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ditions, again, remain uncertain.
Experimental studies in animal models, including our own, 

have used exposure of pregnant mammals to chronic hypobaric 
or isobaric hypoxia during gestation and have studied the ef-
fects on fetal growth and on the cardiovascular system of the 
offspring in the newborn and adult periods.21–23 Studies such 
as these have reported that chronic fetal hypoxia can program 
persistent pulmonary hypertension in the newborn and pulmo-
nary hypertension in the adult offspring.24 However, because 
maternal exposure to hypoxia can lead to a significant de-
crease in maternal food intake,25 the extent to which any ad-
verse effects on the pulmonary circulation of the offspring are 
due to under-nutrition and/or under-oxygenation, once again, 
remain unclear.

The combination of HA exposure with the use of the chick 
embryo model permits investigation of the direct effects of HA 
hypoxia on growth and on cardiovascular development com-
pletely independent of alterations in placental function, inde-
pendent of changes in the maternal physiology and indepen-
dent of any effects of socioeconomic factors. Previously, we 

ulmonary hypertension continues to be an important 
clinical problem.1–8 Studies of populations at high al-
titude (HA) have unequivocally reported intrauterine 

growth restriction (IUGR) and a higher prevalence of pulmo-
nary hypertension,9–17 suggesting that a component of these 
conditions is associated with exposure to chronic hypoxia. 
However, because most highland populations are also impov-
erished, the relative contributions of chronic hypoxia or of 
chronic malnutrition during the fetal and postnatal periods in 
stunting growth and promoting pulmonary vascular disease dur-
ing life at altitude remain uncertain.

Similarly, clinical studies at sea level (SL) have reported an 
association between the IUGR infant and the early development 
of right ventricular dysfunction and pulmonary hypertension.18–20 
However, because IUGR in human high-risk pregnancy nor-
mally occurs as a result of increased placental vascular imped-
ance with consequent falls in oxygen and nutrient delivery to 
the baby, the relative contributions of chronic hypoxia or of 
chronic malnutrition during the fetal period in slowing growth 
and promoting pulmonary vascular anomalies under these con-
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Background:  By combining the chick embryo model with incubation at high altitude (HA), the effects of chronic hy-
poxia on fetal growth, fetal cardiac and aortic wall remodeling and systemic arterial blood pressure at adulthood were 
reported. Using non-invasive functional echocardiography, here we investigated the in vivo effects of HA hypoxia on 
the pulmonary circulation at adulthood in male and female chickens.

Methods and Results:  Chick embryos were incubated, hatched and raised at sea level (SL) or at HA. At 6 months 
of age, functional echocardiography was performed and the body and heart weights were taken. Heart weight was 
heavier in males but not in female HA chickens compared to their same sex SL counterparts. Similarly, male but not 
female HA chickens had greater in vivo right ventricular wall thickness compared to their same sex SL counterparts. 
The tricuspid pressure gradient was greatly enhanced in HA male and HA female chickens. However, the increment 
in the tricuspid pressure gradient was greater in HA males than in HA females. The pulmonary artery diameter was 
also enhanced in HA males than in SL males. In contrast, HA did not affect this variable in female chickens.

Conclusions:  The data show that chronic hypoxia during development at HA is associated with echocardiocraphic 
indices of pulmonary hypertension at adulthood in a highly sex-dependent manner.    (Circ J  2014; 78: 1459 – 1464)
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incubated, hatched and raised at HA. At 6 months of age (adult-
hood), in 7 males and 7 females in each group, the femoral ar-
tery was catheterised (polyvinyl catheters: i.d. 0.58 mm; o.d. 
0.96 mm; Critchly Electrical Products, NSW, Australia) under 
anaesthesia (10 mg/kg Xylazine 2%, Millpledge Pharmaceuticals, 
UK and 30 mg/kg Ketamine, Ketaset, Fort Dodge Animal 
Health, Iowa, USA, i.m.) and arterial blood samples were 
taken after 5 days of post-operative recovery for determination 
of arterial blood gases, acid base status and hematocrit, in du-
plicate. Another 7 males and 7 females in each group were used 
for echocardiography studies. These chickens were mildly anaes-
thetised (10 mg/kg Xylazine 2%, Millpledge Pharmaceuticals, 
UK and 15 mg/kg Ketamine, Ketaset, Fort Dodge Animal 
Health, Iowa, USA, i.m.) and placed in a supine position on a 
heating pad, taking care to minimise body temperature loss. The 
feathers in the chest region were carefully plucked and echocar-
diography was performed (Acuson Siemens, Mountain View, 
CA) using a pediatric probe 7v3c (3.5–7 MHz), applying stan-
dard techniques similar to those described before.20 Longitu-
dinal and transverse images were obtained at different levels 
of the heart in the parasternal long- and short-axis using M-
mode bi-dimensional (2D) echocardiography. The thickness 
of the ventricular walls in real time was measured using the 

have reported that incubation of fertilised eggs from SL hens 
at HA promoted growth restriction, cardiomegaly, cardiac and 
aortic wall thickening in the chick embryo, and systemic blood 
pressure dysregulation in the adult chicken.26–28 Using func-
tional echocardiography, this study investigated in vivo in real 
time the effects of HA hypoxia on the pulmonary and systemic 
circulations in chickens at adulthood. As sexual dimorphic ef-
fects on cardiovascular disease are established,29 we studied both 
male and female chickens.

Methods
All experiments were approved by the local ethics committee of 
the Bolivian Institute for HA Biology (Consejo Técnico, IBBA, 
Universidad Mayor de San Andrés, La Paz, Bolivia) and all 
procedures were performed under the UK Animals (Scientific 
Procedures) Act 1986.

The study took place in Bolivia, at the HA city of La Paz 
(HA, 3,600 m, 494 mmHg, PO2 100 mmHg) and the SL city of 
Santa Cruz (SL, 420 m, 760 mmHg, PO2 160 mmHg). Twenty-
eight (14 male and 14 female) Black Leghorn chicken embryos 
were incubated, hatched and raised at SL and twenty-eight (14 
males and 14 females) Black Leghorn chicken embryos were 

Table.  Arterial Blood Gas Status in Sea-Level and High-Altitude Adult Chickens

Males Females

SL HA SL HA

pHa   7.51±0.03   7.51±0.01　   7.56±0.04   7.53±0.03　
PaCO2 (mmHg) 27.8±2.2 25.9±2.1　 28.9±2.4 26.2±2.1　
PaO2 (mmHg) 87.1±3.6 45.4±3.2* 85.7±4.1 43.4±2.9*

SatHb (%) 97.4±0.4 58.5±7.2* 97.2±0.2 60.6±5.3*

Htc (%) 30.6±1.1 44.6±2.1* 27.7±1.8 46.1±2.3*

Values are the mean ± SEM for arterial pH (pHa), arterial partial pressure of carbon dioxide (PaCO2), arterial partial 
pressure of oxygen (PaO2), hemoglobin saturation with oxygen (SatHb) and hematocrit (Htc) in 7 males and 7 female 
chickens incubated, hatched and raised at sea level (SL) and in 7 male and 7 female chickens incubated, hatched and 
raised at high altitude (HA). Significant differences (P<0.05) are: *SL vs. HA (Two-way ANOVA + Student-Newman-
Keuls post-hoc test).

Figure 1.    Bodyweight and heart weights in sea-level and high-altitude adult chickens. Values are the mean ± SEM for bodyweight 
(A), absolute heart weight (B) and heart weight expressed as a percentage of bodyweight (C) in 7 males (M) and 7 female (F) 
chickens incubated, hatched and raised at sea level (SL, light blue and pink, respectively) and in 7 male and 7 female chickens 
incubated, hatched and raised at high altitude (HA, dark blue and dark pink, respectively). Significant differences (P<0.05) are: 
*SL vs. HA, for same sex (sex independent of hypoxia) and †male vs. female, same altitude (hypoxia independent of sex). A two-
way ANOVA + Student-Newman-Keuls post-hoc test.
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Results
Arterial Blood Gas Status and Hematocrit
At 6 months, there were no differences in arterial pH and pCO2 
between males and females or between SL and HA. However, 
HA male and female chickens had lower arterial pO2, SaO2 
and increased hematocrit compared to SL chickens. Values for 
pO2, SaO2 and hematocrit were similarly altered in male and 
female chickens at HA relative to SL (Table).

Biometry
At 6 months, bodyweight, absolute heart weight and the heart 
weight expressed as a percentage of bodyweight were all sig-
nificantly lower in SL female chickens than SL male chickens 
(Figures 1A–C). Male but not female chickens at HA were 
significantly lighter than their same sex SL counterparts 
(Figure 1A). Similarly, the absolute and relative heart weights 
were significantly greater only in male but not female HA chick-
ens relative to their same sex SL counterparts (Figures 1A–C).

Echocardiography
At 6 months, the thickness of the right ventricular wall was 
similar during systole and diastole in SL male and SL female 
chickens (Figures 2A,B). However, the thickness of the left 
ventricular wall was significantly lower during systole and di-
astole in SL female than in SL male chickens (Figures 2C,D). 
Male but not female chickens at HA had significantly greater 

parasternal long-axis view of the heart with the M-mode beam 
tip just beyond the atrioventricular valves, perpendicular to the 
long axis of either ventricle. The thickness of the walls of the 
major vessels was also determined using the parasternal long-
axis view of the heart with M-mode. Doppler was used to de-
termine the direction of blood flow and its velocity. In the para-
sternal long-axis orientation, with B-mode visualization of the 
pulmonary artery, the pulmonary artery Doppler was estab-
lished. The peak flow velocity of the trans-tricuspid jet was 
measured and the pressure gradient between the right ventricle 
and the right atrium was calculated, as previously described 
and validated at HA.20 The equivalent was determined for the 
left ventricle. At the end of the experiments, the chicken was 
humanely killed with an overdose of anaesthetic (100 mg/kg, 
Thiopental injection BP, Link Pharmaceuticals Ltd, UK, i.v.). 
Upon post mortem, the chicken was weighed. The heart was 
isolated, weighed and frozen in liquid nitrogen.

Statistical Analysis
All data are expressed as mean ± SEM. Comparisons between 
groups were assessed statistically using a 2-way ANOVA with 
the Student-Newman-Keuls post-hoc test, with altitude and sex 
as factors (Prism 5, GraphPad Software, Inc). For all compari-
sons, statistical significance was accepted when P<0.05.

Figure 2.    Ventricular wall thickness in sea-
level and high-altitude adult chickens. Values 
are the mean ± SEM for the wall thickness of 
the right (A and B) and left (C and D) ventri-
cle during systole and diastole in 7 male (M) 
and 7 female (F) chickens incubated, hatched 
and raised at sea level (SL, light blue and 
pink, respectively) and in 7 male and 7 female 
chickens incubated, hatched and raised at 
high altitude (HA, dark blue and dark pink, 
respectively). Significant differences (P<0.05) 
are: *SL vs. HA, for same sex (sex indepen-
dent of hypoxia) and †male vs. female, same 
altitude (hypoxia independent of sex). A two-
way ANOVA + Student-Newman-Keuls post-
hoc test.
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monary vascular bed constricts during hypoxic conditions;30 
this is a physiological response, matching pulmonary perfusion 
to reduced oxygenation. However, excessive or prolonged in-
creases in pulmonary vascular resistance can lead to patholo-
gy. Highland residents provide an excellent model to investi-
gate the pathophysiology of the pulmonary vascular bed as they 
live in an environment of hypobaric hypoxia. Their hearts and 
pulmonary circulation show alterations that resemble those that 
occur in clinical conditions associated with alveolar hypoxia 
and polycythemia, exhibiting pulmonary hypertension and car-
diomegaly due to right ventricular hypertrophy. As highland-
ers lose their capacity for adaptation with advancing age or due 
to additional risk factors, such as smoking, these findings be-
come exaggerated leading to overt chronic mountain sickness. 
The expression of pulmonary hypertension and right heart 
remodelling in highland human and animal residents has been 
described for many years in a long and rich history of impor-
tant studies.10–15 Although sex differences in the prevalence of 
pulmonary hypertension at SL have been reported, there is 
disagreement about whether this is primarily a disease of male 
or female individuals.31,32 In marked contrast, it is a widely held 
view that the highland female is relatively protected than the 
highland male against developing pulmonary hypertension dur-
ing residence at HA. However, this has not been established 
in the literature. Data are beginning to surface to indicate 

right ventricular wall thickness during systole and diastole 
than their same sex SL counterparts (Figures 2A,B). HA did 
not affect the wall thickness of the left ventricle in either males 
or females (Figures 2C,D).

At 6 months, the tricuspid pressure gradient was greatly 
enhanced in HA male and HA female chickens relative to their 
same sex SL counterparts. However, the increment in the tri-
cuspid pressure gradient was significantly greater in HA males 
than in HA females (Figure 3A). The pulmonary artery diam-
eter was also greatly enhanced in HA male than in SL males. 
In contrast, HA did not affect the pulmonary artery diameter 
in female chickens (Figure 3B). Overall, values for the mitral 
pressure gradient were much lower than values for the tricuspid 
pressure gradient (Figures 3A,C). The mitral pressure gradi-
ent was significantly lower in SL females relative to SL males 
and in HA males relative to SL males (Figures 3C,D). Neither 
sex nor HA affected the diameter of the aorta.

Discussion
Using non-invasive functional echocardiography, data in the 
present study show that chickens incubated, hatched and raised 
at HA develop significant indices of pulmonary hypertension 
at adulthood in a highly sex-dependent manner.

In contrast to the systemic circulation which dilates, the pul-

Figure 3.    Ventricular pressure gradients and 
vessel diameter in sea-level and high-altitude 
adult chickens. Values are the mean ± SEM for 
the ventricular pressure gradient and the 
main vessel diameter of the right (A and B) 
and left (C and D) heart in 7 male (M) and 7 
female (F) chickens incubated, hatched and 
raised at sea level (SL, light blue and pink, 
respectively) and in 7 male and 7 female chick-
ens incubated, hatched and raised at high al-
titude (HA, dark blue and dark pink, respec-
tively). Significant differences (P<0.05) are: 
*SL vs. HA, for same sex (sex independent of 
hypoxia) and †male vs. female, same altitude 
(hypoxia independent of sex). A two-way 
ANOVA + Student-Newman-Keuls post-hoc 
test.
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normoxic conditions, leads to pulmonary hypertension in the 
adult offspring, becoming prominent with aging.24 In contrast, 
there have also been reports in children resident at HA with no 
evidence of pulmonary hypertension, when socioeconomic fac-
tors were accounted for.47 Similarly, experimental studies in 
newborn rats and guinea pigs exposed to chronic hypoxia in 
utero have reported no morphological evidence of pulmonary 
hypertension.48–50 Finally, no evidence of early endothelial dys-
function was reported in small pulmonary arteries of fast-grow-
ing broilers raised in normoxia following incubation under 
hypoxic conditions.51 Clearly, further insight into this debate 
could be obtained by exploiting the combination of the chick 
embryo model and HA exposure, but with a cross-over study 
design; by investigating adult offspring (pre- and post-puberty) 
incubated at HA but raised post-hatching at SL and vice versa. 
Although logistically rather more difficult, this is clearly an 
obvious extension of the present work and a path for future 
investigation.

In the present study, there are 2 additional findings that de-
serve some attention. First, the tricuspid pressure gradient was 
greatly enhanced in highland chickens. However, the increment 
in the tricuspid pressure gradient was significantly greater in 
highland males than in highland females. In contrast, the pul-
monary artery diameter was also greatly enhanced in highland 
chickens, but only in males. HA did not affect the pulmonary 
artery diameter in female chickens. Second, the mitral pressure 
gradient was significantly decreased in highland males relative 
to SL males. The reasons for the dissociation between an effect 
of HA on the tricuspid pressure gradient but not on the pulmo-
nary artery vessel diameter in female chickens are unclear. How-
ever, it might indicate the existence of a threshold tricuspid 
pressure gradient above which remodelling of the pulmonary 
vessel wall is triggered, as in highland male chickens. The lower 
mitral pressure gradient between highland vs. SL males might 
indicate relative systemic arterial hypotension in highland males. 
Of interest, a recent study by our group has reported that HA 
chickens had significantly lower arterial blood pressure than SL 
chickens, when measured in chronically instrumented animals 
in vivo. However, this effect was independent of the sex of the 
animal.28

In conclusion, by combining the chick embryo model with 
incubation at HA, we have investigated the in vivo effects of 
chronic hypoxia on the pulmonary system at adulthood, and 
show that pre- and post-hatching development at HA markedly 
enhances established echocardiographic indices of pulmonary 
hypertension at adulthood in a highly sex-specific manner.
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