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A long and productive history of studies at high altitude has demonstrated that chronic hypoxia plays a key role in the aetiology
of intrauterine growth restriction (IUGR) and pre-eclampsia. Susceptibility to altitude-associated TUGR varies among
high-altitude populations in relation to their duration of altitude exposure, with multigenerational residents demonstrating
one-third the birth weight fall present in shorter-resident groups. Higher uteroplacental blood flow during pregnancy in
multigenerational high-altitude residents suggests that such population differences are due, at least in part, to differences in
maternal vascular responses to pregnancy. We hypothesize that natural selection acting on hypoxia-inducible factor (HIF)-targeted
or -regulatory genes has enabled maternal vascular adaptation to pregnancy in long-resident high-altitude groups. Preliminary
evidence in support of this hypothesis demonstrates that the potent HIF-targeted vasoconstrictor, endothelin-1 (ET-1), is
differentially regulated by pregnancy and chronic hypoxia in Andean vs European residents of high altitude. Andeans show the
normal, pregnancy-associated fall in ET-1 levels previously reported at low altitude, whereas Europeans have higher ET-1 levels
and little pregnancy-associated change, like pre-eclamptic women. Single nucleotide polymorphisms (SNPs) in the ET-1 gene also
differ in Andeans compared with low-altitude populations. We conclude that high altitude serves as an experiment of nature for
elucidating genetic factors underlying susceptibility to complications of pregnancy and fetal life. Such studies may be important
for identifying persons at risk for these complications at any altitude. © 2004 IFPA and Elsevier Ltd. All rights reserved.
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INTRODUCTION be used worldwide; its introduction constitutes one of the truly
great public health advances of our time. The first recognition
that chronic hypoxia was part of the aetiology of pre-eclampsia
was also made at high altitude [5]. Continuing investigations by
several investigative groups [6-9] are rapidly expanding our
knowledge of the cellular and molecular mechanisms by which
hypoxia influences the maternal, placental and fetal responses
required to successfully produce the next generation.

Here we begin with a brief review of the magnitude and
cause of the altitude-associated increase in IUGR. Because
studies have been conducted at a range of elevations on three
continents (North America, South America, Asia), we ask
whether the decline in infant birth weight varies among
populations and if so, what mechanisms are likely involved.
We then move to a consideration of the physiological factors
controlling uteroplacental blood flow since altered uteroplacen-
tal blood flow is a core predictor of pregnancy abnormalities
[10]. After reviewing recent research addressing the effects of
“To whom correspondence should be addressed. Fax: chronic hypoxia on uteroplacental blood flow, we ask whether
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Hypoxia is a frequent complication of prenatal life. When
prolonged, it is associated with intrauterine growth restriction
(IUGR) (Table 1) and increased perinatal mortality and
morbidity. Whereas persons are subject to chronic hypoxia in
utero at all elevations, the largest single group of persons at
risk is the 140 million worldwide residents of high altitude
(>2500 m or 8000 ft) [1]. There has been a long and productive
history of studies of pregnancy, fetal and neonatal life at high
altitude. The initial observations on a population level that fetal
growth restriction and preterm delivery were separable causes
of low birth weight were made there nearly 50 years ago ([2]
reviewed in [3]). Not only was this crucial in terms of our
current understanding of the causes of low birth weight but was
followed by continued investigations demonstrating the utility
of charting newborn birth weight in relation to gestational age
as a predictor of infant mortality [4]. This system continues to
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Table 1. Key to abbreviations

ARNT ADP-ribosylation factor domain protein 1
EI External iliac

ET-1  Endothelin 1

HIF Hypoxia-inducible factor

HRE  Hypoxia responsive element

IUGR Intrauterine growth restriction

LSBL  Locus-specific branch length

NO Nitric oxide

NOS  Nitric oxide synthase

PHD Prolyl hydroxylase domain

PIGF Placenta like growth factor

sFlt-1 Membrane bound VEGF receptor 1
SNP Single nucleotide polymorphism
SVR Systemic vascular resistance

UA Uterine artery

VEGF Vascular endothelial growth factor
VHL von Hippel Lindau

the altitude-associated increase in [IUGR. Finally, we consider
the role that genetic factors may play in the population and
species differences observed in altitude-associated IUGR,
hypothesizing that variation in hypoxia-sensitive genes might
be involved. We review the role played by the hypoxia-
inducible factor (HIF) pathway since it is responsible for
regulating most of the oxygen-sensitive genes. After surveying
the HIF-regulated and regulatory genes differentially affected
by pregnancy and chronic hypoxia, we consider the possibility
that such genes may have been acted upon by natural selection
in populations long resident at high altitude. We conclude with
some future directions for research aimed at advancing our
understanding of the genetic mechanisms regulating maternal
physiological responses to human pregnancy.

ALTITUDE-ASSOCIATED IUGR

Magnitude and cause of the birth weight
decline

In Colorado and elsewhere, infant birth weight declines with
increasing altitude, averaging a 100 g fall per 1000 m altitude
gain (nearly a quarter of a pound per 3000 ft) [11,12]. While
convenient to express in this fashion, the decline in birth
weight is actually curvilinear with the ‘breakpoint’ occurring
about 2000 m or 6600 ft [13], consistent with the shape of the
haemoglobin-oxygen dissociation curve. The entire distri-
bution of birth weights is shifted to lower values, rather than
only a subset of lower birth weight babies being affected [2].
This leftward shift has the net effect of increasing the pro-
portion of low birth weight infants (<2500 g) by more than 50
per cent [11]. In Colorado, the effect of high altitude on birth
weight is as great or greater than that associated with low
maternal weight gain, smoking, primiparity or pre-eclampsia
[11].

The decline in birth weight is principally due to a slowing
of fetal growth in the 3rd trimester. Gestational age is, on
average, 0.5 week shorter at elevations over 2744 m (9000 ft) in
Colorado, but this is not sufficient to explain the 240 g birth
weight fall [11]. Comparisons of weights of babies born
prematurely suggest that fetal growth begins to slow after
28-31 weeks’ gestation [14]. Such findings have been recently
confirmed by Krampl and co-workers who found a reduction
in fetal biometry dimensions from 25-29 weeks’ onwards, with

abdominal circumference being more affected than head
circumference [15].

The incidence of pre-eclampsia is increased at high altitude
and this likely contributes to the altitude-associated birth
weight decline [5,11,16,17]. In fact, the greater incidence of
pre-eclampsia accounts for about half the birth weight decline
in our recent studies in Bolivia [17]. Consistent with the
concept that not just a subset of women but the population of
pregnant women is affected, even normotensive women in
Colorado fail to show the normal pregnancy-associated blood
pressure fall suggesting a generalized disorder in maternal
vascular adjustment to pregnancy [16].

The increased incidence of IUGR and pre-eclampsia at
high altitude likely contributes to a rise in perinatal and infant
mortality and morbidity. In a large chart-review of women
receiving prenatal care at similar kinds of health care facilities
at low (300 m) vs high (3600 m) altitude in Bolivia, the
combination of high-altitude residence and pre-eclampsia
raised the frequency of stillbirths 3-fold [17]. Not only were
IUGR and pre-eclampsia more common but all the other
pregnancy, fetal and newborn complications surveyed were
more frequent at the high- than the low-altitude site [17,18].
Infant mortality increases proportionally to the rise in [UGR
in nearly all studies [2,19-23]. In the one report in which such
an increase did not occur [14], women from high altitudes used
specialized medical services to a greater extent than did the
low-altitude residents. Thus, the increased incidence of [IUGR
and pre-eclampsia at high altitude appear to raise infant
mortality. Whether a different standard should be applied for
determining IUGR at high vs low altitude, as has been called
for recently [15], awaits determination of the birth weight-
specific infant mortality (and morbidity) risks at high altitude
vs low altitude, with adequate controls for gestational age and
other key factors such as medical care. Such an assessment is
especially important for the developing regions of South
America where infant mortality rates are among the highest in
the western hemisphere [24] in order for the standard to be
able to identify as many high-risk infants as possible.

Interpopulational variation in the
altitude-associated birth weight decline

Population variation in the magnitude of the birth weight
reduction at high altitude was first noted in Andean vs
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Figure 1. (a) Data points are average values for ~4 million births occurring in the populations and altitudes represented. The Tibetan population is likely to
have lived the longest at high altitude, followed by Andeans, Europeans and then Han. For original data sources, see [26]. (b) Best fit regression lines for the data
presented in la, weighted by sample size and variance, demonstrate that the magnitude of altitude-associated birth weight decline varies inversely with the duration

(in generations) of altitude residence (P<(.0006).

European women in La Paz, Bolivia (3600 m) [25]. In a large
review of some 4 million births, we found that while the
general pattern was for birth weight to decline, the birth
weights observed at a given altitude were highly variable
(Figure 1A) [26]. But when grouped by population ancestry
(Figure 1B), a consistent pattern emerged.

Specifically, Tibetans and Andeans who have lived at high
altitudes for 10 000 years (Andeans) to 20 000 years (Tibetans)
show one-third the birth weight reduction present in European
or Han (‘Chinese’) populations that have resided at high
altitudes for <500 years (i.e. <400 years in South America,
<150 years in North America, and ~ 50 years in western China
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Table 2. Pre-natal and post-natal mortality (deaths per 1000 pregnancies or livebirths) in women of low vs high socioeconomic status living
in La Paz, Bolivia (elevation 3600 m) evaluated at 2.67 gravidity and 2.20 parity

Income group Unadjusted means Adjusted means Mean difference F P value

Pre-natal mortality High 120.0 137.0 —26.0 7.796 0.005
Low 127.8 111.0

<20 weeks High 113.0 129.0 —343 14.8 0.000
Low 109.7 94.3

>20 weeks High 7.7 9.3 8.9 4.817 0.028
Low 18.1 18.2

Post-natal mortality High 59 10.9 25.7 27.706 0.000
Low 42.7 36.6

[26]). Thus, for example, we found babies born to Tibetan
mothers weighed 310 g more at 2700-3000 m (95 per cent
CI=126, 494 g; P<0.01) and 530 g more at 3000-3800 m (210,
750 g; P<0.01) than babies born to Han mothers residing in
the Tibet Autonomous Region of southwestern China. When
viewed across their respective altitude ranges, Tibetans living
at 2700-4800 m demonstrated a 15 g reduction in birthweight
per 1000 m altitude gain whereas Han residing at 2700-3800 m
had a 45 g/1000 m birthweight fall [27]. Such interpopu-
lational variation does not appear attributable to differences in
maternal body size, nutrition, or health care [25,26]. Since the
Andean and Tibetan women are likely to have been born and
raised at high altitude whereas the European and Han women
may have moved there more recently, it is possible that some of
these population differences are due to factors stemming from
the woman’s own altitude of birth and development. However,
in our and others’ Colorado studies, lifelong high-altitude
residence does not appear to protect against altitude-associated
IUGR [28,29]. It is likely that population differences in
altitude-associated IUGR influence infant mortality. In the
high-altitude regions of Tibet where Tibetan and Han popu-
lations live under conditions of similar and, in communist
China, no-cost health care, not only were Tibetans protected
from altitude-associated birthweight declines but they
also had lower estimated pre- and post-natal mortality
rates than the Han residing at the same altitudes [27]. Clearly,
socioeconomic and health care characteristics are also key
factors affecting infant mortality but these observations
suggest that population-specific, genetic factors may also be
involved.

In Bolivia we used surnames to compare the altitude-
associated increase in IUGR among Andean, mestizo
(‘mixed’), and European surnamed segments of the population.
Surnames as a means for assessing group-level population
ancestry has been validated by comparison with genetic
markers in the Bolivian population [30]. In approximately 1000
consecutive births to women receiving prenatal care and living
at low (300 m, Santa Cruz), medium (2500 m, Cochabamba),
or high (3600 m, I.a Paz and Oruro) altitude, we found that
babies of Andean ancestry had only one-third as much
altitude-associated increase in IUGR as babies of European
ancestry [31]. Such findings help to explain why babies born to
the higher-socioeconomic and more often European segment

of the population at high altitude weigh less than those of the
Andean, often lower-socioeconomic sector [12].

To evaluate the effects of socioeconomic vs population-
ancestry characteristics on birth weight and on pre- and
post-natal survival in Bolivia, we compared 1602 deliveries to
high-altitude (3600 m) residents from households with above
average vs below average monthly incomes (>$500 and <$500/
month, #=817 and 785 respectively). Similar to previous
reports [12], the frequency of low birth weight (<2500 g) was
greater in the high- than low-income households (10.3 vs 7.0
per cent, P<0.02). Using logistic regression to take into
account the effects of maternal education (another socioeco-
nomic indicator), high income increased the likelihood of
having a low birth weight baby [OR=1.69 (1.08, 2.64) 95 per
cent confidence intervals] whereas Andean ancestry reduced
the risk [OR=0.35 (0.14, 0.86)]. We also estimated pre-natal
mortality from the medical records where deaths in utero were
coded as ‘spontaneous abortions’ (abortos) if they occurred
before week 20 or ‘stillbirths’ (nacidos muertos) if after week
20. Postnatal mortality was estimated from information con-
cerning the numbers of previous livebirths and children
currently alive. Because the low-income women had higher
gravidity and parity than the high-income women (gra-
vidity=3.0 vs 2.4 pregnancies and parity=2.6 vs 2.0 livebirths
respectively) and thus greater opportunity for a pre- or
post-natal loss, we adjusted the mortality estimates to a
common gravidity or parity. We found greater pre-natal
mortality in the high than low-income group (Table 2), and
this was due entirely to more deaths before week 20. Post-natal
mortality, however, was markedly reduced in the high- vs
low-income groups. We concluded that the Andean population
was protected during prenatal life from the effects of chronic
hypoxia, possibly due, in part, to factors also protecting them
from altitude-associated IUGR, but that socioeconomic disad-
vantages outweighed these protective effects so as to raise
mortality after birth.

PHYSIOLOGICAL FACTORS AFFECTING
UTEROPLACENTAL O, DELIVERY

Normoxic pregnancy

Pregnancy affects all the determinants of O, delivery to the
uteroplacental circulation. Ventilation rises, although this does
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not normally change arterial O, saturation since values are
already nearly maximal. Haemoglobin declines due to greater
plasma than red cell mass expansion and reduces arterial O,
content. Thus a rise in blood flow is entirely responsible for
increasing O, delivery to the uteroplacental circulation.

The rise in uteroplacental blood flow is due, in turn, to
higher cardiac output and redistribution of blood flow to
favour the uteroplacental circulation. Cardiac output rises as a
result of a fall in systemic vascular resistance (SVR, afterload)
and a rise in blood volume (preload). The SVR fall begins in
the luteal phase immediately following conception [32], most
likely as the result of primary systemic vasodilation. Nitric
oxide (NO) production increases [33], sympathetic tone
declines, and circulating levels of the potent vasoconstrictor
endothelin-1 (ET-1) fall [34]. Another key regulator is vascular
endothelial growth factor (VEGF). Continual but low VEGF
levels are required for endothelial cell survival [35]. But in
pre-eclampsia, high levels of the membrane bound VEGF
receptor 1 (sFlt-1) bind VEGF and placental like growth factor
(PIGF), decrease VEGF availability, inhibit endothelial cell
proliferation, and reduce vasorelaxation responses in renal
arteries [36].

Redistribution of blood flow to favour the uteroplacental
circulation stems primarily from profound changes which are
confined to that vascular bed. Vascular resistance falls as a
result of the anastomoses which develops between the ovarian
branch and the main uterine artery (UA), as well as the growth
and enlargement of existing vessels. Because the fall in vascular
resistance in the uteroplacental bed is greater than that
occurring in vessels supplied by the external iliac (EI) artery,
the UA progressively ‘steals’ EI blood flow. Unilateral UA
blood flow therefore rises from a nonpregnant value of ~ 10
ml/min to ~350 ml/min near term [37], a change which is
greater than that experienced by any organ system following
birth. In species with haemochorial placentae (e.g. most pri-
mates, rodents and guinea pigs), the vessels determining
uteroplacental vascular resistance reside largely outside the
uterus whereas in epitheliochorial species, the uteroplacental
vessels comprise the major site of vascular resistance [38,39].
Specifically, in haemochorial species, two-thirds of the utero-
placental vascular resistance resides in the mesometrial, main
UA and ovarian arteries and only one-third is located in
uteroplacental channels. Since the UA makes a demonstrable
contribution to uteroplacental vascular resistance in the
haemochorial species under study and is the smallest vessel
which can be reliably visualized in humans, our studies have
focused on the UA.

UA enlargement in haemochorial species is due to altera-
tions in its responsiveness to circulating and locally produced
vasoconstrictors and vasodilators, UA distensibility and re-
modelling. Pregnancy raises the production of NO and other
substances to augment UA vasodilator response to pharmaco-
logical agonists as well as to flow [40-42]. We and others have
shown that the guinea pig UA vasoconstrictor response to
alpha-adrenergic agonists is reduced [43,44]. Distensibility is
also enhanced [45]. A key factor for enlarging lumenal diam-
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eter is UA remodelling, accompanied by compositional
changes, hyperplasia and hypertrophy in all layers of the vessel
wall as well [45—47]. Of note, the increase in guinea pig cellular
proliferation occurs before the greatest rise in UA blood flow,
suggesting that UA enlargement is a prerequisite for the flow
increase to occur. The factors prompting UA growth likely
involve pregnancy hormones and growth factors [48]. Since
growth is more pronounced in vessels supplying the pregnant
than the nonpregnant uterine horn, venous to arterial transfer
of fetoplacentally derived growth factors may also be important
[49]. Increased flow itself may be an important growth stimu-
lus given that the UA’s characteristic outward hypertrophic
growth resembles that occurring in response to flow rather
than pressure [50]. The ability of VEGF and other growth
factors to stimulate NO [51] suggests that interactions between
vasoactive and growth factors are likely crucial for raising UA
blood flow.

Chronically hypoxic pregnancy

At high altitude, the pregnancy-associated rise in alveolar
ventilation and increase in arterial O, saturation nearly restores
arterial O, content to sea level values [52,53] and both relate
positively to fetal weight [29,54,55]. But since birth weights are
generally lower than at sea level, it is likely that reduced
uteroplacental blood flow rather than diminished arterial O,
content is chiefly responsible for the hypoxia-associated IUGR
observed.

Our and others’ studies show that chronic hypoxia alters
systemic and uteroplacental vascular adjustments to preg-
nancy. In pregnant women, guinea pigs or sheep, cardiac
output is lower at high vs low altitude, probably as the result of
lower blood volume and/or higher SVR [56-59]. Blood vol-
ume expands normally during pregnancy at high altitude, but
begins from lower non-pregnant levels such that blood volume
is lower near term at high than at low altitude [58]. The higher
SVR in high vs low-altitude pregnant humans or experimental
animals contributes to the higher maternal blood pressures
observed [16,57]. Such an increase could, in turn, be due to
greater myogenic tone, altered production of local regulators of
vascular tone (more vasoconstrictors and/or less vasodilators),
and/or a lack of the compensatory organ remodelling that
occurs in a normal pregnancy.

Factors operating both at the systemic level and within the
uteroplacental circulation are likely to be important. Acute
(hours) and more chronic (weeks) high-altitude exposure raise
sympathetic nervous system activity and systemic catecho-
lamine levels in nonpregnant women [60]. In addition, circu-
lating ET-1 levels are elevated by chronic hypoxia [61].
ET-1 induced vasoconstriction appears to be an especially
important contributor, given the ability of endothelin-A
receptor blockade to prevent hypoxia-associated [IUGR and the
accompanying reduction in uteroplacental blood flow in rats
[62,63].

Concerning the uteroplacental circulation, UA blood flow is
one-third lower near term in pregnant high (3100 m) vs low
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(1600 m) altitude residents as a result of a lesser increase in UA
diameter [64]. The portion of common iliac blood flow
diverted to the UA is less in pre-eclamptic women compared
to normal women, suggesting even lower UA blood flows [65].
Given the importance of vessels outside the uterus in the
determination of uteroplacental vascular resistance in haemo-
chorial species, the causes of the lower UA blood flow are
likely to involve the main UA, mesometrial or arcuate vessels.
Of note, chronic hypoxia opposes the effects of normal preg-
nancy on flow vasodilation in the guinea pig UA. Thus, rather
than pregnancy increasing the vasodilator response to flow, UA
from chronically hypoxic animals vasoconstrict at high flow
[42], resembling myometrial arteries from pre-eclamptic
women in which enhanced flow vasodilation also fails to occur
[66]. Chronic hypoxia also inhibits guinea pig UA growth such
that there is only half as much rise in DNA synthesis as in
vessels from normoxic animals [67]. Both these flow and
growth alterations may stem from a lack of pregnancy-
associated increase in NO. Chronic hypoxia reduces NO-
dependent vasorelaxation to acetylcholine in isolated guinea
pig UA rings and inhibits the pregnancy-associated increase
in endothelial NOS protein (NOS III) in whole vessel
homogenates [41,68]. Unknown is whether hypoxia also
affects the pregnancy-associated alterations in other vaso-
dilators (e.g. endothelial-derived hyperpolarizing factor),
growth (e.g. VEGF, PIGF) or vasoactive factors (e.g. ET-1,
catecholamines).

Unlike the guinea pig, a specie in which hypoxia-associated
IUGR occurs [57,69], a different UA response to chronic
hypoxia has been observed in sheep. Sheep vary among breeds
in their susceptibility to hypoxia-associated IUGR with some
but not other breeds showing birth weight reductions at high
altitude [56,70]. In sheep resistant to hypoxia-associated
IUGR, chronic hypoxia raised the vasodilator response to
acetylcholine and increase in NO production, NOS III protein
and message during pregnancy to a greater extent in UA from
high- vs low-altitude [71-73]. The converse was seen in guinea
pigs as noted above, where chronic hypoxia did not alter the
magnitude of acetylcholine vasodilation and reduced NO
production. There are additional differences between the
effects of chronic hypoxia in sheep and guinea pigs concerning
the UA vasoconstrictor response to phenylephrine. Pregnancy
reduced the UA vasoconstrictor sensitivity to phenylephrine
similarly in chronically hypoxic vs normoxic guinea pigs.
Conversely in sheep, there was a greater reduction in the
chronically hypoxic vs normoxic animals as the result of
decreased alphal-adrenergic receptor density, binding affinity
and inositol phosphate 3 production [73-75]. Such species
differences suggest that susceptibility to altitude-associated
reductions in birth weight are due, at least in part, to genetic
factors regulating the maternal systemic and uteroplacental
circulatory responses to pregnancy [76].

Not only is there variation between species in uteroplacental
vascular responses to pregnancy and hypoxia-associated
IUGR, such variation also occurs within the human specie.
Specifically, we have shown that Tibetan women whose infants
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Figure 2. Andean women have lower ET-1 levels than European high-
altitude (3600 m) residents when nonpregnant. Whereas values fall during
pregnancy in the Andeans, there is no clear change in the European women.
(*=P<0.05 for comparisons of the non-pregnant vs pregnant state, and
brackets=P<(.05 between ancestry or altitude groups).

are protected from altitude-associated IUGR have higher UA
blood flow velocity and greater lower extremity blood flow
redistribution to favour the UA than Han women residing at
the same elevation (3600 m) [55]. Moreover, pregnant Han
women at high altitude have smaller UA diameters and lower
blood flows than their low-altitude counterparts [77], like
Colorado residents of high altitude [64]. Andean high-altitude
pregnant women have a normal or even exaggerated fall in
uteroplacental vascular resistance [78]. Preliminary data from
Andean high-altitude women suggest that UA blood flow is
also greater than in women of European ancestry residing at
the same altitude [79]. Our preliminary data also support the
hypothesis that such differences in UA blood flow may be due,
in part, to differences in HIF-related genes. The potent
vasoconstrictor ET-1 appears to be differentially regulated by
pregnancy and chronic hypoxia in Andean vs European resi-
dents of high altitude (Figure 2). Andeans demonstrate the
normal, pregnancy-associated fall in ET-1 previously reported
at low altitude whereas Europeans have higher ET-1 levels and
little pregnancy-associated change, like pre-eclamptic women
[34]. Thus these data support the hypothesis that long-term
residents of high altitude may be protected from adverse
effects of chronic hypoxia on vascular responses to pregnancy
via actions of HIF-targeted genes, among others.

DO GENETIC FACTORS INFLUENCE
MATERNAL VASCULAR ADAPTATION TO
PREGNANCY?

Population and species differences in the magnitude of
hypoxia-associated TUGR suggest the involvement of genetic
factors. Such genetic involvement is consistent with other
studies suggesting associations between specific genetic vari-
ants and pre-eclampsia or IUGR [80-85]. In evaluating
the kinds of genetic factors that might be involved, we (and
others) have been struck by the observation that many of the
candidate genes thus far identified are part of the HIF
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Figure 3. HIF 1-alpha regulation (courtesy K Stenmark).

pathway. Since this pathway regulates a majority of the
hypoxia-responsive genes, we hypothesized that HIF-
regulated pathways are logical targets on which selection for
traits influencing variation in altitude-associated IUGR would
be expected to act.

The molecular mechanisms by which HIFs influence
hypoxic responses have recently been subject to extensive
investigation. These studies have shown that HIF is a highly
conserved heterodimer consisting of a beta subunit (the con-
stitutive HIFIbeta/ARNT complex) and one of three alpha
subunits (HIF 1, 2 or 3alpha). Despite continual production,
degradation is sufficiently rapid that the HIFalpha proteins are
virtually undetectable in normoxia (Figure 3). This degra-
dation requires trans-4-hydroxylation at proline-564 and -402,
recognition and binding by the von Hippel Lindau (VHL)
protein, ubiquination by a E3 ubiquitin ligase complex (con-
sistingm of elongin C/elongin B, cullin 2, and the RING-H2
finger protein Rbx-1), and transport to the proteasome [86].
But under hypoxia and selected other circumstances (e.g.,
specific oncogenes, proline hydroxylase enzyme inhibition
[87], presence of large divalent metal ions or iron chelators),
HIFalpha escapes hydroxylation and recognition by VHL.
This permits HIF protein levels to rise, translocate to the
nucleus, heterodimerize, and transcriptionally activate genes
containing the cis-acting hypoxia responsive element (HRE)
5"ACGTG(C/G)3’ [88].

Over 40 HIF-regulated or regulatory genes have been
identified whose functions influence the vascular adjustments
to hypoxia and/or pregnancy [89] (Table 3). This group
comprises a number of candidate genes whose vascular effects
can plausibly be linked to the vasoconstriction, endothelial
damage and reduced uteroplacental blood flow characteristic of
pre-eclampsia and TUGR [80-85]. Many (if not most) are
polymorphic [i.e. exhibiting relatively common (>1 per cent)
genetic variants]. Moreover, such allelic variation is likely
functional insofar as it is associated with differences in levels of
circulating gene products [90]. Supporting the likelihood that
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Table 3. HIF genes altered by hypoxia and pregnancy

Function Genes Reference

HIF targets

Vasoactive ET-1, ECE [84,99-103]
Leptin [104,105]
NOS II, IIT [84,99,101,103]
Tyrosine hydroxylase 1,2; [106-108]
ol-adrenergic receptor

Growth EPO, transferrin [109-111]
IGF (IGF2, IGFBP1-3) [112-115]
PDGF B [116,117]
TGF a [8,118]
VEGF, Flt-1, sFlt, KDR, [36,102,119-126]
neuropilin 1-2; PIGF

Inflammation Interleukins 1, 6; TNF a [127-132]

HIF regulatory
HIF1-3 o, HIF1-a, [8,133-135]
ARNT2-3
ARDI1 [136]
Cul2, JAB1/CSN5, RBX1  [137-139]
PHDI, 2, 3 [140,141]
VHL [7,142]

Notes: NOSIIT is hypoxia but not HIF-regulated. Cul2 and RBXI1 are
constitutive. Effects of pregnancy on Cul2, RBX1, and PHD are unknown.

such genes are expressed in the uteroplacental vascular bed,
HIF or HIF-regulatory gene expression is altered in placentae
from pregnancies complicated by pre-eclampsia and/or IUGR
compared with normal pregnancy [8,9].

GENOMIC APPROACHES FOR IDENTIFYING
CANDIDATE GENES

Genomic approaches have been infrequently applied to preg-
nancy complications but offer considerable power for deter-
mining interindividual variation in risk factors for complex
diseases [91,92]. Such approaches include ones which take
advantage of the possibility that natural selection has acted to
differentiate one population, in this case Andeans, from other
groups with shorter duration of high-altitude exposure with
respect to genes influencing uteroplacental blood flow and fetal
growth. The principle underlying these approaches stems from
the observation that since geographic separation of human
populations is relatively recent,' most genetic variation is
shared among all groups with only ~15 per cent differing
between major continental regions [93]. Thus, comparatively
small differences in allele frequency are expected across most
genes but not, importantly, those that have been acted upon by
natural selection [94]. For example, the Duffy null allele

1 100-60 000 years ago (kya) for African/non-African, ~ 50 kya for
Asian/European, ~20-15 kya for Asian/American separation.
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Table 4. Allele frequencies, differentials, and I.SBLs for 10k-WGA SNPs near HIF-regulated/regulatory genes

Gene SNP no. Allele frequencies Quechua—Nahua Quechua LSBL
- differential

Quechua Nahua Asian
NOSII 1 0.425 0.588 0.500 0.163 0.075
NOSII 2 0.425 0.650 0.525 0.225° 0.100
ol-adrenergic receptor 0.100 0.250 0.350 0.150 0.150°
endothelin 0.800 0.525 0.175 0.275* 0.275*
FLT1 1 0.825 0.900 0.600 0.075 0.000
TGF a 0.225 0.250 0.450 0.025 0.025
cullin 2 0.175 0.325 0.200 0.150 0.025
neuropilin 2 1 0.400 0.421 0.600 0.021 0.021
neuropilin 2 2 0.050 0.053 0.150 0.003 0.003
neuropilin 1 0.500 0.421 0.368 0.079 0.079
PHD3 1 0.775 0.625 0.500 0.150 0.150"
PHD3 2 0.361 0.214 0.250 0.147 0.111
PHD3 3 0.425 0.400 0.075 0.025 0.025
* P<0.05.
®0.05<P<0.10.

(FY*0) which provides protection from the Plasmodium vivax
form of malaria has reached very high frequencies across
sub-Saharan Africa in the last several thousand years, while
not being present outside Africa [95]. Divergence for F'Y*0
and markers near the functional site is detected as high Fgr
levels (i.e., the proportion of the total genetic variation that is
due to differences among groups) [96]. We recently extended
the Fgr approach to quantify locus-specific divergence using a
measure termed locus-specific branch length (ILSBL) [97].
While the Fg approach evaluates if any one or more of the
populations under consideration have undergone dramatic
changes in allele frequency, the I.SBL approach provides the
ability to geometrically isolate the population in which the
allele frequency change occurred. These F'g and LSBL based
methods provide exciting breakthroughs for identifying candi-
date genes in pathways thought affected by recent directional
or balancing selection [92,94,98].

As a preliminary test as to whether any of the candidate
genes listed in Table 3 are implicated in the population
differences observed in altitude-associated IUGR, we gener-
ated an empirical distribution for the levels of LSBL in
Andean high-altitude residents and, for comparative purposes,
indigenous American groups not residing at high altitude. In
addition, we included Fast Asians as a group which is likely to
share a recent (relative to other human populations) common
ancestor [97]. We used a new genotyping method developed by
Affymetrix (10K-WGA mapping array, Santa Clara, CA,
USA) that permits whole genome amplification and generation
of allele frequencies for 11 555 single nucleotide polymor-
phisms (SNPs) located throughout the genome. Using the
Affymetrix 10K-WGA chip, we examined several populations,
including East Asians and two indigenous Central and South
American groups (Nahua and Andean), both of which have
previously been shown to have very low (<1 per cent) African
or European admixture. These empirical distributions of Fgr-
and LSBL can then be used to quantify how different any

particular gene is from the range of values typically seen for the
population comparisons being made.

For a preliminary evaluation of branch lengths for the
candidate genes listed in Table 3, we screened for genes
located within 40 kb of the 11 555 SNPs inventoried on the
10K-WGA chip. Nine such genes were identified (Table 4).
Shown are the allele frequencies for the SNPs near each of
these nine genes, the difference in allele frequency, and the
LSBL for Andeans (Quechua from Peru) and two related
populations [Nahua from Mexico and East Asians (Chinese
and Japanese living in the US)]. Of these nine, remarkably,
nearly half (44 per cent) had one SNP which was in the highest
90th percentile of the distribution of all SNPs on the 10K-
WGA. These genes were NOSII, the alphal-adrenergic recep-
tor, endothelin, and PHD3, all of which are important
candidate genes. To phrase this differently, there is a less than
10 per cent chance that genetic variation near these four genes
was within the range exhibited in the low-altitude control
populations (the Nahua and East Asians) and a <5 per cent
chance that variation near the ET-1 gene was within the
expected range.

DIRECTIONS FOR FUTURE STUDY

Thus, the available data suggest that UA blood flow is lower
during pregnancy at high altitude in settings where IUGR is
most pronounced. Further the variation in hypoxia-associated
IUGR that is evident both within as well as between species
suggests important avenues for future studies designed to
address the contribution of genetic factors to maternal vascular
adaptation to pregnancy. Future studies are required for
assaying additional SNPs near the candidate, HIF-targeted
genes to verify the existence of recent natural selection in
Andean populations and for testing functionality. Such studies
represent a novel and, as yet, relatively unexplored approach
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for achieving an integrated understanding of the physiological
and genetic bases for pregnancy complications. Such an
approach can also be expected to yield new predictive tests as
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