de tamaño mediano por planta, se muestran en la Figura 26, donde se observan los porcentajes de frutos de tamaño mediano del total de frutos por planta de cada tratamiento, en el se aprecia que el tratamiento 3, con 44 %, tiene mas frutos de tamaño mediano en relación a sus frutos
de mayor y menor tamaño, en general los tratamientos 5, 4 y testigo obtuvieron más frutos de este tamaño del total de sus frutos por planta, solamente el tratamiento 2 obtuvo menor cantidad de frutos grandes y medianos en relación a los otros tratamientos.

También se puede evaluar, que al igual que los frutos de primera, los tratamientos con ceniza de madera (menos el tratamiento 2), tienen más frutos de tamaño mediano por planta que el testigo.

Figura 26. Número de frutos de tamaño mediano expresado en porcentaje en relación al número total de frutos por planta

El análisis de varianza ANVA, para número de frutos de segunda de la tomatera, indica que no existen diferencias significativas entre bloques, pero si existen diferencias altamente significativas a un nivel del 1 % para los tratamientos con ceniza, que se tiene en el Cuadro 11. También nos indica que el coeficiente de variabilidad fue 17.86%, se encuentra dentro de lo permitido y por consiguiente da la confiabilidad del presente trabajo (Calzada, 1982).
Cuadro 11. Análisis de varianza para número de frutos de tamaño mediano

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>10,65349</td>
<td>6,31960</td>
<td>3,86</td>
<td>0,0541 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>33,58377</td>
<td>1,04915</td>
<td>8,67</td>
<td>0,0022 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>12,58983</td>
<td>3,36</td>
<td>8,67</td>
<td>0,0022 **</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>56,82709</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 17,86 %
NS: No significativo
** Altamente significativo

De acuerdo a la prueba de significación de Duncan al 5 %, que se indica en el Cuadro 12, presenta la comparación de medias de los diferentes tratamientos para el número de frutos de segunda.

Cuadro 12. Prueba de Duncan para número de frutos de tamaño mediano

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio de Frutos de Segunda</th>
<th>DUNCAN (α =0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>7,215</td>
<td>a</td>
</tr>
<tr>
<td>T5</td>
<td>6,693</td>
<td>a b</td>
</tr>
<tr>
<td>T6</td>
<td>5,5</td>
<td>b</td>
</tr>
<tr>
<td>T1</td>
<td>5,393</td>
<td>b</td>
</tr>
<tr>
<td>T2</td>
<td>3,608</td>
<td>c</td>
</tr>
</tbody>
</table>

El número de frutos del tratamiento 4, presento estadísticamente el mayor número de frutos con 7,2 frutos de tomate, quedando en segundo y tercer lugar los tratamientos 5 y 3, con 6,7 y 5,5 frutos de segunda respectivamente, haciendo notar diferencias significativas entre los tratamientos 4 y 3. Por otra parte el testigo tiene un número de frutos de 5,4; finalmente el tratamiento 2 con un número de 3,6 frutos, ocupa el ultimo lugar, comportándose estadisticamente diferente con todos los otros tratamientos.

En base a estos resultados obtenidos, los tratamientos 4 y 5, resultaron ser los mejores en relación a frutos de segunda, alcanzando mayor número de frutos en relación al testigo.
5.3.6.3 Número de frutos de menor tamaño

Los resultados de esta variable se muestran en la Figura 27, en el que se aprecia que el tratamiento 2, tiene más frutos de menor tamaño en relación a sus frutos de mayor y mediano tamaño, los otros tratamientos más el testigo, obtuvieron menor cantidad de frutos de este tamaño del total de sus frutos por planta.

Figura 27. Número de frutos de menor tamaño, expresado en por ciento en relación al número total de frutos por planta

En el análisis de varianza para número de frutos menor tamaño, que se tiene en el Cuadro 13, se muestra que no existen diferencias significativas entre bloques, en relación a los tratamientos con ceniza y testigo tampoco se encontró diferencias significativas entre ellos. El coeficiente de variación obtenido para esta variable fue 14,04 %, el cual nos indica que los datos son confiables debido a que su valor es menor al 30 % exigido para trabajos en campo.
Cuadro 13. Análisis de varianza para número de frutos de menor tamaño

<table>
<thead>
<tr>
<th>FUENTE DE VARIACIÓN</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>2,59923</td>
<td>0,86643</td>
<td>2,55</td>
<td>0,1043 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>2,92272</td>
<td>0,73068</td>
<td>2,15</td>
<td>0,1364 NS</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>4,06988</td>
<td>0,33915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>9,59189</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 14,04 %
NS: No significativo

Por los resultados encontrados, podemos indicar, que el número de frutos de menor tamaño fue afectado por la presencia de la *Phytophthora infestans*, presentándose por ello un numero similar en todos los tratamientos, no influyendo en esta variable la aplicación de ceniza de madera.

5.3.6.4 Número de frutos por planta

Para esta variable cuyos resultados se muestra en la Figura 28, se pueden observar que los tratamientos 4 y 5 obtuvieron mayor número de frutos por planta que los otros tratamientos. En tanto que el tratamiento 3 y el testigo obtuvieron un número similar de frutos por planta

El tratamiento 2, obtuvo la menor cantidad de frutos por planta frente a los otros tratamientos, solo en frutos de menor tamaño es superior a los otros.
Figura 28. Número de frutos por planta de las tomateras

En base a estos resultados se realizó el análisis de varianza para el número de frutos por planta, que se muestra en el Cuadro 14, el mismo expresa que existe diferencias estadísticamente significativas entre bloques y diferencias altamente significativas entre tratamientos, lo cual nos demuestra que los tratamientos en estudio, han tenido un comportamiento distinto en el número de frutos por planta.

Cuadro 14. Análisis de varianza para número de frutos por planta

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>46,00</td>
<td>15,333</td>
<td>10,22</td>
<td>0,0013 **</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>142,80</td>
<td>35,70</td>
<td>23,80</td>
<td>0,0001 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>18,00</td>
<td>1,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>206,80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 9,5 %

** Altamente significativo
Al encontrarse diferencias significativas entre tratamientos, se utilizó la prueba de Duncan, para realizar la comparación de medias, que se muestra en el Cuadro 15, en el se puede apreciar la formación de tres grupos, donde los tratamientos 4 y 5, presentaron 17 y 16 frutos respectivamente, siendo significativamente superior al testigo que registró un promedio de 13 frutos, quedando en el último lugar el tratamiento 2 con 9,50 frutos, siendo inferior a los demás tratamientos.

Cuadro 15. Prueba de Duncan para número de frutos por planta.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio de numero frutos por planta</th>
<th>DUNCAN (α =0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₄</td>
<td>17,00</td>
<td>a</td>
</tr>
<tr>
<td>T₅</td>
<td>16,00</td>
<td>a</td>
</tr>
<tr>
<td>T₁</td>
<td>13,00</td>
<td>b</td>
</tr>
<tr>
<td>T₃</td>
<td>12,50</td>
<td>b</td>
</tr>
<tr>
<td>T₂</td>
<td>9,50</td>
<td>c</td>
</tr>
</tbody>
</table>

Las diferencias significativas de los tratamientos 4 y 5 con respecto al testigo, probablemente fueron influenciados por la aplicación de ceniza de madera, al contener nutrientes como el potasio, calcio, magnesio; más los nutrientes aportados por la gallinaza y los que contenía el suelo, influyeron en el crecimiento y desarrollo de la planta y por tanto en el número de frutos.

Al respecto Tisdale (1988), indica que el potasio influye en las funciones metabólicas, así como su interrelación con otros nutrientes dentro de la planta y suelo, influyendo en el crecimiento de la planta. Igualmente el calcio es un nutriente necesario para el desarrollo de membranas de las células y de las raíces, lo cual permite una mejor absorción de nutrientes del suelo, influyendo en el vigor de la planta y en la obtención de más frutos y de mejor calidad (Suquilanda, 1996).

También Menezes (1992), señala que el calcio, magnesio y azufre son importantes para el cultivo de tomate y exigen niveles suficientes para mantener un buen desarrollo de la planta y de los frutos.
Los valores de frutos por planta de los tratamientos estudiados, comparados con el trabajo realizado por Terán (2002), con la variedad “Rió grande”, en carpa solar obtuvo, el número de 23 a 33 frutos por planta, existiendo una diferencia de 6 a 16 frutos con los hallados en el ensayo realizado en Coroico, posiblemente esta diferencia se deba a las condiciones climáticas de cada zona y al manejo del cultivo, por ejemplo Terán (2002), utilizó en su trabajo fertilizantes inorgánicos y pesticidas para el control de plagas.

Se obtuvo un menor número de frutos comerciales (promedio de 13,7 frutos), porque en la zona de los Yungas, uno de los principales problemas para el cultivo de tomate es la presencia de Phytophthora infestans, los daños causados por este hongo, y por la plaga llamada gusano de fruto (Heliothis sp), causaron mermas de hasta el 50% de los frutos a comercializarse, en tal sentido Tumiri (2004), obtuvo un rango de 16 a 20 frutos por planta en variedades de crecimiento determinado en la zona de los Yungas, nos indica que aparte de las condiciones ambientales y plagas, la presencia de enfermedades causadas por hongos, es uno de los factores que afectan bastante al número de frutos por planta, especialmente en regiones donde la humedad relativa es por encima del 80%, que favorece el desarrollo de éstas.

Antes de presentarse el tizón tardío y el gusano de fruto, los frutos en pleno crecimiento sobrepasaban el número de 30 por planta, en casi todos los tratamientos, reduciéndose este número por los problemas ya citados. La temperatura y humedad relativa fueron los adecuados, recomendados por bibliografía, para que la tomatera tenga una buena fecundación o cuajado de frutos.

5.3.7 Peso de frutos

5.3.7.1 Peso de frutos de mayor tamaño

Los resultados de esta variable que se muestran en la Figura 29, en el que se observan los incrementos de los pesos de frutos de mayor tamaño obtenidos con los tratamientos con ceniza de madera en relación al testigo; se obtuvo los siguientes resultados: el tratamiento 5 fue el que obtuvo la mayor diferencia de 205 gramos en
relación al testigo, seguido por el tratamiento 4 con 200 gramos de incremento en el peso de sus frutos de mayor tamaño en relación a los frutos de este tamaño del testigo.

Figura 29. Incremento del peso de los frutos de mayor tamaño de los tratamientos con ceniza en relación al testigo

Podemos indicar que esta diferencia lograda por los frutos de los tratamientos con ceniza, fue porque estos frutos fueron más grandes y con mayor peso que los frutos del testigo; solo el tratamiento 2, consiguió 70 gramos menos en el peso de sus frutos de mayor tamaño, en relación al testigo, esto se debió a que este tratamiento obtuvo menos frutos de primera.

Al realizar el análisis estadístico para esta variable, que se tiene en el Cuadro 16, se evidencia que no presenta diferencias significativas entre bloques, pero si mostró diferencias altamente significativas entre tratamientos ($\alpha = 0.01$).
Cuadro 16. Análisis de varianza para peso de frutos de mayor tamaño

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>64822,89</td>
<td>21607,63</td>
<td>3,37</td>
<td>0,0548 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>258896,2</td>
<td>64724,07</td>
<td>10,09</td>
<td>0,0008 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>77000,22</td>
<td>6416,685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>400719,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 22,96 %
NS: No significativo
** Altamente significativo

Al realizar la comparación de medias de Duncan, se puede apreciar la formación de dos grupos diferenciados, que se muestra en el Cuadro 17, donde sobresalen los tratamientos 5 y 4, con pesos de 487,33 y 482,16 gramos respectivamente, siendo superior al tratamiento 3 con 281,10 gramos, al tratamiento 2 con 211,96 gramos y al testigo con 282,16 gramos.

Si bien el tratamiento 4 tiene un número mayor de frutos, el tratamiento 5 tiene mayor peso en sus frutos de primera, aunque tenga menos frutos. La diferencia de peso entre el testigo y el tratamiento 3 es mínima, con solo 1,06 gramos, teniendo mayor calidad de frutos con los tratamientos con ceniza de madera.

Cuadro 17. Prueba de Duncan para peso de frutos de mayor tamaño

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio peso de frutos (gramos)</th>
<th>DUNCAN (α=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₅</td>
<td>487,33</td>
<td>a</td>
</tr>
<tr>
<td>T₄</td>
<td>482,16</td>
<td>a</td>
</tr>
<tr>
<td>T₁</td>
<td>282,16</td>
<td>b</td>
</tr>
<tr>
<td>T₃</td>
<td>281,10</td>
<td>b</td>
</tr>
<tr>
<td>T₂</td>
<td>211,96</td>
<td>b</td>
</tr>
</tbody>
</table>

Esta diferencia significativa de los tratamientos 4 y 5 con respecto al testigo, pueden atribuirse a los efectos de los nutrientes que se hallaban en el suelo, gallinaza y la ceniza de madera, afectando al peso de los frutos de tomate.
Al respecto Villarroel (1997), indica que el potasio puede en muchos casos coadyuva en la calidad de los productos agrícolas mejorándolas, e influyendo en el color, forma, textura, **peso** y sabor. También el calcio, magnesio y azufre son importantes para un buen desarrollo de la planta y de los frutos (Menezes, 1992), que posteriormente influirá en el peso de los frutos.

5.3.7.2 Peso de frutos de tamaño mediano

Observando los resultados relacionados a esta variable, que se muestra en la Figura 30, los pesos de frutos de tamaño mediano obtenidos y calculando los incrementos en relación al testigo, se observa que el tratamiento 4 consiguió un peso de 145,02 gramos por encima del testigo, siendo este el valor mas alto, en tanto que el tratamiento 5 supero al testigo en 112,99 gramos, con el peso de sus frutos de tamaño mediano.

El tratamiento que consiguió un menor peso de sus frutos de este tamaño, fue el tratamiento 2 con 103,56 gramos por debajo del testigo, porque el tratamiento 2 obtuvo menos frutos de tamaño mediano que todos los tratamientos.
Figura 30. Incremento del peso de los frutos de tamaño mediano de los tratamientos con ceniza en relación al testigo

En base a estos resultados se realizó el análisis de varianza ANVA, para esta variable se muestra en el Cuadro 18 mostrando que el coeficiente de variación obtenido para esta variable fue 17.27 %, lo que nos indica que, el experimento y los datos evaluados en campo son confiables.

Cuadro 18. Análisis de varianza para peso de frutos de tamaño mediano

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>47721,26</td>
<td>15907,09</td>
<td>3,87</td>
<td>0,0378 **</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>154593,9</td>
<td>38648,49</td>
<td>9,41</td>
<td>0,0011 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>49272,48</td>
<td>4106,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>251587,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 17,27 %
NS: No significativo
** Altamente significativo
También el análisis de varianza muestra que no existen diferencias significativas entre bloques. El análisis estadístico mostró diferencias altamente significativas entre tratamientos (α=0.01).

Cuadro 19. Prueba de Duncan para peso de frutos de tamaño mediano

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio peso de frutos (gramos)</th>
<th>DUNCAN (α=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_4)</td>
<td>479,66</td>
<td>a</td>
</tr>
<tr>
<td>(T_5)</td>
<td>447,63</td>
<td>a b</td>
</tr>
<tr>
<td>(T_3)</td>
<td>362,67</td>
<td>b c</td>
</tr>
<tr>
<td>(T_1)</td>
<td>334,64</td>
<td>c</td>
</tr>
<tr>
<td>(T_2)</td>
<td>231,08</td>
<td>d</td>
</tr>
</tbody>
</table>

Al encontrar significancia entre tratamientos se realizó la comparación de medias con la prueba de Duncan, que se tiene en el Cuadro 19, en el se observa que se manifiestan 3 grupos diferenciados para esta variable, apreciándose que el tratamiento 4, registro el promedio más elevado para peso de frutos de segunda con 479,66 gramos, mientras que el testigo y el tratamiento 2, son los que presentaron los menores pesos para frutos de segunda con 334,64 y 231,08 gramos respectivamente.

5.3.7.3 Peso de frutos de menor tamaño

Los resultados de esta variable se muestran en la Figura 31, en el que se aprecia los incrementos de los pesos de frutos de menor tamaño de los tratamientos con ceniza de madera en referencia al peso de los frutos de menor peso del testigo, se observa que solamente el tratamiento 4 obtuvo 30,63 gramos por encima del testigo, los demás tratamientos se encuentran por debajo del testigo.

El tratamiento 2 obtuvo frutos de menor peso, con 19,61 gramos, menor al peso obtenido por los frutos de menor tamaño del testigo.
Figura 31. Incremento del peso de los frutos de menor tamaño de los tratamientos con ceniza en relación al testigo

Al realizar el análisis de varianza ANVA, para peso de frutos de tercera que se presenta en el Cuadro 20, mostrando que no existen diferencias significativas entre tratamientos y bloques.

Cuadro 20. Análisis de varianza para peso de frutos de menor tamaño

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>3479,589</td>
<td>1159,863</td>
<td>1,63</td>
<td>0,2352 NS</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>6576,143</td>
<td>1644,036</td>
<td>2,31</td>
<td>0,1178 NS</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>8554,773</td>
<td>712,898</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>18610,51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 15,4 %
NS: No significativo

Igualmente el análisis de varianza para esta variable presenta un coeficiente de variación de 15,54 %, indicando que son datos altamente confiables puesto que su valor es menor al 30 %.
En el peso de los frutos menor tamaño, todos los tratamientos obtuvieron un número similar de frutos, y por eso en el análisis de varianza no se pudo hallar diferencias significativas entre tratamientos, estos frutos corresponden a la última cosecha que posiblemente fue afectado por la enfermedad del tizón tardío.

5.3.7.4 Peso de frutos por planta

Los resultados de esta variable se muestran en la Figura 32, en el que se aprecia que el tratamiento 4 obtuvo el mejor peso con sus frutos por planta que los demás tratamientos y el tratamiento 2 con el menor peso de sus frutos por planta que los otros tratamientos.

Figura 32. Peso de frutos de tomate por planta en gramos

Al realizar el análisis de varianza que se presenta en el Cuadro 21, se observa que existen diferencias altamente significativas a un nivel del 1 % de probabilidad para los tratamientos y bloques.
Cuadro 21. Análisis de varianza para peso de frutos por planta

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>247133,37</td>
<td>82377,79</td>
<td>10,59</td>
<td>0,0011 **</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>893321,33</td>
<td>223330,3</td>
<td>28,72</td>
<td>0,0001 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>93325,30</td>
<td>7777,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>1233780,02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 9,88 %

** Altamente significativo

Al encontrarse estas diferencias significativas entre tratamientos, se utilizó la prueba de Duncan para realizar la comparación de medias, que se muestra en el Cuadro 22, de acuerdo a esta prueba los tratamientos que alcanzaron mayor peso promedio en frutos fueron el tratamiento 4 con 1168,94 gramos por planta, el tratamiento 5 con 1101,36 gramos por planta, resultando ser ambos estadísticamente similares, pero diferente a los demás tratamientos, entre los cuales se encuentra el testigo

El tratamiento 3 y testigo tuvieron similar peso de frutos por planta, se destaca que el tratamiento 3 obtuvo menos frutos por planta que el testigo, pero en peso de frutos por planta es mayor que el testigo.

El tratamiento 2 obtuvo una media de 599,91 gramos en peso de frutos por planta, resultinge este tratamiento inferior al testigo y los otros tratamientos, debido a que este tratamiento consiguió menos frutos por planta que los otros tratamientos.

Cuadro 22. Prueba de Duncan para peso de frutos por planta.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio Peso de frutos (gramos)</th>
<th>DUNCAN (α=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₄</td>
<td>1168,94</td>
<td>a</td>
</tr>
<tr>
<td>T₅</td>
<td>1101,36</td>
<td>a</td>
</tr>
<tr>
<td>T₃</td>
<td>803,92</td>
<td></td>
</tr>
<tr>
<td>T₁</td>
<td>793,30</td>
<td>b</td>
</tr>
<tr>
<td>T₂</td>
<td>599,91</td>
<td>c</td>
</tr>
</tbody>
</table>
Con los tratamientos con ceniza de madera, probablemente se logró frutos de mayor peso y tamaño en relación al testigo, por la influencia que tuvieron los nutrientes minerales que se encuentra en la ceniza de madera, ya que estos influenciaron en el aumento de la materia seca de los frutos.

Al respecto Villarroel (1997) indica que el potasio contenido en la ceniza de madera coadyuva en la calidad de los frutos, pudiendo influir en el peso, sabor, color, etc., al ser un regulador de la actividad celular, promueve la síntesis de proteínas y carbohidratos y juntamente el calcio que también se encuentra en la ceniza, hace que las paredes celulares sean mas gruesos y los tejidos mas firmes, influyendo por tanto en el peso de los frutos de tomate.

Complementando DISAGRO (2002), indica que el potasio, tiene una gran influencia sobre la calidad de los frutos de tomate, porque aumenta la cantidad de sólidos disueltos en el jugo, aumentando el peso, consistencia de los mismos; mejora el sabor y, junto al magnesio contribuye a la formación homogénea y distribución de los pigmentos colorantes sobre su superficie, favoreciendo además la asimilación de otros minerales esenciales y ayudando a eliminar otros elementos perjudiciales para la planta.

Los resultados que encontró Cala (2004), en Coripata (Nor Yungas), con respecto al peso de frutos por planta, con el cultivar “Río grande”, oscilaba entre 0,919 a 1,800 kg/planta, indicando que en el peso de los frutos, influye la fertilización y número de plantas por hectárea; obteniendo los mayores pesos con gallinaza líquida, y menor densidad de plantas.

Los resultados obtenidos en el ensayo, en el peso de los frutos, posiblemente estuvo influenciado por la fertilización orgánica (gallinaza mas ceniza de madera), ya que hasta el testigo (solo gallinaza), alcanzó frutos de mediana calidad, siendo sobrepasado en peso y tamaño por los frutos con tratamientos de gallinaza y ceniza de madera, y al igual que Cala (2004), se utilizó una menor densidad de plantas, que fue de 1,05 m entre líneas y 0,70 m entre plantas, que también pudieron influir en la obtención de frutos de mayor tamaño y peso.
Además pudo influir en el peso de los frutos, las condiciones climáticas que se tuvieron en Coroico que estuvieron dentro del rango adecuado para el cultivo para esta hortaliza, aunque estas condiciones climáticas, son también óptimas para el desarrollo de plagas y enfermedades.

5.3.8 Rendimiento

Se puede indicar que el rendimiento es el resultado del manejo del cultivo, siendo este aspecto responsabilidad y resultado directo de las acciones del que lleva a cabo el cultivo de la tomatera, porque teniendo un manejo adecuado, en cuanto a fertilización y protección contra plagas, darán como resultado cosechas con buenos rendimientos, buena calidad de frutos, teniéndose como consecuencia la obtención de buenos precios por la venta de los frutos conseguidos.

Los mejores rendimientos que se obtuvieron fueron de 15,89 y 14,97 t/ha, con los tratamientos 4 y 5 respectivamente, con ceniza de madera, como se muestra en la Figura 33.

Figura 33. Rendimiento de tratamientos (kg/ha)

![Figura 33. Rendimiento de tratamientos (kg/ha)](image-url)
Al realizar el análisis de varianza ANVA, para el rendimiento, que se muestra en el Cuadro 23, el coeficiente de variación, alcanzó un valor de 9.87 %, el mismo indica que los datos son confiables, puesto que su valor es menor al 30 %, valor límite para trabajos en campo.

El análisis de varianza muestra que existen diferencias altamente significativas a un nivel del 1 % de probabilidad entre bloques y tratamientos.

Cuadro 23. Análisis de varianza para rendimiento

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>45677365,4</td>
<td>15225788,5</td>
<td>10,59</td>
<td>0,0011 **</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>4</td>
<td>165111303,7</td>
<td>41277825,9</td>
<td>28,72</td>
<td>0,0001 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>17249138,7</td>
<td>1437428,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>228037807,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 9,87 %
** Altamente significativo

Estas diferencias significativas encontradas respecto al testigo, se puede atribuir al efecto de la ceniza de madera aplicada a las tomateras. Como se encontró diferencias significativas entre tratamientos se utilizó la prueba de Duncan para realizar la comparación de medias de los rendimientos como se indica en el Cuadro 24.

Cuadro 24. Prueba de Duncan para rendimiento

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio rendimiento (kg/ha)</th>
<th>DUNCAN (α=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₄</td>
<td>15891,9</td>
<td>a</td>
</tr>
<tr>
<td>T₅</td>
<td>14973,2</td>
<td>a</td>
</tr>
<tr>
<td>T₃</td>
<td>10929,4</td>
<td>b</td>
</tr>
<tr>
<td>T₁</td>
<td>10785</td>
<td>b</td>
</tr>
<tr>
<td>T₂</td>
<td>8155,9</td>
<td>c</td>
</tr>
</tbody>
</table>
Se observa que se forma 3 grupos diferenciados, en el que se aprecia que los tratamientos 4 y 5 registran los mayores rendimientos con 15891,9 y 14973,2 kg/ha respectivamente.

El segundo grupo esta conformado por el testigo con 10785 Kg/ha y el tratamiento 2 con 10929,4 kg/ha. En tanto que el tratamiento 1, es el que preséntale menor rendimiento con 8155,9 kg/ha.

Es posible que la obtención de mayores rendimientos de los tratamientos 4 y 5 con ceniza, con respecto al testigo se deba a los nutrientes que contiene la ceniza como ser el potasio, calcio y magnesio, que se mezclo con la gallinaza y se incorporo al suelo de la parcela. Al respecto Villarroel (1997), indica que el potasio en muchos casos coadyuva en la calidad de los productos agrícolas, al contrario la falta de potasio muchas veces reduce la calidad y el valor comercial de los frutos.

El potasio y calcio, al cambiar el pH del suelo, posiblemente provocaron cambios importantes en la química, biología y estructura del suelo, mejorando la absorción de nutrientes por la tomatera. Asimismo el calcio y magnesio encontrados en la ceniza, mas la gallinaza, pudieron influir en el crecimiento y desarrollo de la planta y frutos, lo que influyo en la obtención de mejores rendimientos con los tratamientos con ceniza.

Otro de los factores que tuvieron influencia en el rendimiento fueron las condiciones climáticas que al ser adecuadas para el crecimiento y desarrollo del cultivo de tomate, también fueron favorables para el desarrollo de plagas y enfermedades, que influyeron en el rendimiento de frutos. De los frutos que se formaron después del cuajado, solo se cosecharon aproximadamente el 50 %, el otro 50 % fue malogrado en mayor parte por el tizón tardío y por el gusano de fruto, que se presentaron principalmente en la etapa de crecimiento y maduración de los frutos.

Al respecto otros trabajos con esta variedad (Rió grande), realizados: en Caranavi (Valero, 2004), obtuvo un rendimiento de 10,16 t/ha, siendo afectado este rendimiento por la presencia de la polilla de tomate; en San Buenaventura, Mallea (2004), encontró
rendimientos de 14,6 a 20 t/ha, indicando que tuvo problemas con enfermedades causados por la presencia de hongos.

La diferencia del rendimiento encontrado en Coroico, en relación a los encontrados por Valero (2004) y Malvea (2004), puede deberse también al número de plantas utilizadas por hectárea, porque una densidad mayor o menor influiría en el rendimiento, mas el manejo que se utilizo en el cultivo de esta hortaliza.

5.3.9 Materia verde

De acuerdo a los resultados obtenidos para esta variable el tratamiento 2, logró el mayor peso de materia verde con 1157,50 gramos, siendo este tratamiento superior al resto de los tratamientos.

Al analizar el Cuadro 25, del análisis de varianza se observa que no existen diferencias estadísticamente significativas entre bloques experimentales, lo que indica, que las diferencias del terreno, no afectaron a esta variable. Su coeficiente de variación fue de 15,26 % lo que muestra que los datos recolectados son confiables, puesto que el valor es menor al 30 %, (Calzada, 1982).

Cuadro 25. Análisis de varianza para el peso de materia verde

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>3</td>
<td>187578,20</td>
<td>62526,06</td>
<td>3,23</td>
<td>0,0611 NS</td>
</tr>
<tr>
<td>Tratamientos Error</td>
<td>4</td>
<td>325829,20</td>
<td>81457,30</td>
<td>4,20</td>
<td>0,0235 *</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>232624,80</td>
<td>19385,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>746032,20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 15,26 %
NS: No significativo
* Significativo

También se aprecia que se tienen diferencias estadísticamente significativas entre tratamientos, lo cual nos revela que los tratamientos en estudio, han tenido un comportamiento diferente en el peso de materia verde.
Al realizar la comparación de medias de los pesos de materia verde, con la prueba de Duncan al 5 % de probabilidad, que se muestra en el Cuadro 26, se pueden apreciar dos grupos.

Cuadro 26. Prueba de Duncan para peso de materia verde

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio materia verde (gramos)</th>
<th>DUNCAN (α =0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>2</sub></td>
<td>1157.50</td>
<td>a</td>
</tr>
<tr>
<td>T<sub>4</sub></td>
<td>906.50</td>
<td>b</td>
</tr>
<tr>
<td>T<sub>5</sub></td>
<td>872.00</td>
<td>b</td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td>825.00</td>
<td>b</td>
</tr>
<tr>
<td>T<sub>1</sub></td>
<td>802.50</td>
<td>b</td>
</tr>
</tbody>
</table>

Con el tratamiento 2 se obtuvo el mayor peso en materia verde, el segundo grupo formado por los otros tratamientos, incluido el testigo, no presentaron diferencias significativas entre ellos, siendo el testigo (T₁) el que tiene menor peso en materia verde (802.50 gramos), y el tratamiento 4 con 906.5 gramos el mayor de este grupo.

Existiendo una diferencia de 355 gramos entre el tratamiento 2 y el testigo, en cambio existe una diferencia de 251 gramos entre el tratamiento 2 y el tratamiento 4, que se halla en segundo lugar.

El tratamiento 2, después de la poda inicial desarrolló mayor número de ramas en relación a los otros tratamientos, manifestándose en un mayor peso en materia verde, sin embargo este tratamiento presentó menor cantidad de flores y por tanto menos frutos, se puede atribuir al mayor peso en materia verde a la fertilización con gallinaza y la poca cantidad de ceniza aplicada a este tratamiento.

Esta diferencia significativa del tratamiento 2 con respecto a los otros tratamientos probablemente sea por el efecto del nitrogeno que se pudiera encontrar tanto en el suelo, como en la gallinaza, porque este elemento está asociado con un vigoroso crecimiento vegetativo y un intenso color verde (Tisdale, 1988).
También se observa que los tratamientos con ceniza obtuvieron mayor materia fresca que el testigo, posiblemente por la mejor absorción y utilización por la planta del nitrogeno, que se encontraba en la gallinaza y en el suelo.

Al respecto Wilson y Loomis (1992), señalan que las plantas que crecen sobre un suelo pobre en nitrogeno y al mismo tiempo pobre en otro elemento, como el potasio, el nitrogeno que se encuentra en las hojas no son utilizadas por la escasez de potasio. La interacción del nitrogeno con otros nutrientes como el potasio y fósforo, que se encuentran en la ceniza de madera, pudieron favorecer la absorción y uso del nitrogeno por la tomatera.

5.3.10 Materia seca

Al respecto Huerras (1991), nos señala que el valor de la materia seca producida por la planta de tomate está en dependencia por la variedad, época de siembra y la edad de la planta; la acumulación de materia seca por parte de planta alcanza un máximo, para luego comenzar una disminución gradual, lo cual es debido a que estas sustancias de reserva elaboradas por la planta son utilizadas en los procesos de fructificación y desarrollo de frutos hasta la maduración.

Al realizar análisis estadístico, para esta variable, se tienen diferencias entre los tratamientos estudiados, lo que nos indica un comportamiento estadístico diferente entre tratamientos, no encontrándose diferencias significativas entre bloques, valores que se presentan en el Cuadro 27.

Cuadro 27. Análisis de varianza para peso de materia seca

<table>
<thead>
<tr>
<th>FUENTE DE VARIACIÓN</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>Fc.</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques Tratamientos</td>
<td>3</td>
<td>2,52252</td>
<td>0,84084</td>
<td>0,32</td>
<td>0,8126 NS</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>64,7285</td>
<td>16,1821</td>
<td>6,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>31,7920</td>
<td>2,64933</td>
<td></td>
<td>0,0064 **</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>99,04308</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de variación: 7,88 %

** Altamente significativo
Se obtuvo un coeficiente de variación de 7,88 %, valor que indica que los datos obtenidos y la metodología empleada son confiables.

Al obtenerse diferencias significativas para esta variable se realizó la prueba de Duncan (α=0.05), que se tiene en el Cuadro 28, donde se muestra la comparación de medias de los diferentes pesos de materia seca de los 5 tratamientos.

Cuadro 28. Prueba de Duncan para peso de materia seca

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Promedio Materia seca (gramos)</th>
<th>DUNCAN (α = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₂</td>
<td>23,180</td>
<td>a</td>
</tr>
<tr>
<td>T₁</td>
<td>22,283</td>
<td>a b</td>
</tr>
<tr>
<td>T₃</td>
<td>20,320</td>
<td>b c</td>
</tr>
<tr>
<td>T₄</td>
<td>19,038</td>
<td>c</td>
</tr>
<tr>
<td>T₅</td>
<td>18,550</td>
<td>c</td>
</tr>
</tbody>
</table>

En el observamos que el promedio general de los 5 tratamientos, es de 20,67 gramos, el mayor peso en materia seca se registro con el tratamiento 2 con 23,18 gramos, en los tratamientos 4 y 5 se observaron los más bajos pesos con 19,04 y 18,55 gramos respectivamente, no existiendo diferencias significativas entre los tratamientos 2, testigo y 3, observándose diferencias de los tratamiento 2 y testigo con los tratamientos 3 y 4.

Al recogerse las muestras para la materia seca durante los días finales de fructificación, los tratamientos 4 y 5 al tener más frutos y de mayor tamaño que los otros tratamientos, en sus muestras recolectadas se encuentre menor materia seca debido al traslado de estos nutrientes hacia los frutos cosechados.

5.4 Análisis de correlación y regresión simple

En el Cuadro 29 se puede observar, el análisis de correlación y regresión, donde se cuantifico la relación de variables de respuesta con el rendimiento del cultivo de tomate.
Cuadro 29. Coeficientes de correlación y regresión simple de las variables de respuesta con correlación al rendimiento

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Ecuación</th>
<th>R</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número frutos vs Rendimiento</td>
<td>(y = -1917,29 + 1034,14 \ x)</td>
<td>0,985</td>
<td>0,97</td>
</tr>
<tr>
<td>Materia seca vs Rendimiento</td>
<td>(y = 32037,81 - 960,95 \ x)</td>
<td>-0,626</td>
<td>0,392</td>
</tr>
<tr>
<td>Materia verde vs Rendimiento</td>
<td>(y = 18977,59 - 7,48 \ x)</td>
<td>-0,428</td>
<td>0,183</td>
</tr>
<tr>
<td>Altura final vs Rendimiento</td>
<td>(y = 7138,17 + 43,94 \ x)</td>
<td>0,116</td>
<td>0,013</td>
</tr>
<tr>
<td>Diámetro tallo vs Rendimiento</td>
<td>(y = -1349,29 + 10046,06 \ x)</td>
<td>0,299</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Realizando el análisis de regresión lineal para determinar el grado de influencia de las variables de respuesta con relación al rendimiento, se pudo observar, que la variable de materia seca, manifiesta una pendiente negativa, por lo que podemos afirmar que por cada unidad de incremento de la materia seca se producirá un decremento en el rendimiento de 960,95 kg/ha, en tanto que la variable número de frutos, presenta valores positivos, por lo que por cada unidad de incremento en el numero de esta variable se producirá un incremento en el rendimiento de 1034,14 kg/ha.

Para el número de frutos, que se muestra en la Figura 34, se obtuvo un coeficiente de correlación de 0,984, lo cual indica que esta variable esta directamente y altamente correlacionado con el rendimiento del cultivo, también se puede observar que su coeficiente de determinación fue de 0,969 \((r^2)\), lo que indica que en un 96,9 % tiene influencia en el rendimiento.

Figura 34. Correlación y regresión para número de frutos por planta

![Gráfica](Grafico34.png)
Para la materia seca, que se muestra en la Figura 35 se obtuvo un coeficiente de correlación de -0,626, que manifiesta una correlación negativa, lo que nos indica que si incrementamos el valor de esta variable, disminuye el rendimiento y viceversa; su coeficiente de determinación de 0,392 (r^2), el mismo indica que el 39,2 % de la variación del rendimiento de frutos esta influenciado por la materia seca y el resto 60,8% por otros factores.

Figura 35. Correlación y regresión para materia seca

![Gráfico de correlación y regresión](image)

Las variables: materia verde, altura final, diámetro de tallo, presentaron una correlación menor al 50 %, lo que nos indica, que estas variables no presentaron una correspondencia con el rendimiento de frutos.

5.5 Análisis económico de la relación Beneficio-Costo

Para este trabajo se establecieron, los costos totales que se indica en el Cuadro 31, ingreso bruto, ingreso neto y la relación beneficio costo. Los tratamientos que presentaron rendimientos con las mejores perspectivas, se muestra en el resumen del Cuadro 30.
Cuadro 30. Análisis de relación Beneficio-Costo

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Rendimiento medio (kg/ha)</th>
<th>Rendimiento Ajustado (10%) (kg/ha)</th>
<th>Beneficio Bruto (Bs/ha)</th>
<th>Total Costo (Bs/ha)</th>
<th>Beneficio costo (Bs/ha)</th>
<th>B/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀</td>
<td>10785</td>
<td>9706,5</td>
<td>14948</td>
<td>9839</td>
<td>5109</td>
<td>1,51</td>
</tr>
<tr>
<td>T₁</td>
<td>8155,9</td>
<td>7340,3</td>
<td>11304,1</td>
<td>10439</td>
<td>865,1</td>
<td>1,08</td>
</tr>
<tr>
<td>T₂</td>
<td>10929,4</td>
<td>9836,5</td>
<td>15148,2</td>
<td>10439</td>
<td>4709,2</td>
<td>1,45</td>
</tr>
<tr>
<td>T₃</td>
<td>15891,9</td>
<td>14302,7</td>
<td>22026,2</td>
<td>10439</td>
<td>11587,2</td>
<td>2,11</td>
</tr>
<tr>
<td>T₄</td>
<td>14973,2</td>
<td>13475,9</td>
<td>20752,9</td>
<td>10439</td>
<td>10313,9</td>
<td>1,99</td>
</tr>
</tbody>
</table>

El tratamiento con mejor rendimiento y alta relación beneficio-costo, fue el tratamiento 4 (B/C=2,11), seguido por tratamiento 5 (B/C=1,99) y testigo (T₁) con B/C=1,51; quedando el tratamiento 2 con la menor relación beneficio-costo (B/C=1,08).

La relación beneficio-costo muestra la cantidad de dinero actualizado que se recibirá por el trabajo realizado, por cada unidad monetaria invertida, este indicador mide la relación que existe entre los ingresos del ensayo y los costos incurridos durante el trabajo realizado. Esta razón (B/C), solo entrega un índice de relación y no un valor concreto (Paredes, 1999).

En el caso del tratamiento 4, que tuvo un B/C de 2,11, se puede interpretar que por cada 1 Bs gastado se va obtener 2,11 Bs, resultado ser una proporción bastante significativa. Mientras que con el testigo (T₁), por cada 1Bs invertido se obtendrá 1,51 Bs, siendo también una proporción significativa.
Cuadro 31. Presupuesto de costos para una hectárea

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo unitario (Bs)</th>
<th>Costo total (Bs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terreno:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza y deshierbe</td>
<td>Jornal</td>
<td>70</td>
<td>20</td>
<td>1400</td>
</tr>
<tr>
<td>Preparación de hoyos</td>
<td>Jornal</td>
<td>70</td>
<td>20</td>
<td>1400</td>
</tr>
<tr>
<td>Fertilizantes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallinaza</td>
<td>Tm</td>
<td>8</td>
<td>125</td>
<td>1120</td>
</tr>
<tr>
<td>Azufre</td>
<td>Kg</td>
<td>12</td>
<td>8</td>
<td>96</td>
</tr>
<tr>
<td>Cal</td>
<td>Kg</td>
<td>12</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>Ceniza de madera</td>
<td>Jornal</td>
<td>3</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Te de estiércol</td>
<td>Jornal</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Siembra:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siembra en semillero</td>
<td>Jornal</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Preparación almacigo</td>
<td>Jornal</td>
<td>20</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Transplante almacigo</td>
<td>Jornal</td>
<td>15</td>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>Mantenimiento almacigo</td>
<td>Jornal</td>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Transplante final</td>
<td>Jornal</td>
<td>31</td>
<td>20</td>
<td>620</td>
</tr>
<tr>
<td>Labores culturales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deshierbe y aporque</td>
<td>Jornal</td>
<td>20</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Podas</td>
<td>Jornal</td>
<td>6</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Corte de tutor</td>
<td>Jornal</td>
<td>11300</td>
<td>0.09</td>
<td>1000</td>
</tr>
<tr>
<td>Tutorado y amarre</td>
<td>Jornal</td>
<td>42</td>
<td>20</td>
<td>840</td>
</tr>
<tr>
<td>Aspersión de preventivos</td>
<td>Jornal</td>
<td>50</td>
<td>20</td>
<td>1000</td>
</tr>
<tr>
<td>Aplicación de tratamientos</td>
<td>Jornal</td>
<td>25</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>Fertilización con gallinaza</td>
<td>Jornal</td>
<td>10</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Insumos:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semilla</td>
<td>Onza</td>
<td>¼</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Cal</td>
<td>Kg</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Azufre</td>
<td>Kg</td>
<td>3</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Sulfato de cobre</td>
<td>Kg</td>
<td>5</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Caldo sulfocalcico</td>
<td>Litro</td>
<td>3</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Cosecha:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosecha</td>
<td>Jornal</td>
<td>20</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Selección</td>
<td>Jornal</td>
<td>2</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>
6. CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

Los resultados obtenidos en el trabajo nos permiten llegar a las conclusiones:

- El testigo presento sus primeras flores en más del 50 % de sus plantas de tomate a los 33 días después del transplante y para los tratamientos con ceniza de madera, con un promedio de 37,5 días para su primera floración después del transplante.

- La primera cosecha de frutos de tomate con el testigo se consiguió a los 77 días después del transplante y con los tratamientos con ceniza de madera, se obtuvo un promedio de 83 días después del transplante a lugar definitivo, observándose una diferencia de 6 días en la cosecha de los primeros frutos de tomate del testigo, en proporción con los tratamientos con ceniza de madera.

- En la materia fresca de las tomateras, el tratamiento 2 presentó mayor peso con 1157,50 gramos/planta en relación a los otros tratamientos con ceniza y testigo.

- La materia seca de las plantas de tomate, fue menor en los tratamientos 5 y 4, con 18,550 y 19,038 gramos respectivamente, al contrario el tratamiento 2 alcanzó 23,180 gramos en el peso de su materia seca.

- Los tratamientos 4 y 5 con ceniza, obtuvieron más frutos mayor tamaño por planta, en relación a los otros tratamientos entre ellos el testigo (T₁). Del total de sus frutos, de estos dos tratamientos, el 29,63 % y 31,63 % respectivamente, fueron frutos de mayor tamaño, mientras que el testigo obtuvo un 23,63 % de frutos de mayor tamaño, del total de sus frutos, consiguiendo un 7 % menos de frutos de mayor tamaño que los tratamientos 4 y 5.

- En relación a frutos por planta de tamaño mediano, los tratamientos 4 y 5 con ceniza alcanzaron más frutos, con un promedio de 7 frutos de tomate, 2 frutos más que el testigo (T₁), siendo el tratamiento 2 el que logró menor número de frutos con un promedio de 3,6 frutos por planta.
- El tratamiento 2 consiguió un 39,84 % de frutos de menor tamaño del total de sus frutos; los tratamientos 4 y 5 obtuvieron un 28,14 % y 24,56 % respectivamente, de frutos de menor tamaño del total de sus frutos.
- El peso de los frutos, de mayor tamaño por planta, de los tratamientos 5 y 4 fueron estadísticamente significativos respecto a los otros tratamientos, incluido el testigo.
- Los tratamientos con ceniza de madera, 4, 5 y 3 obtuvieron mayor peso con sus frutos de tamaño mediano en relación al testigo y tratamiento 2.
- El peso de los frutos de tomate por planta, los tratamientos 4 y 5 alcanzaron 1168,94 gramos/planta y 1101,36 gramos /planta, siendo superiores al tratamiento 3 que obtuvo 803,92 gramos/planta, testigo (T1) que obtuvo 793,30 gramos/planta y en último lugar el tratamiento 2 que alcanzo 599,91 gramos /planta en sus frutos por planta.
- En el rendimiento de frutos de tomate por hectárea, alcanzó un rendimiento de 15891,9 kg/ha, para el tratamiento 4, con un aporte de 2200 kg/ha de ceniza de madera, seguido por el tratamiento 5 con un rendimiento de 14973,2 kg/ha, con un aporte de ceniza de madera de 2900 kg/ha, ubicándose en tercer lugar el tratamiento 3 con 10929,4 kg/ha y un aporte de 1500 kg/ha de ceniza, quedando en penúltimo lugar el testigo con 10785 kg/ha y último el tratamiento 2, con 8155,9 Kg/ha y con un aporte de 800 kg/ha de ceniza de madera, existiendo diferencias significativas de los tratamientos 4 y 5, en relación a los otros tratamientos.
- El tratamiento 4 que consiguió el mayor rendimiento, con una relación beneficio/costo de 2,11, fue superior a los demás tratamientos, el tratamiento 5 con una relación B/C de 1,99, quedo como una segunda alternativa, quedando en tercer lugar el testigo con una relación de B/C de 1,51
- Podemos concluir que, es posible realizar un manejo ecológico de producción, con la incorporación de los distintos materiales que se pueda reciclar y lo que la naturaleza nos provee, lo que nos brinda una alternativa a la producción tradicional y sobre todo por proporcionar alimentos libres de agroquímicos.
6.2 Recomendaciones

Sobre la base de resultados y las conclusiones de la investigación realizadas, se realiza las siguientes recomendaciones:

- Como el mejor rendimiento, se logró, con el aporte de 2200 kg/ha de ceniza de madera, se recomienda esta cantidad de ceniza de madera como fuente alternativa de fertilizantes combinando con otros abonos orgánicos.
- La cantidad recomendada de ceniza de madera y otros fertilizantes orgánicos, puede variar, dependiendo de la fertilidad del suelo, por lo cual se recomienda un previo análisis de suelo para recién realizar el aporte requerido para el cultivo del tomate.
- Se recomienda efectuar ensayos sobre la fertilización con ceniza de madera y manejo ecológico del cultivo, en diversas condiciones ambientales para observar su efecto, sobre la incidencia de patógenos y rendimiento de frutos.
- Se recomienda que las fechas de siembra y los ciclos del cultivo de tomate puedan ser planificados, para que las fases más sensibles de la tomatera no coincidan con los momentos de mayor expansión y agresividad de los patógenos (hongos y plagas).
- Buscar otras variedades que sean resistentes o tolerantes al ataque del tizón tardío y mejores alternativas de compuestos orgánicos que ayuden en la resistencia o tolerancia del tomate hacia el tizón tardío y plagas relacionadas con la tomatera.
7. BIBLIOGRAFÍA.

INFOAGRO. 2003. el cultivo del tomate.

INIA. 2003. Plagas del tomate al aire libre.
Disponible en: http://www.inia.cl/hortalizas/entomologia/p_tomate_al aire libre.htm

Terán, P. 2002. Introducción de 3 variedades de tomate (Lycopersicon esculentum) en las épocas de siembra bajo carpa solar, en la comunidad Totora Pampa en el

ANEXOS
ANALISIS QUIMICO DE CENIZAS

INTERESADO: COARITE PUJRO CRUZ ALEJANDRO
ROCEDENCIA: Dpto. LA PAZ, Pvea. NOR YUNGAS
COROICO - Com. SAN PEDRO DE LA LOMA

N° SOLICITUD: 080/2004
FECHA DE RECEPCION: 19 / octubre / 2004
FECHA DE ENTREGA: 27 / octubre / 2004

<table>
<thead>
<tr>
<th>Nº Lab</th>
<th>CODIGO</th>
<th>Potasio</th>
<th>Sodio</th>
<th>Calcio</th>
<th>Magnesio</th>
<th>pH en agua: 1:5</th>
<th>Materia orgánica (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>371 /2004</td>
<td>Muestra de ceniza</td>
<td>5.18</td>
<td>0.19</td>
<td>1.79</td>
<td>0.24</td>
<td>11.09</td>
<td>3.18</td>
</tr>
</tbody>
</table>

OBSERVACIONES C. E.: Conductividad Eléctrica en mili Siemens por cientímetro. Potasio intercambiable extraídos con Acetato de Amonio 1 N. Fósforo asimilable determinado por el método de Bray - Kurtz.

RESPONSABLE DE LABORATORIO
JORGE CHUNGARA
Anexo 3. Plantas utilizadas como repelentes de plagas y enfermedades

<table>
<thead>
<tr>
<th>Planta</th>
<th>Efecto</th>
<th>Parte a usar</th>
<th>Preparación</th>
<th>Plagas que controla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajo</td>
<td>Fungicida</td>
<td>Bulbos</td>
<td>250 gramos machacados, se dejan reposar en 2 litros de agua durante 24 horas, aparte disolver ¼ de barra de jabón en 1 litro de agua, filtrar ambos componentes, después mezclar ambos, se diluye con 10 litros de agua y asperjar.</td>
<td>Previene enfermedades causados por hongos y controla insectos.</td>
</tr>
<tr>
<td>Sacha</td>
<td>Repelente</td>
<td>Hojas</td>
<td>Machacar 200 gramos de semillas y 200 gramos de hojas y dejar reposar 24 horas en 2 litros de agua, aparte disolver ¼ barra de jabón, en 1 litro de agua. Se filtran por separado, se mezclan ambos y diluir en 10 litros de agua; asperjar</td>
<td>Controla: pulgones, polilla de la col, gusano de fruto cogolleros, etc.</td>
</tr>
<tr>
<td>Paico</td>
<td>Repelente</td>
<td>Hojas</td>
<td>Machacar 200 gramos de hojas, dejar reposar 24 horas en 2 litros de agua, filtrar y diluir en 5 litros de agua; asperjar.</td>
<td>Polilla del tomate, cochinillas, gusano de frutos cogolleros, etc.</td>
</tr>
<tr>
<td>Andres waylla</td>
<td>repelente</td>
<td>hojas</td>
<td>Machacar 200 gramos de hojas, dejar reposar 24 horas en 2 litros de agua, aparte disolver ¼ barra de jabón en 1 litro de agua, filtrar ambos componentes; después de mezclar ambos, se diluye en 10 litros de agua, después asperjar</td>
<td>Epitrix sp, Diabrotica sp, Pulgones trips.</td>
</tr>
</tbody>
</table>

Anexo 4. Productos utilizados para controlar plagas y enfermedades

<table>
<thead>
<tr>
<th>Producto</th>
<th>Preparación y uso</th>
<th>Plagas y enfermedades que previene ó controla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azufre</td>
<td>Diluir 80 a 100 gramos de azufre mojable en 20 litros de agua y asperjar por las tardes.</td>
<td>Ácaros, trips y previene ataque de hongos</td>
</tr>
<tr>
<td>Caldo bóordeles</td>
<td>Diluir 200gramos de sulfato de cobre y 200 gramos de cal apagada, en 10 litros de agua por separado, después mezclar ambos componentes y asperjar por las tardes.</td>
<td>Hongos: tizón tardío, tizón temprano, ojo de gallo, royas, antracnosis de cafeto y mango.</td>
</tr>
<tr>
<td>Caldo sulfocalcico</td>
<td>Preparado comercialmente con cal y azufre: 0,5 litros del producto diluir en 20 litros de agua y asperjar</td>
<td>Hongos e insectos.</td>
</tr>
<tr>
<td>Ceniza de madera</td>
<td>2,5 tazas de ceniza de madera, mas 2,5 tasa de cal apagada, se diluyen en 20 litros de agua y dejar reposar 1 semana, filtrar y asperjar.</td>
<td>Hongos: mildiu, royas y oído.</td>
</tr>
</tbody>
</table>

ANEXO 5. Fases fonoógicas del tomate

Fuente: Meier, 2001
Anexo 6. Número de frutos por planta

<table>
<thead>
<tr>
<th>Bloques</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>IV</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Promedio</td>
<td>13</td>
<td>9,6</td>
<td>12,5</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Anexo 7. Peso de frutos total por planta (gramos)

<table>
<thead>
<tr>
<th>Bloques</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>657,81</td>
<td>558,56</td>
<td>641,25</td>
<td>1022,34</td>
<td>898,62</td>
</tr>
<tr>
<td>II</td>
<td>615,62</td>
<td>517,33</td>
<td>797,57</td>
<td>1082,42</td>
<td>1051,04</td>
</tr>
<tr>
<td>III</td>
<td>938,3</td>
<td>712,37</td>
<td>744,09</td>
<td>1324,92</td>
<td>1263,63</td>
</tr>
<tr>
<td>IV</td>
<td>961,46</td>
<td>611,39</td>
<td>1032,77</td>
<td>1246,07</td>
<td>1192,15</td>
</tr>
<tr>
<td>Promedio</td>
<td>793,30</td>
<td>599,91</td>
<td>803,92</td>
<td>1168,94</td>
<td>1101,36</td>
</tr>
</tbody>
</table>

Anexo 8. Rendimiento de frutos (kg/ha).

<table>
<thead>
<tr>
<th>Bloques</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>8943,03</td>
<td>7593,71</td>
<td>8717,90</td>
<td>13898,88</td>
<td>12216,89</td>
</tr>
<tr>
<td>II</td>
<td>8369,46</td>
<td>7033,19</td>
<td>10843,1</td>
<td>14715,68</td>
<td>14289,06</td>
</tr>
<tr>
<td>III</td>
<td>12756,34</td>
<td>9684,79</td>
<td>10116,03</td>
<td>18012,51</td>
<td>17179,26</td>
</tr>
<tr>
<td>IV</td>
<td>13071,21</td>
<td>8311,95</td>
<td>14040,68</td>
<td>16940,53</td>
<td>16207,48</td>
</tr>
<tr>
<td>Promedio</td>
<td>10785</td>
<td>8155,9</td>
<td>10929,42</td>
<td>15891,9</td>
<td>14973,17</td>
</tr>
</tbody>
</table>
Anexo 9. Temperaturas y precipitación pluvial, mensual, de la zona de ensayo.

<table>
<thead>
<tr>
<th>Meses</th>
<th>Temperatura (°C)</th>
<th>Precipitación pluvial (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Máxima</td>
<td>Mínima</td>
</tr>
<tr>
<td>Marzo/04</td>
<td>22,54</td>
<td>13,43</td>
</tr>
<tr>
<td>Abril/04</td>
<td>22,58</td>
<td>14,45</td>
</tr>
<tr>
<td>Mayo/04</td>
<td>18,79</td>
<td>10,48</td>
</tr>
<tr>
<td>Junio/04</td>
<td>19,5</td>
<td>11,29</td>
</tr>
<tr>
<td>Julio/04</td>
<td>20,5</td>
<td>11,14</td>
</tr>
<tr>
<td>Agosto/04</td>
<td>23,0</td>
<td>11,0</td>
</tr>
<tr>
<td>Promedio</td>
<td>16,55</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 10. Estación experimental de Coroico
Anexo 11. Plantas de tomate en crecimiento

Anexo 12. Planta de tomate con flores y frutos
Anexo 13. Adición de ceniza, para posterior mezcla con tierra y aporcado

Anexo 14. Ceniza de madera utilizada para los tratamientos