UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA CIVIL

PROYECTO DE GRADO

"MÉTODO PROBABILISTICO DE ESTIMACIÓN PARA LA SEGURIDAD DE TALUDES FRENTE AL FALLO POR DESLIZAMIENTO"

POSTULANTE : FERNANDO REYNALDO FLORES CABELLO

TUTOR : ING. MSC. VÍCTOR BERMEJO F.

2018

LA PAZ - BOLIVIA

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE INGENIERIA

LA FACULTAD DE INGENIERIA DE LA UNIVERSIDAD MAYOR DE SAN ANDRÉS AUTORIZA EL USO DE LA INFORMACIÓN CONTENIDA EN ESTE DOCUMENTO SI LOS PROPÓSITOS SON ESTRICTAMENTE ACADÉMICOS.

LICENCIA DE USO

El usuario está autorizado a:

- a) Visualizar el documento mediante el uso de un ordenador o dispositivo móvil.
- b) Copiar, almacenar o imprimir si ha de ser de uso exclusivamente personal y privado.
- c) Copiar textualmente parte(s) de su contenido mencionando la fuente y/o haciendo la cita o referencia correspondiente en apego a las normas de redacción e investigación.

El usuario no puede publicar, distribuir o realizar emisión o exhibición alguna de este material, sin la autorización correspondiente.

TODOS LOS DERECHOS RESERVADOS. EL USO NO AUTORIZADO DE LOS CONTENIDOS PUBLICADOS EN ESTE SITIO DERIVARA EN EL INICIO DE ACCIONES LEGALES CONTEMPLADAS EN LA LEY DE DERECHOS DE AUTOR.

ÍNDICE

CAPÍTULO I	
INTRODUCCIÓN	1
1.1. JUSTIFICACIÓN	1
1.2. PLANTEAMIENTO DEL PROBLEMA	2
1.3. OBJETIVOS	3
1.3.1. OBJETIVO GENERAL	3
1.3.2. OBJETIVOS ESPECÍFICOS	3
1.4. ALCANCES	4
1.4.1. TEMÁTICO	4
1.4.2. ESPACIAL	4
1.4.3. TEMPORAL	4

CAPÍTULO II

MARCO TEÓRICO	5
1.5. TEORÍA DE CONFIABILIDAD	5
1.5.1. INCERTIDUMBRE	7
1.6. ESTABILIDAD DE TALUDES	9
1.7. FACTOR DE SEGURIDAD	12
1.7.1. MÉTODO MORGENSTERN PRICE	15
1.8. MÉTODOS DE EVALUACIÓN DE LA SEGURIDAD DE TALUDES	20
1.8.1. PLANTEAMIENTO DE MÉTODOS	20
1.8.2. MÉTODO CLÁSICO DE ANÁLISIS	21
1.8.3. MÉTODOS PROBABILÍSTICOS - NIVELES DE ANÁLISIS	23
1.8.4. MÉTODO PROBABILÍSTICO DE ANÁLISIS DE NIVEL I	25
1.8.5. PLANTEAMIENTO ESTADÍSTICO NIVEL II	26
1.8.6. PLANTEAMIENTO ESTADÍSTICO NIVEL III. SIMULACIONES	DE
MONTE CARLO	31
1.9. ESTIMACIÓN DE CONSECUENCIAS	41
1.9.1. ELEMENTOS EN RIESGO	43

1.9.2.	EXPOSICIÓN	4
1.9.3.	VULNERABILIDAD	14

CAPÍTULO III

MARCO METODOLÓGICO	45
1.10. LOCALIZACIÓN DEL PROYECTO	45
1.11. SITUACIÓN DE CÁLCULO	47
1.12. ACCIONES A CONSIDERAR	48
1.13. OBTENCIÓN DEL FACTOR DE SEGURIDAD (FS)	48
1.14. DATOS DE PARTIDA EMPLEADOS	49
1.14.1. DATOS DE PARTIDA EMPLEADOS EN EL NIVEL I	49
1.14.2. DATOS DE PARTIDA EMPLEADOS EN EL NIVEL II	51
1.14.3. DATOS DE PARTIDA EMPLEADOS EN EL NIVEL III	56
1.15. CARACTERÍSTICAS DE LA INVESTIGACIÓN	57
1.16. TÉCNICA DE INVESTIGACIÓN	58
1.17. FUENTES DE INFORMACIÓN	58

CAPÍTULO IV

MARCO) PRÁCTICO	59
4.1.	MÉTODOS DE NIVEL I	59
4.2.	MÉTODOS DE NIVEL II	60
4.3.	MÉTODOS DE NIVEL III	69

CAPÍTULO V

CONCLUSIONES	78
5.1. CONCLUSIONES GENERALES	78
5.2. CONCLUSIONES DEL NIVEL I	79
5.2.1. PESO ESPECÍFICO (KN/m3)	79
5.2.2. COHESIÓN (KPa)	79
5.2.3. ANGULO DE ROZAMIENTO INTERNO (°)	80
5.3. CONCLUSIONES DEL NIVEL II	80

5.3.1.	PESO ESPECÍFICO (KN/m3)	80
5.3.2.	COHESIÓN (KPa)	80
5.3.3.	ANGULO DE ROZAMIENTO INTERNO (°)	81
5.4.	CONCLUSIONES DEL NIVEL III	81
5.4.1.	PESO ESPECÍFICO (KN/m3)	81
5.4.2.	COHESIÓN (KPa)	81
5.4.3.	ANGULO DE ROZAMIENTO INTERNO (°)	82
5.5. (COMPARACIONES ENTRE LOS NIVELES II Y III	
5.5.1.	PESO ESPECÍFICO (KN/m3)	82
5.5.2.	COHESIÓN (KPa)	84
5.5.3.	ANGULO DE ROZAMIENTO INTERNO (°)	86

ÍNDICE DE TABLAS

Tabla 1. Condiciones de equilibrio que satisfacen los métodos del Geoslope 13
Tabla 2. Supuestos de diversos métodos de estabilidad de taludes 13
Tabla 3. Niveles de medidas de fiabilidad estructural
Tabla 4. Valores centrados (mejor estimación, favorables para el Nivel I, II y III)25
Tabla 5. Valores No centrados (considerados para NIVEL II y III y sus Coeficientes de
variación)29
Tabla 6. Valores medios y sus desviaciones típicas, utilizados en el Nivel III37
Tabla 7. Probabilidad de falla método de Montecarlo con el número de iteraciones. Nivel
III
Tabla 8. Índices de confiabilidad objetivo y probabilidades de falla admisibles (USACE,
1999)
Tabla 9. Coeficiente sísmico horizontal. Según Normativa Sismoresistente NCSE-0247
Tabla 10. Cálculos estadísticos relacionados con el sismo48
Tabla 11. Valores medios, superior e inferior para el peso específico del nivel I50
Tabla 12. Valores medios, superior e inferior para la cohesión del nivel I50
Tabla 13. Valores medios, superior e inferior para el ángulo de rozamiento del nivel I50
Tabla 14. Valores medios, tipo de distribución y sus desviaciones típicas, NIVEL III57
Tabla 15. Resumen general del factor de seguridad para el nivel I
Tabla 16. Probabilidad de fallo Vs. Peso específico aparente (Estático) NIVEL II60
Tabla 17. Probabilidad de fallo Vs. Peso específico aparente (Dinámico) NIVEL II62
Tabla 18. Probabilidad de fallo Vs. Cohesión (Estático) NIVEL II63
Tabla 13. Probabilidad de fallo Vs. Cohesión (Dinámico) NIVEL II65
Tabla 20. Probabilidad de fallo Vs. Angulo de fricción interno (Estático) NIVEL II66
Tabla 21. Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico) NIVEL II68
Tabla 22. Probabilidad de fallo Vs. Peso específico aparente (Estático) NIVEL III69
Tabla 23. Probabilidad de fallo Vs. Peso específico aparente (Dinámico) NIVEL III71
Tabla 24. Probabilidad de fallo Vs. Cohesión (Estático NIVEL III)72
Tabla 25. Probabilidad de fallo Vs. Cohesión (Dinámico NIVEL III)
Tabla 26. Probabilidad de fallo Vs. Angulo de fricción interno (Estático) NIVEL III75
Tabla 27. Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico) Nivel III76

ÍNDICE DE FIGURAS

Figura 1. Métodos de cálculo para analizar la estabilidad de un talud10
Figura 2. Resultado de un análisis según Morgenstern Price "M&P"18
Figura 3. Relación de λ y el factor de seguridad según M&P18
Figura 4. Función típica utilizada por M&P "forma parabólica"19
Figura 5. El polígono de fuerzas y el diagrama de una rebanada según M&P19
Figura 6. Región segura, de fallo y estado límite para un caso bidimensional22
Figura 7. Ilustración del índice de fiabilidad. CEM (2006)27
Figura 8. Superficie de estado límite $g=g(X)$ y su aproximación lineal para el caso
bidimensional. Interpretación del índice de fiabilidad β de Hasofer-Lind28
Figura 9. Metodología empleada en el Nivel II (Estático y Dinámico)30
Figura 10. Geometría del talud empleado para el NIVEL III (Estático y Dinámico)37
Figura 11. Distribución Normal de las variables aleatorias para el ejemplo anterior39
Figura 12. Alcance General de Simulación de Monte Carlo40
Figura 13. Clasificación de pérdidas a deslizamientos
Figura 14. Tramo El Sillar
Figura 15. Características del Talud tipo para el análisis del factor de seguridad46
Figura 16. Afloramiento de areniscas, progresiva 14+880
Figura 17. Superficie de probabilidad de fallo Vs. Peso específico estático nivel II61
Figura 18. Tendencia de probabilidad de fallo Vs. Peso específico estático nivel II61
Figura 19. Superficie de probabilidad de fallo Vs. Peso específico Dinámico nivel II62
Figura 20. Tendencia de probabilidad de fallo Vs. Peso específico dinámico nivel II63
Figura 21. Superficie de probabilidad de fallo Vs. Cohesión Estático nivel II64
Figura 22. Tendencia de probabilidad de fallo Vs. Cohesión Estático nivel II64
Figura 23. Superficie de probabilidad de fallo Vs. Cohesión Dinámico nivel II65
Figura 24. Tendencia de probabilidad de fallo Vs. Cohesión Dinámico nivel II66
Figura 25. Superficie de probabilidad de fallo Vs. Angulo de rozamiento Estático
nivel II
Figura 26. Tendencia de probabilidad de fallo Vs. Angulo de fricción Estático nivel II67

Figura 27. Superficie de probabilidad de fallo Vs. Angulo de rozamiento Dinámico
nivel II
Figura 28. Tendencia de probabilidad de fallo Vs. Angulo de fricción Dinámico nivel II.69
Figura 29. Superficie de probabilidad de fallo Vs. Peso específico Estático nivel III70
Figura 30. Superficie de probabilidad de fallo Vs. Peso específico Dinámico nivel III71
Figura 31. Tendencia de probabilidad de fallo Vs. Peso específico Dinámico nivel III72
Figura 32. Superficie de probabilidad de fallo Vs. Cohesión Estático nivel III73
Figura 33. Superficie de probabilidad de fallo Vs. Cohesión Dinámico nivel III74
Figura 34. Tendencia de probabilidad de fallo Vs. Cohesión Dinámico nivel III74
Figura 35. Superficie de probabilidad de fallo Vs. Angulo de fricción Estático nivel III75
Figura 36. Tendencia de probabilidad de fallo Vs. Angulo de fricción Estático nivel III76
Figura 37. Tendencia de probabilidad de fallo Vs. Angulo de fricción (Dinámico)
Nivel III
Figura 38. Tendencia de probabilidad de fallo Vs. Angulo de fricción (Dinámico)
Nivel III

CAPÍTULO I

INTRODUCCIÓN

1.1. JUSTIFICACIÓN

En la geotecnia es frecuente estar ante problemas de análisis e interpretación de estabilidad de taludes, por lo que es necesario contar con herramientas de trabajo que permitan establecer: una ejecución óptima, el tipo de mecanismo de falla, o los factores por los cuales ha sufrido la inestabilidad; considerando que los taludes son de importancia en el campo ingenieril y la rotura de estos conlleva un fuerte impacto negativo sobre la población y la economía.

El uso de técnicas probabilísticas, como el método de primer orden segundo momento FOSM, y Montecarlo, para el análisis de confiabilidad permite que la incertidumbre (datos de entrada) pueda ser manejada de una forma más rigurosa en los procesos de diseño geotécnico. Como es de esperarse, el uso de métodos de confiabilidad no garantizan totalmente que no se produzcan fallas, pero su uso riguroso y metódico puede permitir que el ingeniero esté seguro de que factores se pueden controlar y aquellos que no influirán sustancialmente en esas fallas¹. En los últimos años se ha despertado un gran interés por introducir en los estudios geotécnicos metodologías que permitan una evaluación racional de la incertidumbre asociada con dichos procesos. Es así como han sido usados métodos estadísticos para evaluar el riesgo de movimientos de masa, como el método de Montecarlo que ha sido utilizado en la evaluación de la probabilidad de falla y de la amenaza^{2 3}, y se encuentra implementado en varios programas comerciales de análisis de estabilidad de taludes. Otros métodos probabilísticos que incluyen

¹ R. V. Whitman, *Evaluación del riesgo calculado en ingeniería geotécnica*, Ed. GeotEng, Vol. 110, No. 2, 2004. p. 144-188

² G. Zhoua et al., *Modelado probabilístico espacial de la falla de la pendiente utilizando un enfoque integrado de SIG Monte Carlo*, Eng Geology, Vol. 68, No. 3-4, 2003. p. 373-386.

³ C. Giasi et al., "Análisis probabilístico y fuzzy de la confiabilidad de una cuesta de la muestra cerca de Aliano," Eng. Geology, Vol. 67, No. 3-4, 2003. p. 391-402.

herramientas como los Análisis de Primer Orden Segundo Momento (FOSM), han sido usados para determinar la confiabilidad de los taludes frente a la falla.

Aparte de estas aplicaciones ligadas a la estabilidad de taludes, en diferentes aplicaciones, en la geotecnia se han usado métodos estadísticos como por ejemplo en la evaluación de confiabilidad e incertidumbre en mecánica de rocas⁴ y desastres naturales.

En el presente trabajo se establecen criterios de valores límite, para ser usados en las evaluaciones de confiabilidad, aplicando los métodos del Nivel I, II y III en la evaluación de la estabilidad por deslizamiento de un talud.

1.2. PLANTEAMIENTO DEL PROBLEMA

Se debe tener en cuenta que todo estudio o investigación se emprende para superar dificultades de nuevos fenómenos, explicar hechos no conocidos anteriormente, o para descubrir viejas formas de explicación de hechos ya conocidos, en base a las consideraciones expuestas se formula las siguientes interrogantes para la presente investigación:

- ¿Cuáles son los métodos estadísticos más adecuados para la cuantificación de la seguridad o el riesgo asociado al fallo de un talud en caso de deslizamiento?
- ¿Cómo se puede valorar la confiabilidad de los taludes mediante el empleo de técnicas estadísticas?
- ¿Cuáles deben ser los procedimientos que pueden ayudar a establecer criterios de decisión en estabilidad de taludes, para comprender los factores y las variables que afectan a estas estructuras?

⁴ H. Einstein, *Uncertainty in Rock Mechanics and Rock Engineering—Then and Now*, International Society for Rock Mechanics 10th Congress Technology roadmap for Rock Mechanics, Pretoria: SAIMM, 2003. p. 281-293.

- ¿Cuál es la relación entre las variables independientes (Cohesión, ángulo de fricción interna, peso unitario, etc.), con la variable dependiente (Factor de Seguridad global)?
- ¿Cuáles son las soluciones que se pueden dar mediante diversos métodos estadísticos para la estimación de la confiabilidad y diversos estudios paramétricos?

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Determinar los métodos estadísticos adecuados para la cuantificación de la seguridad o el riesgo asociado al fallo de un talud en caso de deslizamiento.

1.3.2. OBJETIVOS ESPECÍFICOS

- Estudiar la valoración de la fiabilidad de los taludes mediante el empleo de técnicas estadísticas.
- Analizar diferentes procedimientos que pueden ayudar a establecer criterios de decisión en estabilidad de taludes, para comprender los factores y las variables que afectan a estas estructuras.
- Comparar las variables independientes (Cohesión, ángulo de fricción interna, Peso unitario, etc.), con la variable dependiente (factor de seguridad global), mediante programas informáticos.
- Identificar soluciones mediante diversos métodos estadísticos para la estimación de la confiabilidad y diversos estudios paramétricos.

1.4. ALCANCES

1.4.1. TEMÁTICO

La demanda actual de seguridad de estas estructuras, su mantenimiento, la mejora de las explotaciones y el aumento de la capacidad de regulación hacen de la teoría clásica de evaluación de la seguridad de taludes, mediante análisis deterministas, una teoría insuficiente, por lo tanto el presente trabajo pretende proporcionar el conocimiento de la valoración de la fiabilidad, a partir del análisis de estabilidad expuesto, mediante el empleo adicional de herramientas estadísticas, con el fin de obtener los valores de confiabilidad. Se concluye con el modo y la cuantía en la que afectan a la seguridad los distintos parámetros geométricos y geomecánicos de la estabilidad implicados.

1.4.2. ESPACIAL

Se analiza la documentación pertinente y vigente a nivel nacional como internacional, planteando la utilización de los resultados a nivel nacional.

1.4.3. TEMPORAL

La investigación se enmarca en el periodo de tiempo entre los años 2005 y 2016, considerando estudios y bibliografía en ese rango de tiempo para el desarrollo de la investigación.

CAPÍTULO II

MARCO TEÓRICO

1.5. TEORÍA DE CONFIABILIDAD

Las teorías clásicas empleadas para el cálculo de estabilidad de taludes se basan en conceptos meramente deterministas, los cuales implican determinar un factor de seguridad para indicar la estabilidad en un talud.

Los factores de seguridad utilizados en la práctica geotécnica convencional se encuentran basados en la experiencia, lo cual resulta lógico. No obstante, es común utilizar el mismo valor de factor de seguridad para un determinado tipo de aplicación tal como es el caso de la estabilidad de un talud.

Sin embargo, este valor del factor de seguridad resulta incierto en algunos casos, debido principalmente a la variabilidad inherente e incertidumbre en algunos parámetros de análisis.

Es por ello que ante esta incertidumbre se debe recurrir a técnicas y análisis en los cuales ayude a tratar este problema.

Los análisis de confiabilidad proporcionan un medio para tratar con los efectos combinados de la incertidumbre en los parámetros comprendidos en los cálculos y ofrecen un suplemento útil para los análisis convencionales⁵.

La teoría del análisis de confiabilidad se basa en conceptos probabilísticos los cuales ayudan a estimar el grado de incertidumbre implicado en el análisis clásico de estabilidad de taludes.

⁵ Duncan, Michael, Member ASCE, **Factors of Safety and Reliability in Geotechnical Engineering**, p. 307-316, Journal of Geotechnical and Geoenvironmental Engineering (2000)

Antes de emprender un análisis de confiabilidad se debe de entender la naturaleza de la incertidumbre y la probabilidad de falla. La incertidumbre en la ingeniería civil refleja la falta de conocimiento sobre los factores que afectan la estabilidad de un talud, tales como: variabilidad en los parámetros de resistencia del suelo, esfuerzo cortante y de presiones, así como los cambios que surgen en la geometría del talud a lo largo del tiempo.

La probabilidad de falla está ligada a la tendencia con la cual estos factores puedan cambiar a lo largo del tiempo y que conduzcan a la falla del talud.

Para evaluar la estabilidad en un talud se recurre a los clásicos métodos deterministas basados en los análisis de equilibrio límite, con lo cual se define la estabilidad de un talud mediante un factor de seguridad.⁶

En los análisis de confiabilidad en comparación del análisis clásico, se determina la probabilidad de falla (Pf) y el índice de confiabilidad (β) el cual permite conocer el grado de incertidumbre con el cual se está trabajando.

La ventaja de calcular la probabilidad de falla y el factor de seguridad en un análisis de estabilidad de un talud es que proporciona una medida de la incertidumbre y le agrega un valor adicional a los cálculos de estabilidad.⁷

Se propone que la probabilidad de falla no debería ser vista como un reemplazo del factor de seguridad sino como un suplemento. Calcular tanto el factor de seguridad como la probabilidad de falla es mejor que calcular solo cualquiera de los dos. Aun cuando ni el factor de seguridad, ni la probabilidad de falla pueden calcularse con alta precisión, ambos son de importancia y cada uno eleva el valor del otro.

⁶ Lambe y Withman, **Mecánica de Suelos**, Ed. Lambe, 1969.

⁷ Duncan, Michael, Member ASCE, **Factors of Safety and Reliability in Geotechnical Engineering**, p. 307-316, Journal of Geotechnical and Geoenvironmental Engineering (2000)

Sin embargo, conociendo las ventajas y el valor que los análisis de confiabilidad proporcionan a los análisis de estabilidad, aun estos no son muy utilizados en la rutina práctica de la ingeniería civil, y algunas de las razones son:

- Primero, la teoría de confiabilidad contiene términos y conceptos que no son familiares para la mayoría de los ingenieros geotécnicos.
- Segundo, comúnmente se percibe que utilizar la teoría de confiabilidad requeriría mayor información, tiempo y esfuerzo, que los disponibles en la mayoría de las circunstancias.

1.5.1. INCERTIDUMBRE

La teoría de confiabilidad se basa en cómo tratar la incertidumbre, es por esta razón que en 1975 se estableció el principio fundamental del análisis de confiabilidad: "Se debe temer o esperar un hecho no sólo en proporción de ventajas y desventajas sino que además considerando alguna probabilidad de incidente"⁸. La mayoría de las personas encuentran esta idea razonable. Debe existir una preocupación de situaciones que tengan consecuencias grandes, pero también en aquellas que están más propensas a darse. El cómo distribuir la atención en todos los rangos de eventos significativos e insignificantes con poca o mucha probabilidad de ocurrencia es un problema esencial de la ingeniería.

Enfocándolo de otro modo, mucho de lo concerniente a la ingeniería es acerca de cómo tratar con la incertidumbre a pesar que uno no siempre necesariamente tiene que entender la incertidumbre para tratar con esta. Los ingenieros civiles han desarrollado varias estrategias para tratar con la incertidumbre, ellas incluyen:

1) Ignorarla.- Aunque su aproximación se presente frontalmente y parezca insoportable esta es sorprendentemente generalizada.

⁸ Hacking, Ian, The emergence of probability, 1975

- 2) Conservacionismo.- Esta es una frecuente y obvia aproximación. Más que involucrarse en detalles de con qué frecuencia las cosas no deseadas podrían suceder y qué consecuencias podrían tener, el ingeniero hace la estructura o sistema tan fuerte que resistirá cualquier cosa. Aunque esto funciona en muchos casos, resulta por lo general costoso, puede provocar que el proyecto no sea completado en un plazo determinado y en algunos casos simplemente no sea posible.
- Método Observacional. Este método se ha establecido para tratar con la incertidumbre en situaciones en las cuales el conservacionismo simple es insatisfactorio. Este involucra:
 - a. Considerar los modos posibles de ejecución insatisfactoria u otros desarrollos no deseados;
 - b. Desplegar planes para tratar con cada uno de estos desarrollos;
 - c. Realizar mediciones de campo durante la construcción y operación para establecer si los avances están ocurriendo y
 - d. Actuar frente al comportamiento observado cambiando el diseño o el proceso de construcción.

Aunque el método observacional ha hecho posible llevar a cabo muchos proyectos que hubieran sido imposibles bajo los procedimientos convencionales, este tiene limitaciones. El ingeniero debe tener acceso al constructor si el diseño o la secuencia de construcción son cambiados en proyectos medios; las aplicaciones usuales no consideran explícitamente la probabilidad relativa de los sucesos no deseados y las mediciones de campo son costosas.

Cuantificar la incertidumbre. Este es el propósito de los alcances de confiabilidad.
 Cuantificar la incertidumbre está de acuerdo con la filosofía del método

observacional, puede ser considerada como una lógica extensión del método observacional. Es por esta razón que se han desarrollado metodologías y herramientas para realizar los análisis de confiabilidad. La mayoría de ellos hacen uso de procedimientos estadísticos y probabilísticos para sus cálculos.

1.6. ESTABILIDAD DE TALUDES

Se define como talud a una masa de suelo con una superficie externa inclinada con respecto a la horizontal. Cuando el talud se forma de manera natural, sin la intervención del hombre, se denomina ladera natural o ladera. Cuando la inclinación en la masa de suelo es generada por la intervención de la actividad humana, excavaciones o rellenos, se denomina talud.

La falla de un talud se presenta tanto en taludes naturales como en los construidos por el hombre. Muchos proyectos de ingeniería resultan afectados o afectan la estabilidad de taludes al producir modificaciones en la topografía, condiciones de flujo de agua, pérdida de resistencia, cambios en el estado de esfuerzos, por mencionar algunos factores.

En este caso, la finalidad de los análisis de estabilidad de taludes es estimar la posibilidad de falla de éstos al provocarse un deslizamiento de la masa de suelo que lo forma, buscando que el diseño de excavaciones y rellenos que den lugar a un talud o afecten la estabilidad de una ladera se realicen de forma segura y económica.

El análisis convencional de estabilidad de taludes en dos dimensiones busca el determinar la magnitud de las fuerzas o momentos actuantes (que provoquen el movimiento) y determinar la magnitud de las fuerzas o momentos resistentes (que se opongan al movimiento) que actúan en los suelos que forman al talud.

Para lograr lo anterior se calcula la relación entre las fuerzas o momentos resistentes y las fuerzas o momentos actuantes obteniendo un factor seguridad que está afectado por las incertidumbres de los parámetros que le dieron origen, por lo cual, a todo factor de seguridad intrínsecamente va ligado un grado de incertidumbre.

La ingeniería geotécnica entre otros campos, abarca el cálculo de estabilidad de taludes, pudiéndose distinguir varios métodos de cálculo, en base a la diferente formulación matemática utilizada. El comportamiento de un talud frente a sus posibles roturas, repercute enormemente en los costes y en la seguridad, por ello, las investigaciones de campo (in situ) y de gabinete (laboratorio), deben ser las suficientes y ser desarrolladas correctamente en la medida de lo posible para obtener las características geomecánicas del terreno, así como los posibles mecanismos de rotura.

Figura 1. Métodos de cálculo para analizar la estabilidad de un talud

Fuente: Elaboración Propia en base a análisis documental

Los métodos de cálculo para analizar la estabilidad de un talud se pueden clasificar en dos grandes grupos:

- Métodos de cálculo en deformaciones (análisis límite).- Consideran en el cálculo las deformaciones del terreno además de las leyes de la estática. Su aplicación práctica es de gran complejidad y el problema debe estudiarse aplicando el método de los elementos finitos u otros métodos numéricos.
- Métodos de equilibrio límite.- Se basan exclusivamente en las leyes de la estática para determinar el estado de equilibrio de una masa de terreno potencialmente inestable. No tienen en cuenta las deformaciones del terreno. Suponen que la resistencia al corte se moviliza total y simultáneamente a lo largo de la superficie de corte. Se pueden clasificar a su vez en dos grupos:
 - Métodos exactos.- La aplicación de las leyes de la estática proporciona una solución exacta del problema con la única salvedad de las simplificaciones propias de todos los métodos de equilibrio límite (ausencia de deformaciones, factor de seguridad constante en toda la superficie de rotura, etc.). Esto sólo es posible en taludes de geometría sencilla, como por ejemplo la rotura planar y la rotura por cuñas.
 - Métodos no exactos.- En la mayor parte de los casos la geometría de la superficie de rotura no permite obtener una solución exacta del problema mediante la única aplicación de las leyes de la estática. El problema es hiperestático y ha de hacerse alguna simplificación o hipótesis previa que permita su resolución. Se pueden considerar así los métodos que consideran el equilibrio global de la masa deslizante, hoy en desuso, y los métodos de las dovelas o rebanadas, que consideran a la masa deslizante dividida en una serie de fajas verticales. Los métodos de las dovelas o rebanas pueden clasificarse en dos grupos:

- Métodos aproximados.- No cumplen todas las ecuaciones de la estática.
 Se pueden citar por ejemplo los métodos de Fellenius, Janbu y Bishop simplificado.
- Métodos precisos o completos.- Cumplen todas las ecuaciones de la estática. Los más conocidos son los de Morgenstern-Price, Spercer y Bishop riguroso.

1.7. FACTOR DE SEGURIDAD

El desarrollo de la aplicación de los métodos deterministas para estudiar posibles deslizamientos en taludes comenzó a inicios del siglo 20.

Durante las próximas décadas, Fellenius introdujo el método ordinario o Sueco de rebanadas. En la mitad de los años cincuenta Janbu y Bishop desarrollaron los avances de este método. Los avances de las computadoras hicieron posible manejar fácilmente los procedimientos iterativos de los métodos que llevaron a formulaciones matemáticamente más rigurosas tales como las desarrolladas por Spencer y por Morgenstern-Price⁹. Para simplificar los cálculos se deben de adoptar suposiciones para simplificar los procesos, pero el concepto de dividir numéricamente un cuerpo más grande en pedazos pequeños para propósitos de análisis era bastante novedoso.

A continuación se presenta un resumen de algunos métodos de análisis de estabilidad de taludes para elegir el método base para los análisis a realizar en la presente investigación. Como ya fue definido anteriormente los métodos tradicionales utilizan los principios de equilibrio límite para evaluar el equilibrio de fuerzas.

⁹ Suárez Jaime, **Deslizamiento y Estabilidad de Taludes en Zonas Tropicales**, Universidad de Santander, Colombia, 2008.

Método	1ra Dirección (Ej., Vertical)	2da Dirección (Ej., Horizontal)	Equilibrio de momentos
Ordinario o Fellenius	Si	No	Si
Bishop Simplificado	Si	No	Si
Janbu Simplificado	Si	Si	No
Spencer	Si	Si	Si
Morgenstern Price	Si	Si	Si

Tabla 1. Condiciones de equilibrio que satisfacen los métodos del Geoslope

Fuente: Elaborado en base a Suárez Jaime, **Deslizamiento y Estabilidad de Taludes** en Zonas Tropicales, Universidad de Santander, Colombia, 2008.

Método	Superficies de falla	Equilibrio	Características
Ordinario o Fellenius	Circulares	De fuerzas	Este método no tiene en cuenta las fuerzas entre las rebanadas y no satisface el equilibrio de fuerzas, tanto para la masa deslizada como para rebanadas individuales. Sin embargo, este método es muy utilizado por su procedimiento simple. Muy impreciso para taludes planos con alta presión de poros. Factores de seguridad bajos.
Bishop Simplificado	Circulares	De momentos	Asume que todas las fuerzas de corte entre rebanadas son igual a cero. Reduciendo el número de incógnitas. La solución es sobredeterminada debido a

Tabla 2. Supuestos de diversos métodos de estabilidad de taludes

			que no se establecen condiciones de			
			equilibrio para una dovela.			
Jambú Simplificado	Cualquier forma de superficie de falla	De fuerzas	Al igual que el método de Bishop asume que no hay fuerzas de corte entre rebanadas. La solución es sobre determinada que no satisface completamente las condiciones de equilibrio de momentos. Sin embargo, Jambú utiliza un factor de corrección Fo para tener en cuenta este posible error. Los factores de seguridad son bajos			
Spencer	Cualquier forma de superficie de falla	Momentos y fuerzas	Asume que la inclinación de las fuerzas laterales son las mismas para cada rebanada. Rigurosamente satisface el equilibrio estático asumiendo que la fuerza resultante entre rebanada tiene una inclinación constante pero desconocida.			
Morgenstern Price	Cualquier forma de superficie de falla	Momentos y fuerzas	El método es muy similar al método Spencer con la diferencia que la inclinación de la resultante de las fuerzas entre rebanadas se asume que varía de acuerdo a una función arbitraria, calculando el porcentaje de la función requerido para satisfacer momentos y fuerzas de forma iterativa.			

Fuente: Elaborado en base a Suárez Jaime, **Deslizamiento y Estabilidad de Taludes** en Zonas Tropicales, Universidad de Santander, Colombia, 2008. Como se puede observar en las anteriores tablas, el método Morgenstern Price, cumple con las condiciones de equilibrio de fuerza como de momentos. La dirección de la resultante de la fuerza normal y de corte en las caras laterales de las dovelas es determinada por medio de una función arbitraria. El porcentaje de esta función requerida para satisfacer el equilibrio de fuerzas y momentos es calculado mediante iteración. A través de sus resultados se pretenderá estudiar una serie de factores que con otros métodos no se pueden evaluar. Los diferentes métodos de equilibrio límite utilizan las siguientes ecuaciones de la física para resolver el factor de seguridad:

- La suma de fuerzas verticales para cada rebanada.
- La suma de fuerzas horizontales para encontrar la fuerza normal E entre las rebanadas. Se calcula integrando a través de la masa deslizada.
- La suma de momentos a partir de un punto común para todas las rebanadas. Esta ecuación pude ofrecer como resultado el Factor de Seguridad en Momentos (Fm).

La suma de fuerzas horizontales para todas las rebanadas. Esta ecuación puede dar como resultado el Factor de Seguridad en fuerzas (Ff). El factor de seguridad que satisface Ff y Fm será el resultado del método de equilibrio.

1.7.1. MÉTODO MORGENSTERN PRICE

En general los métodos de equilibrio límite se basan exclusivamente en las leyes de la estática para determinar el estado de equilibrio de una masa de terreno potencialmente inestable. No tienen en cuenta las deformaciones del terreno. Suponen que la resistencia al corte se moviliza total y simultáneamente a lo largo de la superficie de corte. El método de equilibrio límite asume que:

- 1) El suelo se comporta como un material Mohr-Coulomb
- 2) El factor de seguridad será el mismo para todos los deslizamientos.

Los métodos no exactos son hiperestáticos y ha de hacerse alguna simplificación o hipótesis previa que permita la solución. Dentro de estos se encuentran los métodos de las rebanadas y, dentro de estos, el método escogido para el proyecto de grado: Morgenstern-Price (M&P) que satisface el equilibrio estático de fuerzas y momentos en forma rigurosa. Considera que la fuerza resultante entre dovelas varía con respecto a un porcentaje de una función arbitraria y por una constante λ . Estos factores permiten utilizar superficies de falla curvas que no necesariamente sean cilíndricas.¹⁰

- Es un método de los denominados precisos o completos en los que se cumplen todas las leyes de la estática.
- Es un método de aplicación a líneas de rotura cualesquiera.
- Se basa en la suposición de que la relación entre las fuerzas tangenciales y normales en las caras laterales de las rebanadas se ajusta a una función, que es preciso definir previamente, multiplicada por un parámetro:

$$X = E * \lambda * f(x) \tag{1}$$

Donde:

- f (x)= Función parabólica empleada por M&P.
- λ = Porcentaje de la función utilizada (incógnita).
- E= Resultado de la fuerza normal de la rebanada.
- X= Fuerza de corte de la rebanada.

¹⁰ Morgenstern, N. R. and Price, V. E. (1965), **The analysis of the stability of general slip surfaces**, Geotecnique p. 79 - 93.

El factor de seguridad es definido por medio de un modelo de equilibrio límite, como la relación entre fuerzas o momentos estabilizadores (resistentes) y las fuerzas o momentos desestabilizadores.

La ecuación del factor de seguridad respecto al momento es:

$$F_m = \frac{\sum (c' \cdot \beta \cdot R + (N - \mu\beta)R \cdot \tan \phi')}{\sum Wx - \sum Nf \pm \sum Dd}$$
(2)

Y la ecuación del factor de seguridad respecto al equilibrio de fuerzas horizontales es:

$$F_{f} = \frac{\sum (c' \cdot \beta \cdot \cos \alpha + (N - \mu\beta) \tan \phi' \cos \alpha)}{\sum N \sin \alpha - \sum D \cos \omega}$$
(3)

Donde:

- F_m = factor de seguridad con respecto al equilibrio de momentos
- F_f = factor se seguridad con respecto al equilibrio de fuerzas
- c` = Cohesión efectiva del suelo.
- ϕ `= Angulo de fricción del suelo.
- μ = Presión intersticial del agua.
- N= Fuerza normal entre dovelas.
- W= Peso de la rebanada o dovela.
- D= Punto de aplicación de la carga.
- β = Longitud de la superficie de falla
- x = Fuerza tangencial entre dovelas
- R, D, ω = parámetros geométricos.
- α = Inclinación de la superficie de falla.

Figura 2. Resultado de un análisis según Morgenstern Price "M&P"

Fuente: Programa Informático GeoSlope V2007

 De manera ilustrativa se muestra cómo analiza la interface del factor de seguridad según M&P.

Fuente: Morgenstern, N. R. and Price, V. E. (1965), "The analysis of the stability of general slip surfaces", Geotecnique 15: 79 – 93.

La figura anterior indica el equilibrio de fuerzas y el equilibrio de momentos generados por el método M&P, para la obtención del factor de seguridad.

Figura 4. Función típica utilizada por M&P "forma parabólica"

Fuente: Jaime, A. y Montoya, A. (2008) "Confiabilidad en geotecnia, cuatro enfoques",

RNMS, México, 2008.

Fuente: Pereira Mónica, "Modelos de Análisis de Estabilidad de Taludes", Universidad Central de Venezuela, Venezuela, 2012.

1.8. MÉTODOS DE EVALUACIÓN DE LA SEGURIDAD DE TALUDES

Los dos principales objetivos a alcanzar son:

- 1) El cálculo de la seguridad frente al deslizamiento y
- 2) El análisis de la confiabilidad del talud frente al deslizamiento a partir de diversos métodos probabilísticos, De manera complementaria se aprovecha el uso de estos cálculos para analizar la influencia de las incertidumbres de los principales parámetros geomecánicos y geométricos sobre la seguridad global.

Esto se debe a que la estimación de ciertos parámetros que caracterizan el talud es una tarea difícil de realizar con precisión. En consecuencia, resulta aconsejable realizar estudios de sensibilidad, a partir de herramientas sencillas de cálculo que permitan utilizar múltiples rangos de datos de partida, para conocer tanto la fiabilidad de la infraestructura, como a la vez se contemplen las dispersiones de estos datos de partida. La caracterización estadística también se puede aplicar a otras acciones como la del sismo.

1.8.1. PLANTEAMIENTO DE MÉTODOS

En la década de los cincuenta se comenzaron a introducir los conceptos para el cálculo de la probabilidad de fallo. Desde entonces se han desarrollado diferentes metodologías que permiten dividir los métodos para tratar los problemas relativos a la fiabilidad en varios niveles. Los métodos de evaluación de seguridad de taludes pueden clasificarse como: deterministas (o clásicos), estadísticos, adaptativos y probabilísticos. Las principales características de cada uno de ellos se resumen a continuación:

 Métodos deterministas: están basados en leyes físicas y principios generales de la mecánica (resistencia de materiales, mecánica de suelos y rocas) y de la hidráulica, hidrología e hidrogeología. Utilizan modelos matemáticos y para su resolución se emplean técnicas numéricas como los elementos finitos y las diferencias finitas, entre otras. Se pueden aplicar al análisis de taludes nuevos y existentes.

- Métodos estadísticos: están basados en el proceso de los datos disponibles de comportamiento del talud mediante modelos matemáticos estadísticos. Su uso está restringido a obras existentes de las que se disponga de un número suficiente de registros procedentes de la auscultación.
- Métodos adaptativos: están basados en técnicas de inteligencia artificial. Las dos familias de modelos principales son los sistemas expertos y las redes neuronales. Resuelven problemas mediante técnicas de aprendizaje a partir de ejemplos previos similares. Su empleo en ingeniería civil está poco extendido.
- Métodos probabilísticos: introducen la incertidumbre en la formulación de los problemas para obtener la probabilidad de que un sistema no cumpla los requisitos de diseño. Utilizan técnicas de fiabilidad estructural, de estimación de probabilidades y de análisis de riesgos. Se pueden aplicar al análisis de taludes nuevos y existentes.

1.8.2. MÉTODO CLÁSICO DE ANÁLISIS

Si se considera las distintas variables que intervienen en un problema dado (variables geométricas, de características de los materiales, de acciones, etc.), como un vector de un espacio n-dimensional (X1,X2,...,Xn), y definimos una función de resistencia r(x1,x2,...,xn) que favorece la seguridad y una función de solicitación s(x1,x2,...,xn) que favorece el fallo, se puede definir una función adimensional g(x1,x2,...,xn) a partir de las anteriores de modo que:

$$g(x_1, x_2, \dots, x_n) = \frac{r(x_1, x_2, \dots, x_n)}{s(x_1, x_2, \dots, x_n)}$$
(4)

Un determinado punto del espacio n-dimensional definido está en la región segura si se verifica la condición:

$$g(x_1, x_2, ..., x_n) > 1$$
 (5)

Por otro lado, un punto de este espacio queda en la región de fallo si:

$$g(x_1, x_2, ..., x_n) \leq 1$$
 (6)

La frontera entre estas dos regiones, o estado límite, corresponde a la situación definida por el hiperplano n-dimensional:

$$g(x_1, x_2, ..., x_n) = 1$$
 (7)

Figura 6. Región segura, de fallo y estado límite para un caso bidimensional

Se define el coeficiente de seguridad global como una magnitud F (F>1), tal que:

$$g(x_1, x_2, ..., x_n) - F > 0$$
 (8)

De forma más habitual se utiliza la notación:

$$\frac{r(x_1, x_2, \dots, x_n)}{s(x_1, x_2, \dots, x_n)} > F \tag{9}$$

La utilización de esta metodología supone adoptar valores fijos para las variables consideradas $(x_1, x_2, ..., x_n)$, que se denominan valores representativos.

El problema descrito corresponde al concepto de coeficiente global de seguridad. Una formulación alternativa de plantear el problema corresponde al empleo de coeficientes parciales de seguridad. En esta metodología se introducen unos coeficientes de seguridad que se asocian a algunas de las variables de cálculo. Su uso está extendido dentro del campo de las estructuras de hormigón armado y de las estructuras metálicas.

1.8.3. MÉTODOS PROBABILÍSTICOS - NIVELES DE ANÁLISIS

El objetivo es determinar la probabilidad de fallo definida por:

$$P_{f}(g * (x_{1}, x_{2}, \dots, x_{n}) \leq 0)$$

$$= \int_{g * (x_{1}, x_{2}, \dots, x_{n}) \leq 0} f_{x_{1}, x_{2}, \dots, x_{n}}(x_{1}, x_{2}, \dots, x_{n}) dx_{1} dx_{2} \dots dx_{n}$$
(10)

Los métodos para estimar la probabilidad de fallo de un sistema se pueden agrupar en distintos niveles¹¹: Nivel I, Nivel II y Nivel III. El método de Nivel I es el de los coeficientes de seguridad parciales. No proporciona la probabilidad de fallo, y la incertidumbre se mide mediante factores arbitrarios. Los métodos de Nivel II comprenden los denominados métodos de los momentos de segundo orden. Pueden proporcionar la probabilidad de fallo. Aproxima la función de densidad de probabilidad conjunta f x₁, x₂,...,x_n (x₁,x₂,...,x_n) mediante sus dos primeros momentos (media y desviación típica). En algunos casos, se utiliza también una aproximación para la región de fallo g*(x₁, x₂,..., x_n). Los métodos de Nivel III son los denominados métodos exactos.

¹¹ Mínguez, R. (2003). Seguridad, fiabilidad y análisis de sensibilidad en obras de ingeniería civil mediante técnicas de optimización por descomposición. Aplicaciones. Tesis Doctoral. Universidad de Cantabria.

Proporcionan la probabilidad de fallo y utilizan la función de densidad conjunta global y métodos específicos para poder realizar la integración. Otros de los objetivos de este proyecto de grado es ilustrar sobre el uso de estos métodos, para estimar la probabilidad de fallo de taludes por deslizamiento, para ello se emplearán los distintos métodos de análisis probabilístico, para cada nivel (Nivel I, Nivel II y Nivel III).

Mediante la ecuación (10), se obtiene un valor puntual de la probabilidad, que según la precisión conseguida para definir la función de densidad conjunta "f" como el dominio de integración, (ambas cuestiones de cierta complejidad en muchos casos), es una probabilidad matemáticamente exacta. Los métodos para estimar la probabilidad de fallo de un sistema se pueden agrupar en distintos niveles (Tabla 3¹²) según los métodos aproximados empleados para las aproximaciones de la función de densidad "f" (según los momentos estadísticos empleados) y de la región de fallo "g*".

Nivel	Métodos de cálculo	Distribución estadísticas	Ecuaciones de estado límite	Incertidumbres asociadas	Resultados
Nivel I	Calibración de códigos con métodos de nivel 2 ó 3	No	Ecuaciones lineales usualmente	Factores arbitrarios	Coeficientes Parciales
Nivel II	Álgebra de segundo orden	Sólo distribuciones normales	Lineales o aprox. lineales	Puede incluirse como distribuciones normales	Probabilidad de fallo
Nivel III	Transformaciones	Distribuciones normales equivalentes	Lineales o aprox. lineales	Puede incluirse	Probabilidad
	Integración numérica y simulación	Cualesquiera	Cualesquiera Variables aleatorias		de fallo

Tabla 3. Niveles de medidas de fiabilidad estructural

¹² Mínguez, R. (2003). Seguridad, fiabilidad y análisis de sensibilidad en obras de ingeniería civil mediante técnicas de optimización por descomposición. Aplicaciones. Tesis Doctoral. Universidad de Cantabria.

1.8.4. MÉTODO PROBABILÍSTICO DE ANÁLISIS DE NIVEL I

Esta alternativa no proporciona probabilidades de fallo. Únicamente trabaja la incertidumbre con factores arbitrarios, es decir, trabaja con Factores de Seguridad aplicando coeficientes de seguridad parciales para cada una de las variables, tanto cargas como resistencias. Es uno de los métodos más clásicos y es el más utilizado en los códigos actuales. Algunos ejemplos de cálculo con parámetros característicos (y por tanto la aplicación de coeficientes de seguridad parciales) que se corresponden con los valores representativos de las variables ya penalizados para trabajar con su incertidumbre, son los que proponen algunas normativas, como por ejemplo los Eurocódigos, mediante el valor de 0.5 aplicado a la desviación estándar.¹³

$$x_{k,inf} = x_m (1 - K_n * CoV)$$
 (11)
 $x_{k,inf} = x_m (1 - 0.5 * \sigma)$ (12)

A continuación se presenta la tabla de valores centrados ("mejor estimación", "favorables", "desfavorables", "razonables", "optimistas", "pésimos", etc.) con sus respectivos coeficientes de variación empleados en la obtención del factor de seguridad para el nivel I.

 Tabla 4. Valores centrados (mejor estimación, favorables para el Nivel I, II y III)

Valores medios (µ), y Coeficientes de Variación (CoV).									
γ ap (Kn/m3)		C` (Kpa)		φ (°)					
μ	CoV	μ	CoV	μ	CoV				
19	0.15	10	0.5	32	0.1				

¹³ Ente público puertos del Estado (2005). ROM 0.5-05 - recomendaciones geotécnicas para obras marítimas y portuarias. Capítulo III - 3.3.10. Fiabilidad en Geotecnia, p. 155-165.

1.8.5. PLANTEAMIENTO ESTADÍSTICO NIVEL II

Los cálculos correspondientes a este nivel permiten obtener la fiabilidad de la obra, a través de métodos de segundo orden que siguen el siguiente esquema. Se aproxima la función de densidad de probabilidad conjunta $fx_1, x_2, ..., x_n$ ($x_1, x_2, ..., x_n$) mediante sus dos primeros momentos (media y desviación típica). En algunos casos, como es el presente, se utiliza también una aproximación para la región de fallo $g^*(x_1, x_2, ..., x_n)$. En este caso se considera, expresado de manera general, que las solicitaciones (S) y las resistencias (R), para un modo de fallo único, son estadísticamente independientes y con las funciones de densidad establecidas a través de sus dos primeros momentos (media μ y desviación estándar σ). Como en muchos casos estas funciones no son conocidas y bajo ciertas hipótesis pueden ser estimadas usando sólo esos dos parámetros. La función de fallo está dada por la ecuación (6) y la probabilidad del fallo se expresa por la ecuación (10). Si S y R se asumen como variables lineales normales independientes con medias y desviaciones estándar conocidas, entonces la función de fallo (en el caso más sencillo) definida como:

g = R-S, sigue una distribución normal con media (µg) y desviación estándar (σg):

$$\mu_g = \mu_R - \mu_S \tag{13}$$
$$\sigma_g = \sqrt{\sigma_R^2 + \sigma_S^2} \tag{14}$$

La probabilidad de fallo quedaría definida por:

$$P_f = prob(g \le 0) = \int_{-\infty}^{0} f_g(x) \, dx = \phi\left(\frac{0 - \mu_g}{\sigma_g}\right) = \phi(-\beta) \tag{15}$$

Donde:

$$\beta = \frac{\mu_g}{\sigma_g} \tag{16}$$

El índice de fiabilidad (β) es una medida de la probabilidad de fallo (figura 7). β es el inverso del coeficiente de variación (CoV), y es la distancia (desde el punto de vista del número de las desviaciones estándar) entre el valor más probable de la función de densidad conjunta (en este caso la media) y la superficie de fallo, con g* = 0.

Figura 7. Ilustración del índice de fiabilidad. CEM (2006)

Si la función de fallo g = g(X) es no lineal, como en este caso, entonces los valores aproximados para µg y σg pueden obtenerse usando una función de fallo linealizada. Para ello, un método de linealización se efectúa considerando sólo los términos lineales de un desarrollo en serie de Taylor alrededor de cierto punto. Cuando la linealización se efectúa alrededor de las medias (x₁,...,x_n) = µ₁,...,µ_n, el método se llama First Order Mean Value Approach y entonces, si las variables no son correlacionadas:

$$\sigma_g^2 \approx \sum_{i=1}^n \left(\frac{\partial g}{\partial x_i} \sigma_{x_i}\right)^2 \tag{17}$$

Cuando la linealización se ejecuta alrededor del punto de diseño, el método se llama First Order Design point Approach. Pero el punto de diseño a priori es desconocido. Los valores de μ g, σ g y β , dependen del punto alrededor del cual se ha linealizado la ecuación. Para superar estos problemas, se realiza una transformación de las variables básicas x=(x₁,x₂,...,x_n) en un nuevo conjunto de variables normalizadas.

Figura 8. Superficie de estado límite g=g(X) y su aproximación lineal para el caso bidimensional. Interpretación del índice de fiabilidad β de Hasofer-Lind.

Una vez normalizadas y empleando la ecuación (17) y la definición del índice de fiabilidad se pueden obtener los parámetros representativos de la región de fallo linealizada en el punto y así obtener la probabilidad de fallo. Para el caso de suponer una función g = f(FS) - función del FS - tipo lognormal, propia de este tipo de distribuciones, las ecuaciones que relacionan los parámetros estadísticos de las variables y del FS, y el método en general, consistiría en (figura 9):

- Punto 1. Definición de las variables de entrada al modelo. En este caso: peso específico, cohesión, y ángulo de rozamiento interno. Se definen por una media y una desviación típica (μx_i, σx_i). Obtenida a través de su coeficiente de variación, Dichos valores se reflejan en la Tabla 4. A su vez estos valores de partida pueden representar distintas hipótesis que pueden ser calificadas como "mejor estimación", "favorables",
"desfavorables", "razonables", "optimistas", "pésimos", etc. La facilidad con la que pueden ser introducidas en los cálculos y obtener los resultados correspondientes es precisamente una de las ventajas del modelo elaborado.

Punto 2. A través del modelo y la definición del FS, y para las diferentes situaciones, se calcula el FS para los valores centrados y los valores no centrados de cada variable (afectados por los valores de dispersión establecidos en la Tabla 5). Para el análisis de sensibilidad de cada variable, sus valores medios y de dispersión se han modificado recorriendo los rangos de interés que aparecen en los resultados del análisis, habiéndose fijado los valores medios y de dispersión del resto de parámetros que intervienen en el modelo.

Tabla 5. Valores No centrados (considerados para NIVEL II y	III y sus Coeficientes de
variación)	

Valo	Valores medios (µ) y sus Coeficientes de Variación (CoV).							
γ ap (F	Kn/m3)	C` (Kpa)		φ ((°)			
μ	CoV	μ	CoV	μ	CoV			
16	0	12	0	26	0			
18	0,1	15	0,1	28	0,1			
20	0,2	18	0,2	30	0,2			
22	0,3	21	0,3	32	0,3			
24	0,4	24	0,4	34	0,4			

<u>Punto 3</u>. En este punto se describe el método desarrollado para la adaptación del presente problema a la linealización de la región de fallo para la obtención de μg, σg y b. Contemplando la normalización de las variables y analizando su influencia en la región de fallo por la ecuación (10), se puede establecer un método a partir de los índices de sensibilidad (v) para cada variable, que relaciona en cada caso los FS calculados con valores no centrados de las variables, y los FS calculados con valores centrados.

Figura 9. Metodología empleada en el Nivel II (Estático y Dinámico)

Es decir, se define como la variación del FS (que define la región de fallo) en función de la variación de cada variable, fijando un FS de valores centrados. A partir de la definición del índice de sensibilidad, para una distribución lognormal del FS, y considerando la ecuación (10) previamente adaptada al presente estudio, la nueva función densidad lognormal de FS resultante (y por tanto g o región de fallo), posee una desviación (ζ) en términos de FS que se define como la raíz cuadrada de la

sumatoria de los cuadrados de los índices de sensibilidad de cada una de las variables. El valor medio de la distribución lognormal del FS, o función "g", se expresa por λ . El índice de fiabilidad (β) de la función "g" se obtiene a partir del valor centrado del FS (FS*) y de la dispersión en la distribución lognormal del FS(ζ). El índice de fiabilidad (β) y la probabilidad de ocurrencia (p) poseen una relación directa a través de la función de probabilidad acumulada (F) para el caso lognormal, similar a como se observa en la ecuación (12). En la figura 9 se representa el organigrama reflejando los pasos dados y las relaciones de parámetros empleadas.

1.8.6. PLANTEAMIENTO ESTADÍSTICO NIVEL III. SIMULACIONES DE MONTE CARLO

Los métodos de nivel III permiten una evaluación más exacta de la probabilidad de fallo, puesto que trabajan con las funciones de densidad de probabilidad completas de las variables aleatorias y no solamente con los dos primeros momentos de las mismas. El problema sigue siendo la evaluación de la integral definida en la ecuación (10). Para calcular el valor de la integral se adoptan dos tipos de métodos. Por un lado están los métodos que utilizan transformaciones especiales de las variables aleatorias y siguen una metodología similar a los métodos FOSM, basada en obtener el índice de fiabilidad β . Entre ellos están los métodos denominados FORM (First Order Reliability Methods) y SORM (Second Order Reliability Methods). El otro gran grupo de métodos de Nivel III lo forman aquellos mediante los cuales se intenta evaluar directamente el valor de la integral (10). Entre ellos se encuentran los métodos de integración numérica (regla trapezoidal, regla de Simpson, Gauss-Laguerre, Gauss-Hermite, etc.) y los métodos de simulación (métodos de Monte Carlo).

Puesto que se trata de evaluar una integral cuyo significado es la probabilidad de fallo, con los métodos de simulación lo que se hace es generar N realizaciones de las variables aleatorias (experimentos) mediante técnicas estadísticas, de forma que los valores generados son consistentes con las distribuciones supuestas o conocidas de los mismos y con las posibles correlaciones existentes entre las variables:

$$\hat{x}_i = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n)_i$$
 $i = 1, 2, \dots, n$ (18)

La generación de estas realizaciones de las variables aleatorias se acomete mediante técnicas estadísticas como el método de la transformación inversa, el método de la composición, el método de aceptación-rechazo, y otros. Se evalúa la función de estado para cada una de estas realizaciones, obteniendo el número de ocasiones, m, en que se verifica la situación de fallo g* \leq 0. La probabilidad buscada se puede aproximar por:

$$P_{fallo} = \frac{m(g * (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n) \le 0)}{N} = \hat{P}_f$$
(19)

El método de simulación expuesto constituye el denominado método de Monte Carlo normal ("Hit or Miss Monte Carlo Method"). Estos métodos se denominan exactos porque proporcionan el valor exacto de la probabilidad cuando $N \rightarrow \infty$. Para valores menores de N, lo que proporciona es una estimación del valor de la integral (10). El estimador de la probabilidad de fallo presenta una media y varianza dadas por:

$$E[\hat{P}_f] = P_f$$

$$\sigma_{\hat{P}_f}^2 = \frac{1}{n} P_f (1 - P_f)$$
(20)

La precisión en la estimación realizada viene dada por desviación típica del estimador, que es inversamente proporcional a la raíz cuadrada del número de realizaciones o experimentos. Esto significa que doblar la precisión supone multiplicar por cuatro el número de realizaciones Por otro lado, las probabilidades de fallo en ingeniería civil y en ingeniería de presas en particular suelen ser pequeñas, del orden de 1 entre 10000 y menores. Por ello, es preciso realizar un gran número de simulaciones para poder registrar situaciones de fallo (cada realización o experimento es un proceso de Bernoulli, cuya probabilidad de fallo es, precisamente, la Pf que se quiere averiguar).

Es habitual utilizar las técnicas de simulación para realizar inferencias acerca de la función de estado g*, y, por extensión, del coeficiente de seguridad. En efecto, las N evaluaciones realizadas de g* constituyen una muestra de dicha variable aleatoria, siendo posible por tanto realizar estimaciones acerca de parámetros importantes que permitan conocer cómo se distribuye g* en términos probabilísticos (media, varianza, sesgo, etc.). Una vez ajustada o deducida una función de distribución para la función de estado, Fg*, la probabilidad de fallo se obtiene de forma inmediata mediante:

$$P_f = P[g^* \le 0] = F_g * (0)$$
(21)

Una aparente ventaja de esta forma de proceder es que, una vez deducida Fg*, para lo que puede bastar con un valor de N moderado, se conoce completamente el dominio de probabilidad, y se pueden estimar probabilidades muy bajas, situadas en las colas de la distribución. Frente a esta comodidad, la desventaja principal es que la función deducida puede no ser adecuada en la región menos conocida pero más importante a efectos de estimar la probabilidad de fallo, que es precisamente la cola de la distribución, por lo que las estimaciones así realizadas pueden arrojar resultados con errores importantes.

Punto 1.- Lo primero que debe preguntarse el ingeniero al hacer un cálculo de estabilización de taludes a través del método de simulación de Montecarlo (Nivel III), será ¿el número de simulaciones a introducir?, ¿Qué tamaño de muestra se escogerá? pues conviene hacer notar el hecho que el programa Geoslope, no recomienda ningún número semilla fijo, el cual sólo puede ser cambiado por el usuario y que además, maneja muestras de gran tamaño del orden de 1.000.000 de simulaciones, por ello se puede intuir que las corrientes producidas son muy precisas. El precio que debe pagar el calculista por estas corrientes de números aleatorios es el tiempo de computadora, por cuanto dicho tiempo dependerá del tamaño de muestra

solicitado. Por ejemplo para un número simulaciones de 100.000 el tiempo de espera para que el programa indique la probabilidad de fallo es de 3 minutos.

La ecuación que utiliza el programa Geoslope V.2007 es:

$$N_{mc} = \left[\frac{d^2}{4(1-\varepsilon)^2}\right]^m \tag{22}$$

Donde:

N_{mc}= Número de simulaciones de Montecarlo.

- ε = Nivel de confianza deseado que varía entre [0 100%], expresado en decimales
- d= Desviación estándar normal, correspondiente al nivel de confianza deseado.
- m= El número de variables en estudio.

A manera de ejemplo: Si se quiere obtener un nivel de confianza del 80%, la desviación estándar de 1,28, el número de Montecarlo (N_{mc}), para una variable en estudio, será de 10 simulaciones, 100 para dos variables, y 1000 para tres variables. Para un 90% de nivel de confianza, la desviación estándar de 1,64, el número de Montecarlo (N_{mc}), será de 67 simulaciones para una variable, de 4489 para dos variables y de 300.763 para tres variables.

Por otra parte se ha considerado a priori, que la probabilidad de fallo está dada por la siguiente ecuación:

$$P(r) = \frac{n(FS < 1)}{N}$$
(23)

Donde:

P(r) = Probabilidad de fallo

n(FS < 1) = número de veces en que FS < 1

N= Número total de intentos (simulaciones)

De esta manera también, se puede obtener, el número de simulaciones a introducir al programa. Todo este análisis anterior indica que precisión se requiere, para dar las respuestas de probabilidades de fallas y por ello es por lo que se pagará.

Punto 2.- Si sólo se dispusiera de números aleatorios uniformemente distribuidos no sería posible emplear el proceso de simulación de Monte Carlo, por cuanto obligaríamos a emplear una distribución de probabilidades que no se ajustaría a la realidad en la mayoría de los casos, pues es seguro que muchas variables empleadas en los modelos de simulación probabilística responden a distribuciones que difieren notablemente de la uniforme. La distribución NORMAL o Gaussiana es una de las que más se ajusta a los casos que se estudian en la geotecnia, seguida por las distribuciones LOGNORMAL, BETA y GAMMA. La distribución del VALOR EXTREMO es de suma utilidad cuando se trabaja en Ingeniería Sismoresistente y en Hidrología. De igual manera las distribuciones Bernoulli, Poisson y Binomial, aplicables a las variables DISCRETAS, son muy útiles en las simulaciones que tienen que ver con Ingeniería Vial y con el estudio de terremotos.

Todas las distribuciones antes mencionadas producen corrientes de números pseudo aleatorios que son muy útiles en los modelos de Simulación Monte Carlo y que amplían notablemente las posibilidades de este método de simulación, confiriéndole un poder matemático extraordinario. Para quienes se inician en el uso de la Simulación de Monte Carlo, les resulta complejo entender cómo se puede fabricar una corriente de números pseudoaleatorios que responda a una distribución diferente a la uniforme, si la primera condición de dicha corriente es que debe estar uniformemente distribuida entre 0 y 1; es decir que cualquier número sorteado debe tener la misma probabilidad de ocurrir.

Con la finalidad de aclarar la duda expuesta en el párrafo anterior, imaginemos que acudimos a una tienda donde venden corrientes de números aleatorios y le solicitamos al dependiente que nos venda una que represente a una distribución de probabilidades que se ajuste a nuestra necesidad. Lo primero que preguntará el dependiente es ¿Cuál es su necesidad? Y tendremos que responderle en forma precisa, pues de ello depende la bondad de los que nos venda.

Lo primero que se tiene que proporcionarle es el PARAMETRO DE FORMA de la distribución y luego los parámetros de LOCALIZACION y de ESCALA, pues las distribuciones de probabilidades son como los trajes de vestir los cuales se definen por su talla, estilo, tipo de tela y color. Cada distribución de probabilidades, y hay muchas, está perfectamente definida por sus parámetros de ESCALA, DE FORMA y de LOCALIZACION y con ello no pueden ser confundidas una con la otra, por lo tanto el proceso de compra depende de cuan claros seamos para definir estos parámetros.

Algunas distribuciones se definen con sólo dos parámetros y otras necesariamente requieren de tres parámetros. Por tal motivo tendremos que consultar al catálogo de ventas para saber cuáles parámetros son indispensables para definir bien la distribución que queremos adquirir. Una vez que lo sepamos, no hay duda razonable para realizar nuestra compra. Para el proyecto de grado por tratarse de un estudio geotécnico se toma la distribución Normal para las tres variables en estudio. La distribución NORMAL está perfectamente definida por dos parámetros, el de LOCALIZACION y el de ESCALA. El primero corresponde al VALOR MEDIO y el segundo a la DESVIACION ESTANDAR. Esta distribución no tiene parámetro de forma, por ser simétrica.

Figura 10. Geometría del talud empleado para el NIVEL III (Estático y Dinámico)

Se analiza la estabilidad considerando la herramienta de análisis probabilístico que usa el método de Montecarlo para calcular la probabilidad de falla. Para todos los parámetros se supuso una distribución normal de probabilidades con valores medios (μ) y su desviación típica (σ) los resultados de la Tabla 6.

Tabla 6. Valores medios y sus desviaciones típicas, utilizados en el Nivel III

Variable	Unidad	Tipo de distribución	Media	Desviación típica
Peso específico	(KN/m ³)	Normal	19	3
Angulo de rozamiento interno	(°)	Normal	32	3
Cohesión	(KPa)	Normal	10	5

De este modo, la función de estado límite es una función de hasta 3 variables aleatorias: $g^* = (\gamma, \phi, C) = 0$

Número de iteraciones	Factor de seguridad determinista	Media del factor de seguridad	Probabilidad de falla P(r) estático (%)	Mínimo del factor de seguridad	Máximo del factor de seguridad
500	1.682	1.6863	1.200000	0.82543	2.5837
1000	1.682	1.6856	0.900000	0.42545	2.6023
2000	1.682	1.6955	0.650000	0.39869	2.7180
5000	1.682	1.6919	0.700140	0.5143	2.8774
10000	1.682	1.6922	0.79000	0.47458	3.0521
100000	1.682	1.687	0.802100	0.2834	3.192

Tabla 7. Probabilidad de falla método de Montecarlo con el número de iteraciones. NivelIII

En la Tabla 7, se puede observar que la media del factor de seguridad se estabiliza en un valor de 1.69 a partir de 5000 iteraciones y que esta es mayor que el valor determinístico del factor de seguridad que fue de 1.682. En cuanto a la probabilidad de falla, se adopta el valor de 0.79% obtenido para 10000 iteraciones. 0.0079 = 8x10E-3

De acuerdo con criterios acerca de la probabilidad de falla admisible, como los mostrados en la tabla 8, este talud presentaría un nivel de desempeño por debajo del promedio o por debajo de lo esperado. Por lo tanto en este tipo de suelos y para estas alturas de corte no se garantiza un buen desempeño.

Figura 11. Distribución Normal de las variables aleatorias para el ejemplo anterior

Tabla 8. Índices de confiabilidad objetivo y probabilidades de falla admisibles

(USACE, 1999)

Nivel de desempeño esperado	B m	P[r]
Alto	5 / />	3x10 ⁻⁷
Bueno	4	3x10 ⁻⁵
Arriba del promedio	3	10 ⁻³
Abajo del promedio	2.5	6x10 ⁻³
Pobre	2.0	2.3x10 ⁻²
nsatisfactorio	1.5	7x10 ⁻²
Peligroso	1.0	1.6x10 ⁻¹

En la Figura 12 se muestra un diagrama esquemático general para realizar una simulación de Monte Carlo.

Figura 12. Alcance General de Simulación de Monte Carlo

Fuente: (Hutchinson & Bandalos, 1997)

El primer paso que se debe realizar es identificar un modelo determinista de análisis, donde las variables múltiples de entrada se utilizan para estimar un solo valor de resultado.

- El segundo paso es identificar todas las variables o parámetros de análisis. Luego se establece la distribución de probabilidad para cada variable independiente de acuerdo al modelo de simulación (normal, log normal o beta, etc.)
- El cuarto paso es iniciar un proceso de ensayo aleatorio para establecer una función de distribución de probabilidad para la situación determinista que es modelada.

Durante cada paso, un valor aleatorio de la función de distribución para cada parámetro es seleccionado y es incorporado en el cálculo. Para el proceso de simulación se puede

hacer uso de una computadora para agilizar la obtención de resultados de cada simulación realizada. El número apropiado de pasos para un análisis es función del número de parámetros de entrada, de la complejidad de la situación modelada, y de la precisión deseada de salida. El resultado final de una simulación de Monte Carlo es una distribución de probabilidad del parámetro de salida.

1.9. ESTIMACIÓN DE CONSECUENCIAS

La estimación de consecuencias involucra el conocer donde y cuando ocurrirá un deslizamiento en relación a los elementos que pueden ser vulnerables. Este tema es muy importante para la cuantificación del riesgo al deslizamiento. Para poder tratar con este tema, es fundamental emplear algunas formas de valoración de consecuencias para de esta manera poder estimar los probables daños y pérdidas que se pueden esperar.

Estas pérdidas pueden ser diversas en su naturaleza e involucran diferentes tipos de elementos tales como personas, propiedades, estructuras, infraestructura, actividades económicas, ecología y medio ambiente.

En la Figura 13 se muestra una clasificación de cuatro principales grupos de pérdidas.¹⁴

Figura 13. Clasificación de pérdidas a deslizamientos

Fuente: (Hewitt, 1997)

¹⁴ (Hewitt, 1997).

Usualmente estas pérdidas una vez identificadas son confinadas a un área definida, limitada y próxima a la zona donde ocurre el deslizamiento, por lo tanto son relativamente fáciles de identificar, sin embargo algunas veces las consecuencias adversas que producen se difunden a lo largo de áreas vecinas.

Las consecuencias adversas que producen los eventos de deslizamiento se pueden ver desde una perspectiva de una escala y complejidad de acuerdo a las consecuencias que generan, los eventos de deslizamientos se pueden distinguir en rangos, como:

Eventos simples, los cuales causan pérdidas como una consecuencia directa de un movimiento simple o repetitivo.

Eventos compuestos, los cuales causan perdidas cuando se producen eventos de diferentes tipos de deslizamiento.

Eventos múltiples, los cuales implican extensas actividades de deslizamiento. Este tipo de eventos son asociados con fuertes terremotos, intensas lluvias, etc.

Eventos complejos, los cuales una proporción significativa de todos los daños es producto de una generación de geopeligros secundarios, tales como inundaciones, tsunamis o erupciones volcánicas.

El principio básico de la valoración de consecuencia es el desarrollo de modelos de consecuencias o desarrollar argumentos que procuren definir y cuantificar los resultados adversos posibles ante el evento de deslizamiento. En cada caso, las preguntas claves que se deben de considerar son:

¿Qué puede ser impactado?

¿Cómo puede ser impactado?

¿Cuál es la probabilidad que el evento de deslizamiento genere pérdidas significativas?

¿Cómo se puede valorar las consecuencias adversas?

Para poder determinar las consecuencias es necesario apoyarse en base a información de registros históricos de impactos de deslizamientos en la zona en estudio, para de esta manera poder encontrar un rango de analogías que estén conformes.¹⁵

Conociendo los impactos de estos eventos en otros lugares similares, se puede estimar de manera más real, los posibles impactos que puede haber en la zona donde se desea valorar las consecuencias. Los registros históricos proporcionan un vital origen de datos observando las consecuencias adversas asociadas con eventos pasados en general, proporcionan una guía de cómo pudo pasar, conocer la relación magnitud-frecuencia y características de pérdidas. Estos también contienen descripciones y estudios de que ocurre actualmente en eventos específicos, juntamente con estimaciones de perdidas, los cuales pueden ser usados en analogías para predecir impactos en el futuro.

1.9.1. ELEMENTOS EN RIESGO

Todo proceso de valoración de consecuencias implica el conocer y definir todos los elementos en riesgo al evento de deslizamiento. Estos elementos son muy diversos en su naturaleza y son divididos generalmente en los siguientes grandes grupos:

- Poblaciones;
- Estructuras y Servicios;
- Propiedades;
- Actividades;
- Ambientales.

¹⁵ (EMLee and DKC Jones, 2005)

Para cada uno de estos elementos se debe de considerar el grado de exposición que tiene cada uno.

1.9.2. EXPOSICIÓN

El termino exposición se define como la proporción del valor total de los elementos en riesgo que sufrirán perdidas debido a un impacto de deslizamiento. En muchos casos los elementos en riesgo no permanecen constantes en el tiempo y espacio, es por ello que para estimaciones de valoración de riesgo se deben considerar dos componentes distintas:

Permanentes, donde los elementos permanecen fijos, tales como edificaciones, y estos se podrían dañar independientemente del tiempo del evento de deslizamiento. Como los elementos se encontrarán siempre dentro de la zona de impacto del deslizamiento, las consecuencias para una magnitud particular del evento se pueden asumir como constantes;

Temporales, donde el grado de riesgo puede variar con el tiempo del evento del deslizamiento. Las consecuencias estarán en razón a que los elementos en riesgo se encuentran en la zona de peligro al mismo tiempo que ocurra el evento de deslizamiento. La exposición temporal puede ser representada mediante un factor de escala de 0(nunca presente) a 1 (siempre presente).

1.9.3. VULNERABILIDAD

La vulnerabilidad se define como el grado de daño potencial, o grado de pérdida de un elemento en riesgo particular sujeto a un deslizamiento de una intensidad dada.¹⁶

¹⁶ (Fell, 1994)

CAPÍTULO III

MARCO METODOLÓGICO

1.10. LOCALIZACIÓN DEL PROYECTO

Para el presente trabajo se considera la carretera Cochabamba – San Cruz en el tramo denominado El Sillar, donde recurrentemente se producen derrumbes que obligan a suspender la circulación de movilidades.

Figura 14. Tramo El Sillar

Fuente: Administradora Boliviana de Carreteras, 2010

Entre las progresivas 14+800 a 15+130 el trazo del eje y el camino actual se desarrolla y en ascenso a lo largo de una ladera se encuentra un talud superior que está en el margen derecho.

El talud está constituido por afloramientos rocosos de edad pertenecientes al sistema Terciario, en el mismo intercala estratos de conglomerados, limolitas altamente meteorizados y areniscas que presentan un grado de dureza correspondientes a blandos, ya que se fragmentan y disgregan fácilmente al leve golpe del cateador. Por las características geomecánicas de estas rocas y según la clasificación de rocas de Bieniawsky (rocas de muy mala calidad). El talud tiene una altura H de 10 metros y una inclinación 3H:2V.

Figura 15. Características del Talud tipo para el análisis del factor de seguridad.

Se ha realizado un sondeo en este tramo en el mismo se ha observado la presencia de material granular y arenas limosas de coloración marrón, no se ha observado la presencia de niveles freáticos, por tanto, tiene una altura del nivel freático seco (Hw)=0.00 m.

Figura 16. Afloramiento de areniscas, progresiva 14+880

Fuente: Ministerio de Obras Públicas Servicios y Vivienda, 2010

1.11. SITUACIÓN DE CÁLCULO

Las combinaciones de las distintas acciones dependen de la situación de cálculo. Como situaciones de cálculo críticas, se han adoptado los casos de situación estática y situación dinámica, donde suceda conjuntamente el fenómeno de sismo. Este se caracteriza según una distribución estadística normal (media y desviación típica), que se obtienen en cada caso a partir de sismo, normal y extremos, para los 1.000 y 10.000 años de periodo de retorno, respectivamente.

Aceleración básica	a (ag) =	0,08	g.	(Adoptado)	
Periodo de reto	orno T=	500	años		
Vida	a util t=	100	años	2	
Terreno singular tipo III				\leq	
	Vs=	399	m/s	>	
imp	lica C=	1,6		2	
imp	olica S=	1,28	- 1A	5	
Aceleración de cálc	ulo ac=	0,102	g.	7	
La NCSE-02 pide calc	ular pa	ira 💛	t Bee		
			112	periodo retorr	10
T=	1000	años		accidental	
T=	10000	años	1.	periodo retorr	no extremo
implica $\rho = (T/t)^{0,4}$	1,320	_			
Sismicidad accidental ac=	0,135	g.			
Coef.Sismico accidental β h=	0,068	g.		(Kh)	
Coef.Sísmico accidental βh=	0,100	g.	1	Acci <mark>dental</mark>	
Coef.Sísmico extremo βh=	0,200	g.	1	Extr <mark>emo</mark>	

Tabla 9. Coeficiente sísmico horizontal. Según Normativa Sismoresistente NCSE-02

Por otra parte Terzaghi 1950 (adopta)	
kh =	[0,10,2]g.
La Div. Mines and Geology California 19	997 adota Kh= 0,15 g.

1.12. ACCIONES A CONSIDERAR

Las principales acciones consideradas son: la acción sísmica, aplicando cálculos pseudoestáticos (coeficiente sísmico horizontal y vertical, kh y kv).

SISMO Tr Vida Útil valor medio valor β desv р ACCIDENTAL 1000 100 0,905 0,34 0,06 0,12 0.1 100 0,990 -1,31 **EXTREMO** 0,2 10000

Tabla 10. Cálculos estadísticos relacionados con el sismo

1.13. OBTENCIÓN DEL FACTOR DE SEGURIDAD (FS)

El FS del modelo se obtiene, a partir de la geometría como el cociente entre las fuerzas resistentes desarrolladas, y las fuerzas desestabilizadoras. La ecuación del factor de seguridad respecto al momento es:

$$F_{m} = \frac{\sum (c'\beta R + (N - u\beta)R \tan \phi')}{\sum Wx - \sum Nf \pm \sum Dd}$$
(24)

Y la ecuación del factor de seguridad respecto al equilibrio de fuerzas horizontales es:

$$F_{f} = \frac{\sum (c'\beta\cos\alpha + (N-u\beta)\tan\phi'\cos\alpha)}{\sum N\sin\alpha - \sum D\cos\omega}$$
(25)

Donde:

c` = Cohesión efectiva.

- ϕ `= Angulo de rozamiento efectivo.
- U= Presión intersticial del agua.
- N= Fuerza normal en la base de la rebanada.
- W= Peso de la rebanada.
- D= Punto de aplicación de la carga.
- β , R, x, f, d, ω = parámetros geométricos.
- α = Inclinación en la base de la rebanada.

1.14. DATOS DE PARTIDA EMPLEADOS

Los datos adoptados en los cálculos del modelo son razonables, para un ejemplo teórico e imaginable. Como datos geométricos del talud se adopta una altura H de 10 m, una inclinación del talud 3H: 2V; una altura del nivel freático seco (Hw)=0.00 m. Los pesos específicos son: para el agua γ w de 10 kN/m3; para del suelo un peso específico aparente variable γ ap (kN/m3), la Cohesión como dato variable (kN/m2), y el ángulo de rozamiento interno como variable (°).

1.14.1. DATOS DE PARTIDA EMPLEADOS EN EL NIVEL I

Para el nivel I los datos de partida se presentan en la tabla 11, donde indica:

Un valor centrado "medio" (μ): Xm

Un valor superior: Xk, sup = $Xm + 0.5 \sigma$ (26)

Un nivel inferior: Xk, sup = $Xm - 0.5 \sigma$ (27)

Casas		3		C` (Kpa)	\$ (°)		
estáticos	μ	CoV	σ	μ inf	μ sup	μ	μ
1 nivel I	19	0,15	2,9			10	32
2 nivel I	19	0,15	2,9	17,6		10	32
3 nivel I	19	0,15	2,9		20,4	10	32
Casas		1	y ap (KN/m3)			C` (Kpa)	\$ (°)
dinámicos	μ	CoV	σ	μ inf	μ sup	μ	μ
4 nivel I	19	0,15	2,9			10	32
5 nivel I	19	0,15	2,9	17,6		10	32
6 nivel I	19	0,15	2,9		20,4	10	32

Tabla 11. Valores medios, superior e inferior para el peso específico del nivel I

Tabla 12. Valores medios, superior e inferior para la cohesión del nivel I

Casas	С` (Кра)					γ ap (KN/m3)	¢ (°)
estáticos	μ	CoV	σ	µ inf	μ sup	μ	μ
7 nivel I	10	0,5	5,0	7,5		19	32
8 nivel I	10	0,5	5,0	200	12,5	19	32
Correct		별	C` (Kpa)			γ ар (KN/m3)	φ (°)
Casos dinámicos	μ	CoV	σ	μ inf	μ sup	μ	μ
9 nivel I	10	0,5	5,0	7,5		19	32
10 nivel I	10	0,5	5,0	21.7	1 <mark>2,5</mark>	19	32

Fabla 13. Valores medios	, superior e inferior	para el ángulo	de rozamiento	del nivel I
---------------------------------	-----------------------	----------------	---------------	-------------

Casas			γ ap (KN/m3)	C` (Kpa)			
estáticos	μ	CoV	σ	μ inf	μ sup	μ	μ
11 nivel I	32	0,1	3,2	30,4		19	10
12 nivel I	32	0,1	3,2		33,6	19	10
Casas			ф (°)			γ ар (KN/m3)	C` (Kpa)
Casos dinámicos	μ	CoV	φ (°) σ	µ inf	µ sup	γ ар (KN/m3) μ	С (Кра) µ
Casos dinámicos 13 nivel l	μ 32	CoV 0,1	φ (°) σ 3,2	μ inf 30,4	μ sup	γ ap (KN/m3) μ 19	С (Кра) µ 10

1.14.2. DATOS DE PARTIDA EMPLEADOS EN EL NIVEL II

Para el nivel II los datos de partidas, están representados por los valores centrados y por los valores no centrados descritos en las tablas 4 y 5, a partir de allí se realizan los cálculos correspondientes. A manera de entender se plantea el siguiente ejemplo:

1.- Cálculo del factor de Seguridad (FS*) Utilizando el modelo de cálculo (M&P)

 F^* = Para valores centrados de las variables μ

2.-Se determina el Factor de Seguridad,(F-) para valores No centrados de las variables

 $(\mu + - \sigma)$

1E-a Variación de C` (kPa) CoV= 0,5					
DATOS DE PARTIDA					
TALUD DE REFERENCIA					
Altura de talud	Н	10	m		
Inclinación del talud	α	3H: 2V			
Altura de agua (NF)	NF	Seco	m.		
Altura de agua aguas abajo	H'w	0	m		
PESOS ESPECÍFICOS					
Agua	γw	10	kN/m ³		
Terreno	γар	16	kN/m ³		
DATOS GEOMECÁNICOS					
Cohesión	C'	5	kN/m ²	(Kpa)	
Ángulo de Rozamiento	φ'	32	<u>0</u>		
DATOS SISMO		0			
Coeficiente sísmico vcal	βv	0			
Coeficiente sísmico htal	βh	0			
Coeficiente presión dinámica del agua	Cw	0			
Morgenster Price (M&P)					
COEFICIENTE DE SEGURIDAD FRENT	E AL DESLIZAMIEN'	ГО (М&Р)			
97 E	COEFICIE	NTE DE SEGU	RIDAD (CS	S) = 1,	,464

1E-b Variación de 🖗 (°) CoV=0,1		47		
DATOS DE PARTIDA				
TALUD DE REFERENCIA		/		
Altura de talud	H	15	m	
Inclinación del talud	α	3H: 2V		
Altura de agua (NF)	NF	Seco	m.	
Altura de agua aguas abajo	H'w	0	m	
PESOS ESPECÍFICOS	(Arth)			
Agua	γw	10	kN/m ³	
Terreno	γap	16	kN/m ³	<u> </u>
DATOS GEOMECÁNICOS				
Cohesión	с'	10	kN/m ²	(Kpa)
Ángulo de Rozamiento	ф'	29	<u>0</u>	
DATOS SISMO				
Coeficiente sísmico vcal	βν	0		
Coeficiente sísmico htal	βh	0		
Coeficiente presión dinámica del agua	Cw	0		
Morgenster Price (M&P)				
COEFICIENTE DE SEGURIDAD FRENT	<mark>E AL DESLIZAMIENTO</mark>	(M&P)		
	COEFICIE	NTE DE SEGU	JRIDAD (CS	S) =

1E-c Variación de γ ap (KN/m3)					
DATOS DE PARTIDA					
TALUD DE REFERENCIA					
Altura de talud	Н	10	m		
Inclinación del talud	α	3H: 2V			
Altura de agua (NF)	NF	Seco	m.		
Altura de agua aguas abajo	H'w	0	m		
PESOS ESPECÍFICOS					
Agua	γw	10	kN/m ³		
Terreno	γap	16	kN/m ³	<u> </u>	
DATOS GEOMECÁNICOS		•			
Cohesión	C'	10	kN/m ²	(Кра)	
Ángulo de Rozamiento	φ'	32	<u>0</u>		
DATOS SISMO		2			
Coeficiente sísmico vcal	βν	0			
Coeficiente sísmico htal	βh	0			
Coeficiente presión dinámica del agua	Cw	0			
Morgenster Price (M&P)					
COEFICIENTE DE SEGURIDAD FRENTE A	L DESLIZAMIEN	TO (M&P)			
21	COEFICIENTE	DE SEGUR	(DAD (CS)	=	1,77

1E-d Variación del sismo					
DATOS DE PARTIDA		\sim $/\kappa$			
TALUD DE REFERENCIA	2				
Altura de talud		10	m		
Inclinación del talud	α	3H: 2V			
Altura de agua (NF)	NF	Seco	m.		
Altura de agua aguas abajo	H'w	0	m		
PESOS ESPECÍFICOS			_		
Agua	γw	10	kN/m ³		
Terreno	Yap	16	kN/m ³	<u> </u>	
DATOS GEOMECÁNICOS	1 1 2 4 - 5				
Cohesión	C'	10	kN/m ²	(Kpa)	
Ángulo de Rozamiento	φ'	32	Q	<u> </u>	
DATOS SISMO					
Coeficiente sísmico vcal	βv	0			
Coeficiente sísmico htal	βh	0			
Coeficiente presión dinámica del agua	Cw	0			
Morgenster Price (M&P)					
COEFICIENTE DE SEGURIDAD FR	<mark>rente al desliza</mark>	MIENTO (M&P	')		
	COEFICIE	NTE DE SEGURI	DAD (CS)	=	1,7

3.- Obtención del índice de sensibilidad para cada variable X en estudio: ν = (F* - F^-) / F*

Indice sensibilidad cohesión	0,176
Indice sensibilidad ang.	
Rozamiento	0,075
Indice sensibilidad Peso específico	0,000
Índice sensibilidad sismo	0,000

4.- El índice de sensibilidad final que no es otra cosa que la raíz cuadrada de los índices de sensibilidad parciales al cuadrado:

$ISF = ((0.1757^2 + $	$0.0755^{2}+0^{2}+0^{2})^{0.5}$
-----------------------	---------------------------------

	- ATT	
γ (KN/m3) Cov=0	Estático	Dinámico
Indice sensibilidad cohesión	0,1757	0,1745
Indice sensibilidad ang. Rozamiento	0,0755	0,0752
Indice sensibilidad Peso específico	0,0000	0,0000
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1912	0,1969

5.- La ecuación (10) previamente adaptada al presente estudio, la nueva función densidad lognormal de FS resultante (y por tanto g o región de fallo), posee una desviación (ζ) en términos de FS que se define como la raíz cuadrada de la sumatoria de los cuadrados de los índices de sensibilidad de cada una de las variables.

$$\zeta = \sqrt{\ln(\mathbf{I} + v_F^2)}$$

La dispersión ζ	0,189	0,195
Valor medio de distribución		
Lognormal λ	0,556	0,440
El indice de confianza β	2,937	2,254

6.- El índice de fiabilidad (β) de la función "g" se obtiene a partir del valor centrado del FS (FS*) y de la dispersión en la distribución lognormal del FS(ζ).

$$\beta = \frac{\ln F^*}{\zeta} - \frac{1}{2}\zeta$$

7.- El valor medio de la distribución lognormal del FS, o función "g", se expresa por λ .

$$\lambda = \beta \cdot \zeta$$

8.- la probabilidad de ocurrencia (p) anual estática y el índice de fiabilidad (β) poseen una relación directa a través de la función de probabilidad acumulada (F) para el caso lognormal

PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$: DISTR.LOG.NORM(1; λ ; ζ)

Situación de cálculo	Estático	Dinámico
PROBABILIDAD ANUAL DE FALLO		
φ(-β)	1,7E-03	1,2E-02

Para el caso dinámico el procedimiento es el mismo, solo hay que afectar los datos del sismo y así obtener el correspondiente factor de seguridad:

P	
βv	0,03
βh	0,06
NID	
Cw	0
	βv βh C _w

1.14.3. DATOS DE PARTIDA EMPLEADOS EN EL NIVEL III

Para el nivel III los datos de partidas, están representados por los valores centrados y por los valores no centrados descritos en las tablas 4 y 5, a partir de allí se realizan los cálculos correspondientes descritos anteriormente en el apartado <u>3.7 Planteamiento</u> estadístico NIVEL III. Simulaciones de Monte Carlo. (Ver ejemplo detallado en el apartado).

Se analiza la estabilidad considerando la herramienta de análisis probabilístico que usa el método de Montecarlo para calcular la probabilidad de falla. Para todos los parámetros se supuso una distribución normal de probabilidades con valores medios (μ) y su desviación típica (σ) los resultados de la Tabla 6.

Tabla 14. Valores medios, tipo de distribución y sus desviaciones típicas, NIVEL III.

Variable	Unidad	Tipo de distribución	Media	Desviación típica
Peso específico	(KN/m3)	Normal	19	3
Angulo de rozamiento interno	(°)	Normal	32	3
Cohesión	(KPa)	Normal	10	5

De este modo, la función de estado límite es una función de hasta 3 variables aleatorias:

 $g^* = (\gamma, \phi, C) = 0.$

1.15. CARACTERÍSTICAS DE LA INVESTIGACIÓN

Las dos principales características de la investigación a alcanzar son:

a) el cálculo de la seguridad frente al deslizamiento y

b) el análisis de la fiabilidad del talud frente al deslizamiento a partir de diversos métodos probabilísticos.

De manera complementaria se aprovecha el uso de estos cálculos para analizar la influencia de las incertidumbres de los principales parámetros geomecánicos y geométricos sobre la seguridad global.

Esto se debe a que la estimación de ciertos parámetros que caracterizan el talud es una tarea difícil de realizar con precisión. En consecuencia, resulta aconsejable realizar estudios de sensibilidad, a partir de herramientas sencillas de cálculo que permitan utilizar múltiples rangos de datos de partida, para conocer tanto la fiabilidad de la infraestructura, como a la vez se contemplen las dispersiones de estos datos de partida. La caracterización estadística también se puede aplicar a otras acciones como la del sismo.

1.16. TÉCNICA DE INVESTIGACIÓN

Para realizar el análisis del factor de seguridad se ha escogido el programa informático Excel. Utilizando la teoría del equilibrio límite tiene la habilidad de modelar terrenos heterogéneos, con estratigrafía complicada, diferentes geometrías de superficie de deslizamiento y condiciones variables de presión de agua. A todo esto se añade una atractiva salida gráfica y la comodidad de trabajar en un entorno Windows. Otras características de este programa de estabilidad son:

- Posibilidad de incorporar diferentes materiales
- Posibilidad de definir el Nivel Freático
- Posibilidad de definir la superficie de deslizamiento
- Introducción de cargas provocadas por movimientos sísmicos
- Introducción de anclajes

1.17. FUENTES DE INFORMACIÓN

Se ha indagado en fuentes documentales como ser libros, revistas, páginas Web, documentos en general.

CAPÍTULO IV

MARCO PRÁCTICO

4.1. MÉTODOS DE NIVEL I

Se ha obtenido el factor de seguridad correspondiente al nivel I. Se han realizado los cálculos para 3 valores. Centrado, Superior e inferior para las dos situaciones de cálculo, estático y dinámico, los resultados se encuentran resumidos en la tabla 15.

VARIACION DE γ ap (KN/m3)									
Caso	Altura (m.)	Inclinación talud	γар (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P	
1 nivel I	10	3H:2V	19	10	32	SECO	No	1,682	
2 nivel I	10	3H:2V	17,6	10	32	SECO	No	1,722	
3 nivel I	10	3H:2V	20,4	10	32	SECO	No	1,648	
4 nivel I	10	3H:2V	19	10	32	SECO	Si	1,499	
5 nivel I	10	3H:2V	17,6	10	32	SECO	Si	1,535	
6 nivel I	10	3H:2V	20,4	10	32	SECO	Si	1,469	
VARIACIC	N DE C`	(Kpa)	103	1					
Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P	
7 nivel I	10	3H:2V	19,0	7,5	32	SECO	No	1,550	
8 nivel I	10	3H:2V	19,0	12,5	32	SECO	No	1,807	
9 nivel I	10	3H:2V	19,0	7,5	32	SECO	Si	1,382	
10 nivel I	10	3H:2V	19,0	12,5	32	SECO	Si	1,610	

Tabla 15. Resumen general del factor de seguridad para el nivel I

VARIACION DE 🗄										
Caso	Altura (m.)	Inclinación talud	γар (KN/m3)	Angulo de fricción interno (º)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P		
11 nivel I	10	3H:2V	19,0	30,4	10	SECO	No	1,610		
12 nivel I	10	3H:2V	19,0	33,6	10	SECO	No	1,757		
13 nivel I	10	3H:2V	19,0	30,4	10	SECO	Si	1,435		
14 nivel I	10	3H:2V	19,0	33,6	10	SECO	Si	1,566		
	Casos Es	státicos	A.		5.					
	Casos Di	inámicos	196							
βh utiliza	do =	0,06	5/8	βv utiliz	ado =	0,03				

4.2. MÉTODOS DE NIVEL II

Se ha obtenido la probabilidad de fallo versus cada variable aleatoria en estudio, los resultados se encuentran a continuación, (Para cada situación estática y dinámica)

Tabla 16. Pro	obabilidad de fallo	Vs. Peso	específico aparente	(Estático)) NIVEL II
---------------	---------------------	----------	---------------------	------------	------------

CoV	γ ap (Kn/m3) "Valores No C <mark>entrados"</mark>				
	16	18	20	22	24
0	1,66E-03	2,01E-03	2,55E-03	2,80E-03	2,92E-03
0,1	1,99E-03	2,29E-03	2,83E-03	3,08E-03	3,14E-03
0,2	2,36E-03	3,07E-03	3,64E-03	3,78E-03	4,17E-03
0,3	3,45E-03	3,67E-03	4,84E-03	5,23E-03	5,26E-03
0,4	4,23E-03	5,17E-03	6,43E-03	7,10E-03	7,23E-03

Figura 17. Superficie de probabilidad de fallo Vs. Peso específico estático nivel II

Figura 18. Tendencia de probabilidad de fallo Vs. Peso específico estático nivel II

Probabilidad de fallo(%) Vs Peso específico (KN/m3)

Para la situación dinámica se presenta a continuación:

CoV	γ ap (Kn/m3) "Valores No Centrados"				
	16	18	20	22	24
0	1,21E-02	1,58E-02	1,93E-02	2,32E-02	2,65E-02
0,1	1,34E-02	1,70E-02	2,04E-02	2,43E-02	2,76E-02
0,2	1,49E-02	2,00E-02	2,33E-02	2,71E-02	3,17E-02
0,3	1,87E-02	2,20E-02	2,75E-02	3,31E-02	3,56E-02
0,4	2,11E-02	2,70E-02	3,24E-02	3,78E-02	4,19E-02

Tabla 17. Probabilidad de fallo Vs. Peso específico aparente (Dinámico) NIVEL

Π

Figura 19. Superficie de probab<mark>ilidad de fallo Vs.</mark> Peso específico Dinámico nivel II

Figura 20. Tendencia de probabilidad de fallo Vs. Peso específico dinámico nivel II

Para la variable cohesión se presenta los siguientes resultados:

Tabla 18. Probabilidad	de fallo	Vs. Cohesión	(Estático)	NIVEL II
			\	

CoV	c` (KPa) "Valores No Centrados"				
	12	15	18	21	24
0	2,35E-11	7,24E-14	4,00E-17	5,03E-19	1,60E-22
0,1	1,90E-10	5,68E-11	6,58E-14	5,80E-16	2,29E-19
0,2	1,64E-08	9,99E-09	3,49E-09	5,87E-11	2,81E-11
0,3	3,74E-05	1,43E-05	2,21E-07	1,70E-07	7,43E-08
0,4	4,09E-04	1,25E-04	4,77E-05	2,12E-05	4,15E-05

Figura 21. Superficie de probabilidad de fallo Vs. Cohesión Estático nivel II

Figura 22. Tendencia de probabilidad de fallo Vs. Cohesión Estático nivel II

CoV	c` (KPa) "Valores No Centrados"					
	12	15	18	21	24	
0	4,06E-06	1,18E-07	1,87E-09	7,40E-11	1,50E-12	
0,1	8,34E-06	1,46E-06	3,02E-08	1 ,28E-09	2,46E-11	
0,2	4,68E-05	1,40E-05	4,18E-06	2,59E-07	1,26E-07	
0,3	1,56E-03	5,80E-04	3,51E-05	1,96E-05	9,81E-06	
0,4	5,60E-03	2,04E-03	8,14E-04	3,77E-04	5,23E-04	

Tabla 19. Probabilidad de fallo Vs. Cohesión (Dinámico) NIVEL II

Figura 23. Superficie de probabilidad de fallo Vs. Cohesión Dinámico nivel II

Probabilidad de fallo(%) Vs Cohesión (KPa) "Dinámico" NIVEL II

Para la variable ángulo de rozamiento interno se presenta los siguientes resultados:

Tabla 20. Probabilidad de fallo	Vs. Angulo	de fricción interno	(Estático) NIVEL	Π

CoV		- 10	φ (°)		
	26	28	30	32	34
0	3,67E-02	1,39E-02	4,23E-03	1,04E-03	2,07E-04
0,1	5,33E-02	2,35E-02	8,82E-03	2,85E-03	7,99E-04
0,2	8,16E-02	5,62E-02	2,86E-02	1,33E-02	9,89E-03
0,3	1,39E-01	8,92E-02	6,78E-02	5,26E-02	3,15E-02
0,4	1,81E-01	1,45E-01	1,17E-01	9,52E-02	7,81E-02

Figura 25. Superficie de probabilidad de fallo Vs. Angulo de rozamiento Estático nivel II

Figura 26. Tendencia de probabilidad de fallo Vs. Angulo de fricción Estático

nivel II

Probabilidad de fallo(%) Vs Angulo de fricción interno (º)

Tabla 21. Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico) NIVEL

- 1	г	T	r	
	L		L	

CoV	φ (°)					
	26	28	30	32	34	
0	1,29E-01	6,83E-02	7,81E-03	1,13E-02	3,47E-03	
0,1	1,55E-01	8,88E-02	9,40E-03	1,98E-02	7,56E-03	
0,2	1,91E-01	1,42E-01	4,07E-02	4,89E-02	3,56E-02	
0,3	2,54E-01	1,84E-01	1,13E-01	1,14E-01	7,55E-02	
0,4	2,93E-01	2,43E-01	1,91E-01	1,68E-01	1,19E-01	

Figura 27. Superficie de probabilidad de fallo Vs. Angulo de rozamiento Dinámico

nivel II

Angulo de fricción interno (º)

4.3. MÉTODOS DE NIVEL III

Tabla 22. Probabilidad de fallo Vs. Peso específico aparente (Estático) NIVEL III

CoV	γ ap (Kn/m3) "Valores No Centrados"						
	16	18	20	22	24		
0	7,802E-03	8,901E-03	9,0E-03	1,270E-02	1,300E-02		
0,1	8,901E-03	9,0E-03	1,270E-02	1,300E-02	1,320E-02		
0,2	8,900E-03	1,270E-02	1,300E-02	1,320E-02	1,400E-02		
0,3	8,700E-03	1,290E-02	1,320E-02	1,400E-02	1,410E-02		
0,4	1,270E-02	1,310E-02	1,390E-02	1,410E-02	1,500E-02		

Figura 29. Superficie de probabilidad de fallo Vs. Peso específico Estático nivel III

Figura 26. Tendencia de probabilidad de fallo Vs. Peso específico Estático nivel

III

CoV	γ ap (Kn/m3) "Valores No Centrados"						
	16	18	20	22	24		
0	2,201E-02	2,340E-02	2,540E-02	3,600E-02	3,930E-02		
0,1	2,340E-02	2,540E-02	3,600E-02	3,930E-02	4,110E-02		
0,2	2,440E-02	3,600E-02	3,930E-02	4,110E-02	4,470E-02		
0,3	2,540E-02	3,760E-02	4,110E-02	4,470E-02	4,750E-02		

Tabla 23. Probabilidad de fallo Vs. Peso específico aparente (Dinámico) NIVEL III

Figura 30. Superficie de probabilidad de fallo Vs. Peso específico Dinámico nivel

Figura 31. Tendencia de probabilidad de fallo Vs. Peso específico Dinámico nivel

III

Tabla 24. Probabilidad de fallo Vs. Cohesión (Estático NIVEL III)

4	c` (KPa) "Valores No Centrados"						
	12	15	18	21	24		
0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
0,1	3,00E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
0,2	3,00E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
0,3	2,29E-04	3,00E-05	0,00E+00	0,00E+00	0,00E+00		
0,4	5,83E-04	1,22 E-0 4	3,00E-06	0,00E+00	0,00E+00		

Figura 32. Superficie de probabilidad de fallo Vs. Cohesión Estático nivel III

Tabla 25. Probabilidad de fallo Vs. Cohesión (Dinámico NIVEL III)

CoV	c` (KPa) "Valores No Centrados"					
	12	15	18	21	24	
0	9,00E-05	1,00E-05	1,00E-06	1,00E-07	1,00E-09	
0,1	2,60E-04	2,00E-05	1,10E-05	1 ,30E-06	1,23E-07	
0,2	4,80E-04	9,00E-05	2,00E-05	1,50E-05	1,30E-06	
0,3	1,15E-03	4,80E-04	2,00E-05	1,00E-05	1,50E-05	
0,4	2,00E-03	8,60E-04	2,60E-04	2,00E-05	2,00E-05	

Figura 33. Superficie de probabilidad de fallo Vs. Cohesión Dinámico nivel III

Figura 34. Tendencia de probabilidad de fallo Vs. Cohesión Dinámico nivel III

Tabla 26. Probabilidad de fallo Vs. Angulo de fricción interno (Estático) NIVEL

-	 -	-
	 	L .

CoV			φ (°)		
	26	28	30	32	34
0	4,20E-02	2,02E-02	8,20E-03	3,70E-03	2,60E-03
0,1	9,55E-02	6,01E-02	2,94E-02	1,26E-02	5,70E-03
0,2	1,77E-01	1,31E-01	6,65E-02	4,20E-02	2,94E-02
0,3	3,37E-01	2,30E-01	1,77E-01	1 ,31E-01	6,65E-02
0,4	4,55E-01	3,90E-01	3,37E-01	2,82E-01	2,30E-01

Figura 35. Superficie de probabilidad de fallo Vs. Angulo de fricción Estático nivel

III

Probabilidad de fallo(%) Vs Angulo de fricción interno (º) "Estático" NIVEL III 1,00E+00 0,4 0.3 0,1 Probabilidad de Fallo (%) 28 28 30 1,00E-01 0 1,00E-01-1,00E+00 ■ 1,00E-02-1,00E-01 1,00E-03-1,00E-02 1,00E-02 1,00E-03 Coef. de variación Angulo de fricción interno (º)

Figura 36. Tendencia de probabilidad de fallo Vs. Angulo de fricción Estático nivel

III

Tabla 27. Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico) Nivel III

CoV		5	φ (°)		
	26	28	30	32	34
0	1,14E-01	5,85E-02	2,73E-02	1,13E-02	4,80E-03
0,1	2,34E-01	1,53E-01	8,33E-02	3,45E-02	1,79E-02
0,2	3,45E-01	2,86E-01	1,77E-01	1,14E-01	8,33E-02
0,3	5,45E-01	4,09E-01	3,45E-01	2,86E-01	1,77E-01
0,4	6,71E-01	6,04E-01	5,45E-01	4,75E-01	4,09E-01

Figura 37. Tendencia de probabilidad de fallo Vs. Angulo de fricción (Dinámico) Nivel III

Figura 38. Tendencia de probabilidad de fallo Vs. Angulo de fricción (Dinámico)

Nivel III

CAPÍTULO V

CONCLUSIONES

5.1. CONCLUSIONES GENERALES

- La meta de todo análisis de estabilidad de taludes es evitar que se produzca falla por corte y movimiento hacia abajo del suelo en el talud. Desde que las variables que gobiernan el problema: peso específico, cohesión y ángulo de rozamiento interno son aleatorias más que determinísticas, cualquier talud tiene una probabilidad finita de falla asociada a su geometría.
- Los métodos determinísticos utilizados en el análisis de la estabilidad de taludes fallan cuando se trata de establecer una estimación precisa de la FIABILIDAD del talud.
- En los estudios destinados a cuantificar la INCERTIDUMBRE de los parámetros que intervienen en las variables que se emplean en los análisis de estabilidad es indispensable emplear métodos probabilísticos y uno de estos métodos es la Simulación Monte Carlo.
- Con el modelo de cálculo desarrollado para el nivel II y las simplificaciones efectuadas, el parámetro que resulta más determinante en la valoración de la fiabilidad del talud frente al deslizamiento es la cohesión.

A continuación se exponen de manera resumida las principales conclusiones alcanzadas en relación a cada nivel de estudio del proyecto de grado y para cada uno de los tres parámetros de partida supuestos.

5.2. CONCLUSIONES DEL NIVEL I

Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
10	3H:2V	19	10	32	SECO	No	1,682
10	3H:2V	17,6	10	32	SECO	No	1,722
10	3H:2V	20,4	10	32	SECO	No	1,648

5.2.1. PESO ESPECÍFICO (KN/m3)

Se puede sacar como conclusión en el nivel I que a menor peso específico aparente se, obtiene mayor factor de seguridad, pero cuando se trata de este, para cualquier talud, se tiene que pensar en penalizar dicho factor, y para ello la variable aleatoria γ (KN/m3) vendría dada por la ecuación: γ kinf = γ m + 0.5 σ . Se aprecia en la tabla anterior que a mayor peso específico (γ) es menor el factor de seguridad.

5.2.2. COHESIÓN (KPa)

Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
10	3H:2V	19,0	7,5	32	SECO	No	1,550
10	3H:2V	19,0	12,5	32	SECO	No	1,807

La conclusión que se puede notar en los datos anteriores, que cuando la cohesión se penaliza con la ecuación: Ck,infp = Cm - 0.5σ , del valor centrado se obtienen factores

de seguridad menores, en resumen a menor cohesión menor factor de seguridad en el talud. Por ende a mayor cohesión el factor de seguridad también es mayor.

5.2.3. ANGULO DE ROZAMIENTO INTERNO (°)

Al ángulo de rozamiento interno le sucede lo mismo que a la cohesión, cuando este es mayor que el valor centrado, el factor de seguridad también es mayor, y para valores menores del valor central, gobernado por la ecuación: ϕk , infp = $\phi m - 0.5 \sigma$, el factor de seguridad decrece.

5.3. CONCLUSIONES DEL NIVEL II

5.3.1. PESO ESPECÍFICO (KN/m3)

Cabe destacar que el peso específico aparente es un parámetro influyente, en sus valores centrados como en sus coeficientes de variación. La fiabilidad mejora para valores reducidos del peso específico para valores medios como para los valores de dispersión. Son más influyentes en la fiabilidad del talud los valores altos del caso dinámico que los valores altos del mismo, no se observan grandes diferencias de la fiabilidad en sus dispersiones para ambos casos (estático y dinámico).

5.3.2. COHESIÓN (KPa)

Se trata de un parámetro muy influyente, tanto en relación a los valores medios como a los de dispersión. Se observa que la dispersión de los datos presenta una mayor influencia en el caso dinámico y los valores medios influyen más en los casos extremos.

Independientemente de la situación y del caso, los valores medios bajos penalizan de manera importante la fiabilidad. Se puede observar la gran diferencia de su fiabilidad tanto para sus valores centrados como para sus coeficientes de variación.

5.3.3. ANGULO DE ROZAMIENTO INTERNO (°)

El ángulo de rozamiento interno es un parámetro influyente, en sus valores centrados como en sus coeficientes de variación. La fiabilidad mejora tanto para valores altos del ángulo de rozamiento interno y para sus valores medios como para sus valores de dispersión. Son más influyentes en la fiabilidad del talud los valores bajos del caso dinámico que los valores altos, no se observan grandes diferencias de la fiabilidad en sus dispersiones para ambos casos (estático y dinámico).

5.4. CONCLUSIONES DEL NIVEL III

La Simulación Monte Carlo permite tener una visión mucho más clara de lo que significa el factor de seguridad en el caso del Análisis de la Estabilidad de los Taludes, pues se visualizan todos los escenarios posibles.

El valor del factor de seguridad mínimo y su correspondiente índice de confiabilidad, pueden ser obtenidos al fijar una probabilidad de falla dada y al observar detenidamente las tablas y las gráficas.

5.4.1. PESO ESPECÍFICO (KN/m3)

El peso específico aparente es un parámetro influyente, en sus valores centrados como en sus coeficientes de variación. La fiabilidad mejora para valores reducidos del peso específico para valores medios como para los valores de dispersión. A mayor peso específico la probabilidad de fallo es mayor.

5.4.2. COHESIÓN (KPa)

La cohesión para sus valores medios bajos penaliza de manera importante la fiabilidad. Se puede observar la gran diferencia de su fiabilidad tanto para sus valores centrados como para sus coeficientes de variación. A mayor cohesión la probabilidad de falla es menor.

5.4.3. ANGULO DE ROZAMIENTO INTERNO (°)

La fiabilidad mejora para valores altos del ángulo de rozamiento interno tanto para sus valores medios como para sus valores de dispersión. Son más influyentes en la fiabilidad del talud los valores bajos del caso dinámico que los valores altos, no se observan grandes diferencias de la fiabilidad en sus dispersiones para ambos casos (estático y dinámico). A mayor ángulo de rozamiento interno se tiene una probabilidad de falla del talud menor.

5.5. COMPARACIONES ENTRE LOS NIVELES II Y III

5.5.1. PESO ESPECÍFICO (KN/m3)

Probabilidad de fallo Vs. Peso específico aparente (Estático NIVEL II)

CoV	γ ap (Kn/m3) "Valores No Centrados"					
	16	18	20	22	24	
0	1,66E-03	2,01E-03	2,55E-03	2,80E-03	2,92E-03	
0,1	1,99E-03	2,29E-03	2,83E-03	3,08E-03	3,14E-03	
0,2	2,36E-03	3,07E-03	3,64E-03	3,78E-03	4,17E-03	
0,3	3,45E-03	3,67E-03	4,84E-03	5,23E-03	5,26E-03	
0,4	4,23E- 03	5,17E-03	6,43E-03	7,10E-03	7,23E-03	
			111			

γ ap (Kn/m3) "Valores No Centrados" CoV 16 18 20 22 24 0 7,802E-03 8,901E-03 9,0E-03 1,270E-02 1,300E-02 0,1 8,901E-03 9,0E-03 1,270E-02 1,300E-02 1,320E-02 8,900E-03 1,270E-02 0,2 1,300E-02 1,320E-02 1,400E-02 8,700E-03 1,290E-02 1,320E-02 1,400E-02 1,410E-02 0,3 1,270E-02 1,310E-02 1,390E-02 1,410E-02 1,500E-02 0,4

Probabilidad de fallo Vs. Peso específico aparente (Estático

Se puede observar que la fiabilidad para el caso del peso específico del nivel II y del nivel III, de la situación estática son semejantes, con la misma tendencia; a mayor peso específico aparente γ (KN/m3), la probabilidad de fallo es mayor.

Probabilidad de fallo Vs. Peso específico aparente (Dinámico NIVEL II)

CoV	γ ap (Kn/m3) "Valores No C <mark>entrados"</mark>						
	16	18	20	22	24		
0	1,21E-02	1,58E-02	1,93E-02	2,32E-02	2,65E-02		
0,1	1,34E-02	1,70E-02	2,04E-02	2,43E-02	2,76E-02		
0,2	1,49E-02	2,00E-02	2,33E-02	2,71E-02	3,17E-02		
0,3	1,87E-02	2,20E-02	2,75E-02	3,31E-02	3,56E-02		
0,4	2,11E-02	2,70E-02	3,24E-02	3,78E-02	4,19E-02		

NIVEL III)

Probabilidad de fallo Vs. Peso específico aparente (Dinámico NIVEL III)

CoV	γ ap (Kn/m3) "Valores No Centrados"							
	16	18	20	22	24			
0	2,201E-02	2,340E-02	2,540E-02	3,600E-02	3,930E-02			
0,1	2,340E-02	2,540E-02	3,600E-02	3,930E-02	4,110E-02			
0,2	2,440E-02	3,600E-02	3,930E-02	4,110E-02	4,470E-02			
0,3	2,540E-02	3,760E-02	4,110E-02	4,470E-02	4,750E-02			
0,4	3,600E-02	4,030E-02	4,330E-02	4,750E-02	5,270E-02			

Se puede observar que la fiabilidad para el caso del peso específico del nivel II y del nivel III, de la situación dinámica son semejantes, con la misma tendencia; a mayor peso específico aparente γ (KN/m3), la probabilidad de fallo es mayor.

5.5.2. COHESIÓN (KPa)

CoV	c` (KPa) "Valores No Centrados"						
	12	15	18	21	24		
0	2,35E-11	7,24E-14	4,00E-17	5,03E-19	1,60E-22		
0,1	1,90E-10	5,68E-11	6,58E-14	5,80E-16	2,29E-19		
0,2	1,64E-08	9,99E-09	3,49E-09	5,87E-11	2,81E-11		
0,3	3,74E-05	1,43E-05	2,21E-07	1,70E-07	7,43E-08		
0,4	4,09E-04	1,25E-04	4,77E-05	2,12E-05	4,15E-05		

Probabilidad de fallo Vs. Cohesión (Estático NIVEL II)

CoV	c` (KPa) "Valores No Centrados"							
	16	18	20	22	24			
0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
0,1	1,00E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
0,2	2,00E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
0,3	2,60E-04	1,00E-05	0,00E+00	0,00E+00	0,00E+00			
0,4	5,50E-04	1,10E-04	1,00E-05	0,00E+00	0,00E+00			

Probabilidad de fallo Vs. Cohesión (Estático NIVEL III)

Cuando se tienen fiabilidades elevadas, el programa Geoslope v2007, asume que el talud no se rompe y su probabilidad de falla es cero.

CoV	c` (KPa) "Valores No Centrados"						
	12	15	18	21	24		
0	4,06E-06	1,18E-07	1,87E-09	7,40E-11	1,50E-12		
0,1	8,34E-06	1,46E-06	3,02E-08	1 ,28E-09	2,46E-11		
0,2	4,68E-05	1,40E-05	4,18E-06	2,59E-07	1,26E-07		
0,3	1,56E-03	5,80E-04	3,51E-05	1,96E-05	9,81E-06		
0,4	5,60E-03	2,04E-03	8,14E-04	3,77E-04	5,23E-04		

Probabilidad de fallo Vs. Cohesión (Dinámico NIVEL II)

CoV	c` (KPa) "Valores No Centrados"						
	12	15	18	21	24		
0	9,00E-05	1,00E-05	1,00E-06	1,00E-07	1,00E-09		
0,1	2,60E-04	2,00E-05	1,10E-05	1,30E-06	1,23E-07		
0,2	4,80E-04	9,00E-05	2,00E-05	1,50E-05	1,30E-06		
0,3	1,15E-03	4,80E-04	2,00E-05	1,00E-05	1,50E-05		
0,4	2,00E-03	8,60E-04	2,60E-04	2,00E-05	2,00E-05		

Probabilidad de fallo Vs. Cohesión (Dinámico NIVEL III)

Se puede observar que la fiabilidad para el caso de la cohesión del nivel II y del nivel III, de la situación dinámica es semejante, con la misma tendencia; a mayor cohesión (KPa), la probabilidad de fallo es menor.

5.5.3. ANGULO DE ROZAMIENTO INTERNO (°)

Probabilidad de fallo Vs. Angulo de fricción interno (Estático NIVEL II)

CoV		12	φ (°)		
	26	28	30	32	34
0	3,67E-02	1,39E-02	4,23E-03	1,04E-03	2,07E-04
0,1	5,33E-02	2,35E-02	8,82E-03	2,85E-03	7,99E-04
0,2	8,16E-02	5,62E-02	2,86E-02	1,33E-02	9,89E-03
0,3	1,39E-01	8,92E-02	6,78E-02	5,26E-02	3,15E-02
0,4	1,81E-01	1,45E-01	1,17E-01	9,52E-02	7,81E-02

CoV			φ (°)		
	26	28	30	32	34
0	4,20E-02	2,02E-02	8,20E-03	3,70E-03	2,60E-03
0,1	9,55E-02	6,01E-02	2,94E-02	1,26E-02	5,70E-03
0,2	1,77E-01	1,31E-01	6,65E-02	4,20E-02	2,94E-02
0,3	3,37E-01	2,30E-01	1,77E-01	1,31E-01	6,65E-02
0,4	4,55E-01	3,90E-01	3,37E-01	2,82E-01	2,30E-01

Probabilidad de fallo Vs. Angulo de fricción interno (Estático NIVEL III)

Se puede observar que la fiabilidad para el caso del ángulo interno del nivel II y del nivel III, de la situación estática es semejante, con la misma tendencia; a mayor ángulo de rozamiento interno, la probabilidad de fallo es menor.

Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico NIVEL II)

CoV			φ (°)		
	26	28	30	32	34
0	1,29E-01	6,83E-02	7,81E-03	1,13E-02	3,47E-03
0,1	1,55E-01	8,88E-02	9,40E-03	1,98E-02	7,56E-03
0,2	1,91E-01	1,42E-01	4,07E-02	4,89E-02	3,56E-02
0,3	2,54E-01	1,84E-01	1,13E-01	1,14E-01	7,55E-02
0,4	2,93E-01	2,43E-01	1,91E-01	1,68E-01	1,19E-01

CoV	φ (°)										
	26	28	30	32	34						
0	1,14E-01	5,85E-02	2,73E-02	1,13E-02	4,80E-03						
0,1	2,34E-01	1,53E-01	8,33E-02	3,45E-02	1,79E-02						
0,2	3,45 E-01	2,86E-01	1,77E-01	1 ,14E-01	8,33E-02						
0,3	5,45E-01	4,09E-01	3,45E-01	2,86E-01	1,77E-01						
0,4	6,71E-01	6,04E-01	5,45E-01	4,75E-01	4,09E-01						

Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico NIVEL III)

Se puede observar que la fiabilidad para el caso del ángulo interno del nivel II y del nivel III, de la situación dinámica es semejante, con la misma tendencia; a mayor ángulo de rozamiento interno, la probabilidad de fallo es menor.

BIBLIOGRAFÍA

Alonso, E. E. Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Geotechnique 26, 3 (1976), 453-472.

C. Giasi et al., "Análisis probabilístico y fuzzy de la confiabilidad de una cuesta de la muestra cerca de Aliano," Eng. Geology, Vol. 67, No. 3-4, 2003. p. 391-402.

Duncan, Michael, Member ASCE, Factors of Safety and Reliability in Geotechnical Engineering, p. 307-316, Journal of Geotechnical and Geoenvironmental Engineering (2000)

Ente público puertos del Estado (2005). **ROM 0.5-05 - recomendaciones geotécnicas para obras marítimas y portuarias**. Capítulo III - 3.3.10. Fiabilidad en Geotecnia, p. 155-165.

Hidalgo Cesar, **Evaluación de la incertidumbre en el análisis de estabilidad de un talud excavado en suelos residuales**, Facultad de ingenierías-Universidad de Medellín, Medellín, Antioquia, Colombia, p. 6.

G. Zhoua et al., Modelado probabilístico espacial de la falla de la pendiente utilizando un enfoque integrado de SIG Monte Carlo, Eng Geology, Vol. 68, No. 3-4, 2003. p. 373-386.

H. Einstein, *Uncertainty in Rock Mechanics and Rock Engineering—Then and Now*, International Society for Rock Mechanics 10th Congress Technology roadmap for Rock Mechanics, Pretoria: SAIMM, 2003. p. 281-293.

Hacking, Ian, The emergence of probability, 1975

Hidalgo Cesar, Herramientas para análisis por confiabilidad en Geotecnia: Aplicación, Revista Ingenierías Universidad de Medellín, André Pacheco de Assis. Lambe y Withman, Mecánica de Suelos, Ed. Lambe, 1969.

Pastrana Moreno, **Manual de simulación Montecarlo**, IV Año de Ingeniería en sistema de Información, 22/02/2011.

Mínguez, R. (2003). Seguridad, fiabilidad y análisis de sensibilidad en obras de ingeniería civil mediante técnicas de optimización por descomposición. Aplicaciones. Tesis Doctoral. Universidad de Cantabria.

Morgenstern, N. R. and Price, V. E. (1965), **The analysis of the stability of general slip surfaces**, Geotecnique p. 79 - 93.

Olalla, C., Dávila, M. (2011). "Seguridad de las presas de gravedad frente al deslizamiento por macizo rocoso y discontinuidad". Revista de Obras Públicas.

R. V. Whitman, *Evaluación del riesgo calculado en ingeniería geotécnica*, Ed. GeotEng, Vol. 110, No. 2, 2004. p. 144-188

Centeno Werner Roberto Rafael, **Simulación de Montecarlo y su aplicación a la Ingeniería Geotécnica,** XVII Seminario Venezolano de Geotecnia. "Del Estado del Arte a la Práctica".

Suárez Jaime, **Deslizamiento y Estabilidad de Taludes en Zonas Tropicales**, Universidad de Santander, Colombia, 2008.

ANEXOS

ANEXO I

CALCULOS REALIZADOS PARA EL NIVEL I

VARIACION DE γ ap (KN/m3)											
Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P	Casos		
1 nivel I	10	3H:2V	19	10	32	SECO	No	1,682	Estático		
2 nivel I	10	3H:2V	17,6	10	32	SECO	No	1,722	Estático		
3 nivel I	11	3H:2V	20,4	10	32	SECO	No	1,648	Estático		
4 nivel I	10	3H:2V	19	10	32	SECO	Si	1,499	Dinámico		
5 nivel I	10	3H:2V	17,6	10	32	SECO	Si	1,535	Dinámico		
6 nivel I	11	3H:2V	20,4	10	32	SECO	Si	1,469	Dinámico		
βh utilizado) =	0,06		βv utilizad	0 =	0,03					
$X_{k,inf} = X_{i}$	$m - 0.5 \cdot \sigma$			CoV=σ / μ							

Casos		1	γ ap (KN/m3)			C` (Kpa)	♦ (°)			
estáticos	μ	CoV	σ	µ inf	µ sup	μ	μ	FS*	FS inf.	FS Sup.
1 nivel I	19	0,15	2,9			10	32	1,682		
2 nivel I	19	0,15	2,9	17,6		10	32		1,722	
3 nivel I	19	0,15	2,9		20,4	10	32			1,648
Casos		;	y ap (KN/m3)			C` (Kpa)	♦ (°)			
dinámicos	μ	CoV	σ	µ inf	µ sup	μ	μ	FS*	FS inf.	FS Sup.
4 nivel I	19	0,15	2,9			10	32	1,499		
5 nivel I	19	0,15	2,9	17,6		10	32		1,535	
6 nivel I	19	0.15	2.9		20.4	10	32			1.469

VARIACION DE C`(Kpa)										
Caso	Altura (m.)	Inclinación talud	үар (KN/m3)	С` (Кра)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P	Casos	
7 nivel I	10	3H:2V	19,0	7,5	32	SECO	No	1,550	Estático	
8 nivel I	10	3H:2V	19,0	12,5	32	SECO	No	1,807	Estático	
9 nivel I	10	3H:2V	19,0	7,5	32	SECO	Si	1,382	Dinámico	
10 nivel I	10	3H:2V	19,0	12,5	32	SECO	Si	1,610	Dinámico	

		C` (Kpa)			γ ap (KN/m3)	♦ (°)			
μ	CoV	σ	µ inf	µ sup	μ	μ	FS*	FS inf.	FS Sup.
10	0,5	5,0	7,5		19	32		1,550	
10	0,5	5,0		12,5	19	32			1,807
		C` (Kpa)			γ ap (KN/m3)	♦ (°)			
μ	CoV	σ	µ inf	µ sup	μ	μ	FS*	FS inf.	FS Sup.
10	0,5	5,0	7,5		19	32		1,382	
10	0,5	5,0		12,5	19	32			1,610
	μ 10 10 μ 10 10	μ CoV 10 0,5 10 0,5 μ CoV 10 0,5 10 0,5 10 0,5	μ CoV σ 10 0,5 5,0 10 0,5 5,0 10 0,5 5,0 10 0,5 5,0 10 0,5 5,0 C` (Kpa) μ CoV σ 10 0,5 5,0 10 0,5 5,0	μ CoV σ μ inf 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5 10 0,5 5,0 7,5	μ CoV σ μ inf μ sup 10 0,5 5,0 7,5 10 0,5 5,0 12,5 10 0,5 5,0 12,5 C' (Kpa) Legen colspan="3">Legen colspan="3" Legen colspan="3">μ inf μ sup 10 0,5 5,0 7,5 10 0,5 5,0 7,5 12,5	C` (Kpa) γ ap (KN/m3) μ CoV σ μ inf μ sup μ 10 0,5 5,0 7,5 19 10 0,5 5,0 7,5 19 10 0,5 5,0 12,5 19 C` (Kpa) γ ap (KN/m3) γ ap (KN/m3) γ ap (KN/m3) μ CoV σ μ inf μ sup μ 10 0,5 5,0 7,5 19 10 0,5 5,0 7,5 19 10 0,5 5,0 7,5 19 10 0,5 5,0 7,5 19	C` (Kpa) γ ap (KN/m3) ϕ (°) μ CoV σ μ inf μ sup μ μ 10 0,5 5,0 7,5 19 32 10 0,5 5,0 7,5 19 32 10 0,5 5,0 12,5 19 32	$C \cdot (Kpa)$ $\gamma ap (KN/m3)$ $\phi (^{o})$ μ CoV σ μinf μsup μ μ FS* 10 0,5 5,0 7,5 19 32 10 0,5 5,0 12,5 19 32 U V σ μ inf μ sup μ μ FS^* 10 0,5 5,0 7,5 19 32 10 0,5 5,0 7,5 19 32	C' (Kpa) y ap (KN/m3) ϕ (°) FS* FS inf. μ CoV σ μ inf μ sup μ μ FS* FS inf. 10 0,5 5,0 7,5 19 32 1,550 10 0,5 5,0 12,5 19 32 1 C' (Kpa) μ μ μ μ μ μ μ μ μ Γ μ

VARIACION DE ϕ

Caso	Altura (m.)	Inclinación talud	уар (KN/m3)	Angulo de fricción interno (º)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P	Casos
11 nivel I	10	3H:2V	19,0	30,4	10	SECO	No	1,610	Estático
12 nivel I	10	3H:2V	19,0	33,6	10	SECO	No	1,757	Estático
13 nivel I	10	3H:2V	19,0	30,4	10	SECO	Si	1,435	Dinámico
14 nivel I	10	3H:2V	19,0	33,6	10	SECO	Si	1,566	Dinámico

Casos			♦ (°)		1	γ ap (KN/m3)	C` (Kpa)			
estáticos	μ	CoV	σ	µ inf	µ sup	μ	μ	FS*	FS inf.	FS Sup.
11 nivel I	32	0,1	3,2	30,4		19	10		1,610	
12 nivel I	32	0,1	3,2		33,6	19	10			1,757
Casos			(°)			γ ap (KN/m3)	C` (Kpa)			
dinámicos	μ	CoV	σ	µ inf	µ sup	μ	μ	FS*	FS inf.	FS Sup.
13 nivel I	32	0,1	3,2	30,4		19	10		1,435	
14 nivel I	32	0,1	3,2		33,6	19	10			1,566

		RESUMEN	GENERAL DEL	FACTOR DE S	EGURIDAD P	ARA EL NIVEL	I	
VARIACION	DEγap (KN/I	m3)						
Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1 nivel I	10	3H:2V	19	10	32	SECO	No	1,682
2 nivel I	10	3H:2V	17,6	10	32	SECO	No	1,722
3 nivel I	10	3H:2V	20,4	10	32	SECO	No	1,648
4 nivel I	10	3H:2V	19	10	32	SECO	Si	1,499
5 nivel I	10	3H:2V	17,6	10	32	SECO	Si	1,535
6 nivel I	10	3H:2V	20,4	10	32	SECO	Si	1,469
VARIACION	DE C`(Kpa)							
Caso	Altura (m.)	Inclinación talud	үар (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
7 nivel I	10	3H:2V	19,0	7,5	32	SECO	No	1,550
8 nivel I	10	3H:2V	19,0	12,5	32	SECO	No	1,807
9 nivel I	10	3H:2V	19,0	7,5	32	SECO	Si	1,382
10 nivel I	10	3H:2V	19,0	12,5	32	SECO	Si	1,610
VARIACION	DE 🗄							
Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	Angulo de fricción interno (º)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
11 nivel I	10	3H:2V	19,0	30,4	10	SECO	No	1,610
12 nivel I	10	3H:2V	19,0	33,6	10	SECO	No	1,757
13 nivel I	10	3H:2V	19,0	30,4	10	SECO	Si	1,435
14 nivel I	nivel I 10 3H:2V 19,0		19,0	33,6	10	SECO	Si	1,566
	Casos Estáticos							
	Casos Dinám	icos						
βh utilizado	3h utilizado = 0,06			βv utilizado	=	0,03		

ANEXO II

CALCULOS REALIZADOS PARA EL NIVEL II

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	16	10	32	SECO	No	1,776
1E-a	10	3H:2V	16	5	32	SECO	No	1,464
1E-b	10	3H:2V	16	10	29	SECO	No	1,642
1E-c	10	3H:2V	16	10	32	SECO	No	1,776
1E-d	10	3H:2V	16	10	32	SECO	No	1,776

Factor de seguridad variación del peso específico (KN/m3)

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	16	10	32	SECO	Si	1,582
1D-a	10	3H:2V	16	5	32	SECO	Si	1,306
1D-b	10	3H:2V	16	10	29	SECO	Si	1,463
1D-c	10	3H:2V	16	10	32	SECO	Si	1,582
1D-d	10	3H:2V	16	10	32	SECO	Si	1,5
Si = se cambia los valores de los coeficientes sísmicos								
β h utilizado = 0,06				βv utili	zado =	0,03		
β h cambiado = 0,09				βv can	nbiado =	0,05		

γ (KN/m3)		
Indice sensibilidad cohesión	0,1757	0,1745
Indice sensibilidad ang. Rozamiento	0,0755	0,0752
Indice sensibilidad Peso específico	0,0000	0,0000
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1912	0,1969
La dispersión ζ	0,189	0,195
Valor medio de distribución Lognormal λ	0,556	0,440
El indice de confianza β	2,937	2,254
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	1,7E-03	1,2E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	16	10	32	SECO	No	1,776
1E-a	10	3H:2V	16	5	32	SECO	No	1,464
1E-b	10	3H:2V	16	10	29	SECO	No	1,642
1E-c	10	3H:2V	18	10	32	SECO	No	1,71
1E-d	10	3H:2V	16	10	32	SECO	No	1,776

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	16	10	32	SECO	Si	1,582
1D-a	10	3H:2V	16	5	32	SECO	Si	1,306
1D-b	10	3H:2V	16	10	29	SECO	Si	1,463
1D-c	10	3H:2V	18	10	32	SECO	Si	1,524
1D-d	10	3H:2V	16	10	32	SECO	Si	1,500

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1757	0,1745
Indice sensibilidad ang. Rozamiento	0,0755	0,0752
Indice sensibilidad Peso específico	0,0372	0,0367
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1948	0,2003
La dispersión ζ	0,193	0,198
Valor medio de distribución Lognormal λ	0,556	0,439
El indice de confianza β	2,880	2,213
PROBABILIDAD ANUAL DE FALLO φ(-β)	2,0E-03	1,3E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	16	10	32	SECO	No	1,776
1E-a	10	3H:2V	16	5	32	SECO	No	1,464
1E-b	10	3H:2V	16	10	29	SECO	No	1,642
1E-c	10	3H:2V	19	10	32	SECO	No	1,682
1E-d	10	3H:2V	16	10	32	SECO	No	1,776
					Angulo de	NF		FS
Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	fricción interno (º)	Agua (m.)	Sismo	(Morgenstern Price) M&P
Caso 1D	Altura (m.) 10	Inclinación talud 3H:2V	γар (KN/m3) 16	С` (Кра) 10	fricción interno (º) 32	Agua (m.) SECO	Sismo Si	(Morgenstern Price) M&P
Caso 1D 1D-a	Altura (m.) 10 10	Inclinación talud 3H:2V 3H:2V	γар (KN/m3) 16 16	С` (Кра) 10 5	fricción interno (º) 32 32	Agua (m.) SECO SECO	Sismo Si Si	(Morgenstern Price) M&P 1,582 1,306
Caso 1D 1D-a 1D-b	Altura (m.) 10 10 10	Inclinación talud 3H:2V 3H:2V 3H:2V	γ ap (KN/m3) 16 16 16	С` (Кра) 10 5 10	fricción interno (º) 32 32 32 29	Agua (m.) SECO SECO SECO	Sismo Si Si Si	(Morgenstern Price) M&P 1,582 1,306 1,463
Caso 1D 1D-a 1D-b 1D-c	Altura (m.) 10 10 10 10	Inclinación talud 3H:2V 3H:2V 3H:2V 3H:2V	γ ap (KN/m3) 16 16 16 19	С` (Кра) 10 5 10 10	fricción interno (º) 32 32 29 32	Agua (m.) SECO SECO SECO SECO	Sismo Si Si Si Si	(Morgenstern Price) M&P 1,582 1,306 1,463 1,499

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1757	0,1745
Indice sensibilidad ang. Rozamiento	0,0755	0,0752
Indice sensibilidad Peso específico	0,0529	0,0525
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1984	0,2038
La dispersión ζ	0,196	0,202
Valor medio de distribución Lognormal λ	0,555	0,438
El indice de confianza $~eta~$	2,825	2,173
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	2,4E-03	1,5E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	16	10	32	SECO	No	1,776
1E-a	10	3H:2V	16	5	32	SECO	No	1,464
1E-b	10	3H:2V	16	10	29	SECO	No	1,642
1E-c	10	3H:2V	21	10	32	SECO	No	1,682
1E-d	10	3H:2V	16	10	32	SECO	No	1,776

	Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Si	smo	FS (Morgenstern Price) M&P
	1D	10	3H:2V	16	10	32	SECO		Si	1,582
	1D-a	10	3H:2V	16	5	32	SECO		Si	1,306
	1D-b	10	3H:2V	16	10	29	SECO		Si	1,463
	1D-c	10	3H:2V	21	10	32	SECO		Si	1,499
	1D-d	10	3H:2V	16	10	32	SECO		Si	1,500
	γ (KN/m3)				Estático	Dinámi	со		
	Indice se	ensibilidad	d cohesión			0,1757	0,1745			
	Indice se	ensibilidad	d ang. Rozan	niento		0,0755	0,0752			
	Indice se	ensibilidad	d Peso espec	ífico		0,0529	0,0525			
	Índice se	ensibilidad	d sismo			0,0000	0,0518			
	INDICE	DE SENS	BILIDAD FI	NAL		0,1984	0,2038	0,2038		
	La dispersión ζ					0,196	0,202			
Valor medio de distribución Lognormal λ					0,555	0,438				
El índice de confianza β				2,825	2,173					
ſ	PROBA	BILIDAD /	ANUAL DE F	ALLO φ(-β))	2,4E-03	1,5E-02	2		

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	16	10	32	SECO	No	1,776
1E-a	10	3H:2V	16	5	32	SECO	No	1,464
1E-b	10	3H:2V	16	10	29	SECO	No	1,642
1E-c	10	3H:2V	22	10	32	SECO	No	1,613
1E-d	10	3H:2V	16	10	32	SECO	No	1,776

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	16	10	32	SECO	Si	1,582
1D-a	10	3H:2V	16	5	32	SECO	Si	1,306
1D-b	10	3H:2V	16	10	29	SECO	Si	1,463
1D-c	10	3H:2V	22	10	32	SECO	Si	1,438
1D-d	10	3H:2V	16	10	32	SECO	Si	1,500

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1757	0,1745
Indice sensibilidad ang. Rozamiento	0,0755	0,0752
Indice sensibilidad Peso específico	0,0918	0,0910
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,2121	0,2170
La dispersión ζ	0,210	0,214
Valor medio de distribución Lognormal λ	0,552	0,436
\mathbb{E} l indice de confianza eta	2,633	2,032
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	4,2E-03	2,1E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	18	10	32	SECO	No	1,71
1E-a	10	3H:2V	18	5	32	SECO	No	1,428
1E-b	10	3H:2V	18	10	29	SECO	No	1,577
1E-c	10	3H:2V	18	10	32	SECO	No	1,71
1E-d	10	3H:2V	18	10	32	SECO	No	1,71

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	18	10	32	SECO	Si	1,524
1D-a	10	3H:2V	18	5	32	SECO	Si	1,273
1D-b	10	3H:2V	18	10	29	SECO	Si	1,405
1D-c	10	3H:2V	18	10	32	SECO	Si	1,524
1D-d	10	3H:2V	18	10	32	SECO	Si	1,445

γ (KN/m3)	Estático	Dinámico						
Indice sensibilidad cohesión	0,1649	0,1647						
Indice sensibilidad ang. Rozamiento	0,0778	0,0781						
Indice sensibilidad Peso específico	0,0000	0,0000						
Índice sensibilidad sismo	0,0000	0,0518						
INDICE DE SENSIBILIDAD FINAL	0,1823	0,1895						
La dispersión ζ	0,181	0,188						
Valor medio de distribución Lognormal λ	0,520	0,404						
El indice de confianza $~eta~$	2,876	2,149						
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	2,0E-03	1,6E-02						
Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
------	----------------	----------------------	----------------	-------------	---	--------------------	-------	----------------------------------
1E	10	3H:2V	18	10	32	SECO	No	1,71
1E-a	10	3H:2V	18	5	32	SECO	No	1,428
1E-b	10	3H:2V	18	10	29	SECO	No	1,577
1E-c	10	3H:2V	20	10	32	SECO	No	1,658
1E-d	10	3H:2V	18	10	32	SECO	No	1,71

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	18	10	32	SECO	Si	1,524
1D-a	10	3H:2V	18	5	32	SECO	Si	1,273
1D-b	10	3H:2V	18	10	29	SECO	Si	1,405
1D-c	10	3H:2V	20	10	32	SECO	Si	1,477
1D-d	10	3H:2V	18	10	32	SECO	Si	1,445

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1649	0,1647
Indice sensibilidad ang. Rozamiento	0,0778	0,0781
Indice sensibilidad Peso específico	0,0304	0,0308
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1849	0,1920
La dispersión ζ	0,183	0,190
Valor medio de distribución Lognormal λ	0,520	0,403
El indice de confianza $~eta~$	2,835	2,119
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	2,3E-03	1,7E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	18	10	32	SECO	No	1,71
1E-a	10	3H:2V	18	5	32	SECO	No	1,428
1E-b	10	3H:2V	18	10	29	SECO	No	1,577
1E-c	10	3H:2V	22	10	32	SECO	No	1,613
1E-d	10	3H:2V	18	10	32	SECO	No	1,71

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	18	10	32	SECO	Si	1,524
1D-a	10	3H:2V	18	5	32	SECO	Si	1,273
1D-b	10	3H:2V	18	10	29	SECO	Si	1,405
1D-c	10	3H:2V	22	10	32	SECO	Si	1,438
1D-d	10	3H:2V	18	10	32	SECO	Si	1,445

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1649	0,1647
Indice sensibilidad ang. Rozamiento	0,0778	0,0781
Indice sensibilidad Peso específico	0,0567	0,0564
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1910	0,1977
La dispersión ζ	0,189	0,196
Valor medio de distribución Lognormal λ	0,519	0,402
El indice de confianza $~eta~$	2,740	2,054
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	3,1E-03	2,0E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	18	10	32	SECO	No	1,71
1E-a	10	3H:2V	18	5	32	SECO	No	1,428
1E-b	10	3H:2V	18	10	29	SECO	No	1,577
1E-c	10	3H:2V	23	10	32	SECO	No	1,613
1E-d	10	3H:2V	18	10	32	SECO	No	1,71

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	18	10	32	SECO	Si	1,524
1D-a	10	3H:2V	18	5	32	SECO	Si	1,273
1D-b	10	3H:2V	18	10	29	SECO	Si	1,405
1D-c	10	3H:2V	23	10	32	SECO	Si	1,438
1D-d	10	3H:2V	18	10	32	SECO	Si	1,445

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1649	0,1647
Indice sensibilidad ang. Rozamiento	0,0778	0,0781
Indice sensibilidad Peso específico	0,0567	0,0564
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,1910	0,1977
La dispersión ζ	0,189	0,196
Valor medio de distribución Lognormal λ	0,519	0,402
El indice de confianza $~eta~$	2,740	2,054
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	3,1E-03	2,0E-02

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	18	10	32	SECO	No	1,71
1E-a	10	3H:2V	18	5	32	SECO	No	1,428
1E-b	10	3H:2V	18	10	29	SECO	No	1,577
1E-c	10	3H:2V	25	10	32	SECO	No	1,556
1E-d	10	3H:2V	18	10	32	SECO	No	1,71

Caso	Altura (m.)	Inclinación talud	γap (KN/m3)	C` (Kpa)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	18	10	32	SECO	Si	1,524
1D-a	10	3H:2V	18	5	32	SECO	Si	1,273
1D-b	10	3H:2V	18	10	29	SECO	Si	1,405
1D-c	10	3H:2V	25	10	32	SECO	Si	1,387
1D-d	10	3H:2V	18	10	32	SECO	Si	1,445

γ (KN/m3)	Estático	Dinámico
Indice sensibilidad cohesión	0,1649	0,1647
Indice sensibilidad ang. Rozamiento	0,0778	0,0781
Indice sensibilidad Peso específico	0,0901	0,0899
Índice sensibilidad sismo	0,0000	0,0518
INDICE DE SENSIBILIDAD FINAL	0,2034	0,2097
La dispersión ζ	0,201	0,207
Valor medio de distribución Lognormal λ	0,516	0,400
El indice de confianza β	2,564	1,927
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	5,2E-03	2,7E-02

CoV	γ ap (Kn/m3) "Valores No Centrados"								
	16	18	20	22	24				
0	1,66E-03	2,01E-03	2,55E-03	2,80E-03	2,92E-03				
0,1	1,99E-03	2,29E-03	2,83E-03	3,08E-03	3,14E-03				
0,2	2,36E-03	3,07E-03	3,64E-03	3,78E-03	4,17E-03				
0,3	3,45E-03	3,67E-03	4,84E-03	5,23E-03	5,26E-03				
0,4	4,23E-03	5,17E-03	6,43E-03	7,10E-03	7,23E-03				

Resumen de la Probabilidad de fallo Vs. Peso específico aparente (Estático) NIVEL

Resumen de la Probabilidad de fallo Vs. Peso específico aparente (Dinámico) NIVEL II

CoV	γ ap (Kn/m3) "Valores No Centrados"							
	16	18	20	22	24			
0	1,21E-02	1,58E-02	1,93E-02	2,32E-02	2,65E-02			
0,1	1,34E-02	1,70E-02	2,04E-02	2,43E-02	2,76E-02			
0,2	1,49E-02	2,00E-02	2,33E-02	2,71E-02	3,17E-02			
0,3	1,87E-02	2,20E-02	2,75E-02	3,31E-02	3,56E-02			
0,4	2,11E-02	2,70E-02	3,24E-02	3,78E-02	4,19E-02			

Probabilidad de fallo(%) Vs Peso específico (KN/m3) "Dinámico" NIVEL II

Factor de seguridad variación de la Cohesión (KPa)

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	12	19	32	SECO	No	1,782
1E-a	10	3H:2V	12	22	32	SECO	No	1,701
1E-b	10	3H:2V	12	19	29	SECO	No	1,649
1E-c	10	3H:2V	12	19	32	SECO	No	1,782
1E-d	10	3H:2V	12	19	32	SECO	No	1,782

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	12	19	32	SECO	Si	1,588
1D-a	10	3H:2V	12	22	32	SECO	Si	1,515
1D-b	10	3H:2V	12	19	29	SECO	Si	1,468
1D-c	10	3H:2V	12	19	32	SECO	Si	1,588
1D-d	10	3H:2V	12	19	32	SECO	Si	1,505
Si* = se	cambia lo	os valores de	los coefici	entes sismi	cos			
β h utilizado = 0,06			βv utilizado = 0,0		0,03			
βh cam	nbiado =	0,09		βv cambiado = 0,05		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0455	0,0460
Indice sensibilidad ang. Rozamiento	0,0746	0,0756
Indice sensibilidad Peso específico	0,0000	0,0000
Índice sensibilidad sismo	0,0000	0,0523
INDICE DE SENSIBILIDAD FINAL	0,0874	0,1027
La dispersión ζ	0,087	0,102
Valor medio de distribución Lognormal λ	0,574	0,457
El indice de confianza $~eta~$	6,580	4,462
PROBABILIDAD ANUAL DE FALLO φ(-β)	2,3E-11	4,1E-06

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	12	19	32	SECO	No	1,782
1E-a	10	3H:2V	12	22	32	SECO	No	1,701
1E-b	10	3H:2V	12	19	29	SECO	No	1,649
1E-c	10	3H:2V	11	19	32	SECO	No	1,732
1E-d	10	3H:2V	12	19	32	SECO	No	1,782

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	12	19	32	SECO	Si	1,588
1D-a	10	3H:2V	12	22	32	SECO	Si	1,515
1D-b	10	3H:2V	12	19	29	SECO	Si	1,468
1D-c	10	3H:2V	11	19	32	SECO	Si	1,544
1D-d	10	3H:2V	12	19	32	SECO	Si	1,505
Si* = se	Si* = se cambia los valores de los coeficientes sismicos							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0455	0,0460
Indice sensibilidad ang. Rozamiento	0,0746	0,0756
Indice sensibilidad Peso específico	0,0281	0,0277
Índice sensibilidad sismo	0,0000	0,0523
INDICE DE SENSIBILIDAD FINAL	0,0918	0,1064
La dispersión ζ	0,092	0,106
Valor medio de distribución Lognormal λ	0,574	0,457
El indice de confianza β	6,262	4,305
PROBABILIDAD ANUAL DE FALLO φ(-β)	1,9E-10	8,3E-06

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	12	19	32	SECO	No	1,782
1E-a	10	3H:2V	12	22	32	SECO	No	1,701
1E-b	10	3H:2V	12	19	29	SECO	No	1,649
1E-c	10	3H:2V	10	19	32	SECO	No	1,682
1E-d	10	3H:2V	12	19	32	SECO	No	1,782

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	12	19	32	SECO	Si	1,588
1D-a	10	3H:2V	12	22	32	SECO	Si	1,515
1D-b	10	3H:2V	12	19	29	SECO	Si	1,468
1D-c	10	3H:2V	10	19	32	SECO	Si	1,499
1D-d	10	3H:2V	12	19	32	SECO	Si	1,505
Si* = se	Si* = se cambia los valores de los coeficientes sísmicos							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0455	0,0460
Indice sensibilidad ang. Rozamiento	0,0746	0,0756
Indice sensibilidad Peso específico	0,0561	0,0560
Índice sensibilidad sismo	0,0000	0,0523
INDICE DE SENSIBILIDAD FINAL	0,1039	0,1170
La dispersión ζ	0,104	0,117
Valor medio de distribución Lognormal λ	0,572	0,456
El indice de confianza β	5,526	3,907
PROBABILIDAD ANUAL DE FALLO φ(-β)	1,6E-08	4,7E-05

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	12	19	32	SECO	No	1,782
1E-a	10	3H:2V	12	22	32	SECO	No	1,701
1E-b	10	3H:2V	12	19	29	SECO	No	1,649
1E-c	10	3H:2V	8	19	32	SECO	No	1,578
1E-d	10	3H:2V	12	19	32	SECO	No	1,782

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	12	19	32	SECO	Si	1,588
1D-a	10	3H:2V	12	22	32	SECO	Si	1,515
1D-b	10	3H:2V	12	19	29	SECO	Si	1,468
1D-c	10	3H:2V	8	19	32	SECO	Si	1,407
1D-d	10	3H:2V	12	19	32	SECO	Si	1,505
Si* = se cambia los valores de los coeficientes sismicos								
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0455	0,0460
Indice sensibilidad ang. Rozamiento	0,0746	0,0756
Indice sensibilidad Peso específico	0,1145	0,1140
Índice sensibilidad sismo	0,0000	0,0523
INDICE DE SENSIBILIDAD FINAL	0,1440	0,1534
La dispersión ζ	0,143	0,153
Valor medio de distribución Lognormal λ	0,567	0,451
El indice de confianza β	3,961	2,955
PROBABILIDAD ANUAL DE FALLO φ(-β)	3,7E-05	1,6E-03

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	12	19	32	SECO	No	1,782
1E-a	10	3H:2V	12	22	32	SECO	No	1,701
1E-b	10	3H:2V	12	19	29	SECO	No	1,649
1E-c	10	3H:2V	7	19	32	SECO	No	1,523
1E-d	10	3H:2V	12	19	32	SECO	No	1,782

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	12	19	32	SECO	Si	1,588
1D-a	10	3H:2V	12	22	32	SECO	Si	1,515
1D-b	10	3H:2V	12	19	29	SECO	Si	1,468
1D-c	10	3H:2V	7	19	32	SECO	Si	1,499
1D-d	10	3H:2V	12	19	32	SECO	Si	1,505
Si* = se	Si* = se cambia los valores de los coeficientes sismicos							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0455	0,0455
Indice sensibilidad ang. Rozamiento	0,0746	0,0746
Indice sensibilidad Peso específico	0,1453	0,1453
Índice sensibilidad sismo	0,0000	0,0000
INDICE DE SENSIBILIDAD FINAL	0,1696	0,1696
La dispersión ζ	0,168	0,168
Valor medio de distribución Lognormal λ	0,564	0,564
El indice de confianza β	3,347	3,347
PROBABILIDAD ANUAL DE FALLO φ(-β)	4,1E-04	4,1E-04

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	15	19	32	SECO	No	1,782
1E-a	10	3H:2V	15	22	32	SECO	No	1,701
1E-b	10	3H:2V	15	19	29	SECO	No	1,649
1E-c	10	3H:2V	15	19	32	SECO	No	1,523
1E-d	10	3H:2V	15	19	32	SECO	No	1,782

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	15	19	32	SECO	Si	1,588
1D-a	10	3H:2V	15	22	32	SECO	Si	1,515
1D-b	10	3H:2V	15	19	29	SECO	Si	1,468
1D-c	10	3H:2V	15	19	32	SECO	Si	1,358
1D-d	10	3H:2V	15	19	32	SECO	Si	1,505
Si* = se cambia los valores de los coeficientes sismicos								
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0455	0,0460
Indice sensibilidad ang. Rozamiento	0,0746	0,0756
Indice sensibilidad Peso específico	0,1453	0,1448
Índice sensibilidad sismo	0,0000	0,0523
INDICE DE SENSIBILIDAD FINAL	0,1696	0,1776
La dispersión ζ	0,168	0,176
Valor medio de distribución Lognormal λ	0,564	0,447
El indice de confianza β	3,347	2,537
PROBABILIDAD ANUAL DE FALLO φ(-β)	4,1E-04	5,6E-03

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	15	19	32	SECO	No	1,927
1E-a	10	3H:2V	15	22	32	SECO	No	1,83
1E-b	10	3H:2V	15	19	29	SECO	No	1,787
1E-c	10	3H:2V	13	19	32	SECO	No	1,832
1E-d	10	3H:2V	15	19	32	SECO	No	1,927

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	15	19	32	SECO	Si	1,715
1D-a	10	3H:2V	15	22	32	SECO	Si	1,63
1D-b	10	3H:2V	15	19	29	SECO	Si	1,589
1D-c	10	3H:2V	13	19	32	SECO	Si	1,632
1D-d	10	3H:2V	15	19	32	SECO	Si	1,623
Si* = se cambia los valores de los coeficientes sismicos								
β h utilizado = 0,06				βv utilizado =		0,03		
βh carr	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0503	0,0496
Indice sensibilidad ang. Rozamiento	0,0727	0,0735
Indice sensibilidad Peso específico	0,0493	0,0484
Índice sensibilidad sismo	0,0000	0,0536
INDICE DE SENSIBILIDAD FINAL	0,1012	0,1143
La dispersión ζ	0,101	0,114
Valor medio de distribución Lognormal λ	0,651	0,533
El indice de confianza β	6,448	4,676
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	5,7E-11	1,5E-06

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	15	19	32	SECO	No	1,927
1E-a	10	3H:2V	15	22	32	SECO	No	1,83
1E-b	10	3H:2V	15	19	29	SECO	No	1,787
1E-c	10	3H:2V	12	19	32	SECO	No	1,782
1E-d	10	3H:2V	15	19	32	SECO	No	1,927

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	15	19	32	SECO	Si	1,715
1D-a	10	3H:2V	15	22	32	SECO	Si	1,63
1D-b	10	3H:2V	15	19	29	SECO	Si	1,589
1D-c	10	3H:2V	12	19	32	SECO	Si	1,588
1D-d	10	3H:2V	15	19	32	SECO	Si	1,623
Si* = se	cambia lo							
β h utilizado = 0,06				βv utilizado =		0,03		
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0503	0,0496
Indice sensibilidad ang. Rozamiento	0,0727	0,0735
Indice sensibilidad Peso específico	0,0752	0,0741
Índice sensibilidad sismo	0,0000	0,0536
INDICE DE SENSIBILIDAD FINAL	0,1161	0,1273
La dispersión ζ	0,116	0,127
Valor medio de distribución Lognormal λ	0,649	0,531
El indice de confianza β	5,612	4,190
PROBABILIDAD ANUAL DE FALLO φ(-β)	1,0E-08	1,4E-05

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	15	19	32	SECO	No	1,927
1E-a	10	3H:2V	15	22	32	SECO	No	1,83
1E-b	10	3H:2V	15	19	29	SECO	No	1,787
1E-c	10	3H:2V	10	19	32	SECO	No	1,682
1E-d	10	3H:2V	15	19	32	SECO	No	1,927

Caso	Altura (m.)	Inclinació n talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	15	19	32	SECO	Si	1,715
1E-a	10	3H:2V	15	22	32	SECO	Si	1,63
1E-b	10	3H:2V	15	19	29	SECO	Si	1,589
1E-c	10	3H:2V	10	19	32	SECO	Si	1,499
1E-d	10	3H:2V	15	19	32	SECO	Si	1,623
Si* = se	cambia lo							
β h utilizado = 0,06				βv utilizado =		0,03		
βh cam	nbiado =	0,09		βv cambiado =		0,05		

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0503	0,0496
Indice sensibilidad ang. Rozamiento	0,0727	0,0735
Indice sensibilidad Peso específico	0,1271	0,1259
Índice sensibilidad sismo	0,0000	0,0536
INDICE DE SENSIBILIDAD FINAL	0,1548	0,1631
La dispersión ζ	0,154	0,162
Valor medio de distribución Lognormal λ	0,644	0,526
El indice de confianza β	4,185	3,249
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	1,4E-05	5,8E-04

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	15	19	32	SECO	No	1,927
1E-a	10	3H:2V	15	22	32	SECO	No	1,83
1E-b	10	3H:2V	15	19	29	SECO	No	1,787
1E-c	10	3H:2V	9	19	32	SECO	No	1,633
1E-d	10	3H:2V	15	19	32	SECO	No	1,927

Caso	Altura (m.)	Inclinación talud	C` (Kpa)	γap (KN/m3)	Angulo de fricción interno (º)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	15	19	32	SECO	Si	1,715
1D-a	10	3H:2V	15	22	32	SECO	Si	1,63
1D-b	10	3H:2V	15	19	29	SECO	Si	1,589
1D-c	10	3H:2V	9	19	32	SECO	Si	1,455
1D-d	10	3H:2V	15	19	32	SECO	Si	1,623

C`(KPa)	Estático	Dinámico
Indice sensibilidad cohesión	0,0503	0,0496
Indice sensibilidad ang. Rozamiento	0,0727	0,0735
Indice sensibilidad Peso específico	0,1526	0,1516
Índice sensibilidad sismo	0,0000	0,0536
INDICE DE SENSIBILIDAD FINAL	0,1763	0,1836
La dispersión ζ	0,175	0,182
Valor medio de distribución Lognormal λ	0,641	0,523
El indice de confianza $~eta~$	3,661	2,871
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	1,3E-04	2,0E-03

CoV	c` (KPa) "Valores No Centrados"									
	12	15	18	21	24					
0	2,35E-11	7,24E-14	4,00E-17	5,03E-19	1,60E-22					
0,1	1,90E-10	5,68E-11	6,58E-14	5,80E-16	2,29E-19					
0,2	1,64E-08	9,99E-09	3,49E-09	5,87E-11	2,81E-11					
0,3	3,74E-05	1,43E-05	2,21E-07	1,70E-07	7,43E-08					
0,4	4,09E-04	1,25E-04	4,77E-05	2,12E-05	4,15E-05					
Probabilidad de fallo(%) Vs Cohesión (KPa)										

Resumen de la Probabilidad de fallo Vs. Cohesión (Estático) NIVEL II

Resumen de la Probabilidad de fallo Vs. Cohesión (Dinámico) NIVEL II

CoV	c` (KPa) "Valores No Centrados"								
	12	15	18	21	24				
0	4,06E-06	1,18E-07	1,87E-09	7,40E-11	1,50E-12				
0,1	8,34E-06	1,46E-06	3,02E-08	1,28E-09	2,46E-11				
0,2	4,68E-05	1,40E-05	4,18E-06	2,59E-07	1,26E-07				
0,3	1,56E-03	5,80E-04	3,51E-05	1,96E-05	9,81E-06				
0,4	5,60E-03	2,04E-03	8,14E-04	3,77E-04	5,23E-04				

Probabilidad de fallo(%) Vs Cohesión (KPa) "Dinámico" NIVEL II

Factor de seguridad variación del peso específico (KN/m3)

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	26	19	10	SECO	No	1,423
1E-a	10	3H:2V	26	22	10	SECO	No	1,355
1E-b	10	3H:2V	26	19	5	SECO	No	1,163
1E-c	10	3H:2V	26	19	10	SECO	No	1,423
1E-d	10	3H:2V	26	19	10	SECO	No	1,423

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	26	19	10	SECO	Si	1,267
1D-a	10	3H:2V	26	22	10	SECO	Si	1,207
1D-b	10	3H:2V	26	19	5	SECO	Si	1,037
1D-c	10	3H:2V	26	19	10	SECO	Si	1,267
1D-d	10	3H:2V	26	19	10	SECO	Si	1,201
Si* = se	cambia lo							
β h utilizado = 0,06				βv utilizado =		0,03		
βh cam	nbiado =	0,09		β v cambiado = 0,05				

φ (º)	Estático	Dinámico
Indice sensibilidad cohesión	0,0478	0,0474
Indice sensibilidad ang. Rozamiento	0,1827	0,1815
Indice sensibilidad Peso específico	0,0000	0,0000
Índice sensibilidad sismo	0,0000	0,0521
INDICE DE SENSIBILIDAD FINAL	0,1889	0,1947
La dispersión ζ	0,187	0,193
Valor medio de distribución Lognormal λ	0,335	0,218
El indice de confianza β	1,791	1,130
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	3,7E-02	1,3E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	26	19	10	SECO	No	1,423
1E-a	10	3H:2V	26	22	10	SECO	No	1,355
1E-b	10	3H:2V	26	19	5	SECO	No	1,163
1E-c	10	3H:2V	23	19	10	SECO	No	1,3
1E-d	10	3H:2V	26	19	10	SECO	No	1,423

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	26	19	10	SECO	Si	1,267
1D-a	10	3H:2V	26	22	10	SECO	Si	1,207
1D-b	10	3H:2V	26	19	5	SECO	Si	1,037
1D-c	10	3H:2V	23	19	10	SECO	Si	1,157
1D-d	10	3H:2V	26	19	10	SECO	Si	1,201
Si* = se	cambia lo							
βh utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambia	ado =	0,05		

φ (≌)	Estático	Dinámico
Indice sensibilidad cohesión	0,0478	0,0474
Indice sensibilidad ang. Rozamiento	0,1827	0,1815
Indice sensibilidad Peso específico	0,0864	0,0868
Índice sensibilidad sismo	0,0000	0,0521
INDICE DE SENSIBILIDAD FINAL	0,2077	0,2132
La dispersión ζ	0,206	0,211
Valor medio de distribución Lognormal λ	0,332	0,214
El indice de confianza β	1,614	1,017
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	5,3E-02	1,5E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	26	19	10	SECO	No	1,423
1E-a	10	3H:2V	26	22	10	SECO	No	1,355
1E-b	10	3H:2V	26	19	5	SECO	No	1,163
1E-c	10	3H:2V	21	19	10	SECO	No	1,22
1E-d	10	3H:2V	26	19	10	SECO	No	1,423

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	26	19	10	SECO	Si	1,267
1D-a	10	3H:2V	26	22	10	SECO	Si	1,207
1D-b	10	3H:2V	26	19	5	SECO	Si	1,037
1D-c	10	3H:2V	21	19	10	SECO	Si	1,085
1D-d	10	3H:2V	26	19	10	SECO	Si	1,201
Si* = se	cambia lo							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

φ (≌)	Estático	Dinámico
Indice sensibilidad cohesión	0,0478	0,0474
Indice sensibilidad ang. Rozamiento	0,1827	0,1815
Indice sensibilidad Peso específico	0,1427	0,1436
Índice sensibilidad sismo	0,0000	0,0521
INDICE DE SENSIBILIDAD FINAL	0,2367	0,2420
La dispersión ζ	0,233	0,239
Valor medio de distribución Lognormal λ	0,326	0,208
El indice de confianza β	1,394	0,873
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	8,2E-02	1,9E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	26	19	10	SECO	No	1,423
1E-a	10	3H:2V	26	22	10	SECO	No	1,355
1E-b	10	3H:2V	26	19	5	SECO	No	1,163
1E-c	10	3H:2V	18	19	10	SECO	No	1,103
1E-d	10	3H:2V	26	19	10	SECO	No	1,423

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	26	19	10	SECO	Si	1,267
1D-a	10	3H:2V	26	22	10	SECO	Si	1,207
1D-b	10	3H:2V	26	19	5	SECO	Si	1,037
1D-c	10	3H:2V	18	19	10	SECO	Si	0,98
1D-d	10	3H:2V	26	19	10	SECO	Si	1,201
Si* = se	cambia lo							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

φ (≌)	Estático	Dinámico
Indice sensibilidad cohesión	0,0478	0,0474
Indice sensibilidad ang. Rozamiento	0,1827	0,1815
Indice sensibilidad Peso específico	0,2249	0,2265
Índice sensibilidad sismo	0,0000	0,0521
INDICE DE SENSIBILIDAD FINAL	0,2937	0,2987
La dispersión ζ	0,288	0,292
Valor medio de distribución Lognormal λ	0,311	0,194
El indice de confianza β	1,083	0,663
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	1,4E-01	2,5E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	26	19	10	SECO	No	1,423
1E-a	10	3H:2V	26	22	10	SECO	No	1,355
1E-b	10	3H:2V	26	19	5	SECO	No	1,163
1E-c	10	3H:2V	16	19	10	SECO	No	1,026
1E-d	10	3H:2V	26	19	10	SECO	No	1,423

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	26	19	10	SECO	Si	1,267
1D-a	10	3H:2V	26	22	10	SECO	Si	1,207
1D-b	10	3H:2V	26	19	5	SECO	Si	1,037
1D-c	10	3H:2V	16	19	10	SECO	Si	0,911
1D-d	10	3H:2V	26	19	10	SECO	Si	1,201
Si* = se cambia los valores de los coeficientes sísmicos								
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

φ (º)	Estático	Dinámico
Indice sensibilidad cohesión	0,0478	0,0474
Indice sensibilidad ang. Rozamiento	0,1827	0,1815
Indice sensibilidad Peso específico	0,2790	0,2810
Índice sensibilidad sismo	0,0000	0,0521
INDICE DE SENSIBILIDAD FINAL	0,3369	0,3418
La dispersión ζ	0,328	0,332
Valor medio de distribución Lognormal λ	0,299	0,181
El indice de confianza β	0,912	0,546
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	1,8E-01	2,9E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	28	19	10	SECO	No	1,506
1E-a	10	3H:2V	28	22	10	SECO	No	1,438
1E-b	10	3H:2V	28	19	5	SECO	No	1,243
1E-c	10	3H:2V	28	19	10	SECO	No	1,506
1E-d	10	3H:2V	28	19	10	SECO	No	1,506

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	28	19	10	SECO	Si	1,342
1D-a	10	3H:2V	28	22	10	SECO	Si	1,281
1D-b	10	3H:2V	28	19	5	SECO	Si	1,108
1D-c	10	3H:2V	28	19	10	SECO	Si	1,342
1D-d	10	3H:2V	28	19	10	SECO	Si	1,272
Si* = se	cambia lo							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		By cambia	ado =	0,05		

φ (º)	Estático	Dinámico
Indice sensibilidad cohesión	0,0452	0,0455
Indice sensibilidad ang. Rozamiento	0,1746	0,1744
Indice sensibilidad Peso específico	0,0000	0,0000
Índice sensibilidad sismo	0,0000	0,0522
INDICE DE SENSIBILIDAD FINAL	0,1804	0,1876
La dispersión ζ	0,179	0,186
Valor medio de distribución Lognormal λ	0,393	0,277
El indice de confianza β	2,199	1,489
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	1,4E-02	6,8E-02

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	28	19	10	SECO	No	1,506
1E-a	10	3H:2V	28	22	10	SECO	No	1,438
1E-b	10	3H:2V	28	19	5	SECO	No	1,243
1E-c	10	3H:2V	25	19	10	SECO	No	1,382
1E-d	10	3H:2V	28	19	10	SECO	No	1,506

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	28	19	10	SECO	Si	1,342
1D-a	10	3H:2V	28	22	10	SECO	Si	1,281
1D-b	10	3H:2V	28	19	5	SECO	Si	1,108
1D-c	10	3H:2V	25	19	10	SECO	Si	1,231
1D-d	10	3H:2V	28	19	10	SECO	Si	1,272
Si* = se	cambia lo							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		By cambia	ado =	0,05		

φ (º)	Estático	Dinámico
Indice sensibilidad cohesión	0,0452	0,0455
Indice sensibilidad ang. Rozamiento	0,1746	0,1744
Indice sensibilidad Peso específico	0,0823	0,0827
Índice sensibilidad sismo	0,0000	0,0522
INDICE DE SENSIBILIDAD FINAL	0,1983	0,2050
La dispersión ζ	0,196	0,203
Valor medio de distribución Lognormal λ	0,390	0,274
El indice de confianza β	1,987	1,348
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	2,3E-02	8,9E-02

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	28	19	10	SECO	No	1,506
1E-a	10	3H:2V	28	22	10	SECO	No	1,438
1E-b	10	3H:2V	28	19	5	SECO	No	1,243
1E-c	10	3H:2V	22	19	10	SECO	No	1,26
1E-d	10	3H:2V	28	19	10	SECO	No	1,506

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	28	19	10	SECO	Si	1,342
1D-a	10	3H:2V	28	22	10	SECO	Si	1,281
1D-b	10	3H:2V	28	19	5	SECO	Si	1,108
1D-c	10	3H:2V	22	19	10	SECO	Si	1,121
1D-d	10	3H:2V	28	19	10	SECO	Si	1,272
Si* = se cambia los valores de los coeficientes sísmicos								
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		βv cambiado =		0,05		

φ (º)	Estático	Dinámico
Indice sensibilidad cohesión	0,0452	0,0455
Indice sensibilidad ang. Rozamiento	0,1746	0,1744
Indice sensibilidad Peso específico	0,1633	0,1647
Índice sensibilidad sismo	0,0000	0,0522
INDICE DE SENSIBILIDAD FINAL	0,2433	0,2496
La dispersión ζ	0,240	0,246
Valor medio de distribución Lognormal λ	0,381	0,264
El indice de confianza β	1,587	1,074
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	5,6E-02	1,4E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	28	19	10	SECO	No	1,506
1E-a	10	3H:2V	28	22	10	SECO	No	1,438
1E-b	10	3H:2V	28	19	5	SECO	No	1,243
1E-c	10	3H:2V	20	19	10	SECO	No	1,181
1E-d	10	3H:2V	28	19	10	SECO	No	1,506

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	28	19	10	SECO	Si	1,342
1D-a	10	3H:2V	28	22	10	SECO	Si	1,281
1D-b	10	3H:2V	28	19	5	SECO	Si	1,108
1D-c	10	3H:2V	20	19	10	SECO	Si	1,049
1D-d	10	3H:2V	28	19	10	SECO	Si	1,272
Si* = se	cambia lo							
β h utilizado = 0,06			βv utilizado =		0,03			
βh cam	nbiado =	0,09		By cambia	ado =	0,05		

φ (º)	Estático	Dinámico
Indice sensibilidad cohesión	0,0452	0,0455
Indice sensibilidad ang. Rozamiento	0,1746	0,1744
Indice sensibilidad Peso específico	0,2158	0,2183
Índice sensibilidad sismo	0,0000	0,0522
INDICE DE SENSIBILIDAD FINAL	0,2813	0,2879
La dispersión ζ	0,276	0,282
Valor medio de distribución Lognormal λ	0,371	0,254
El indice de confianza β	1,346	0,902
PROBABILIDAD ANUAL DE FALLO $\phi(-\beta)$	8,9E-02	1,8E-01

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1E	10	3H:2V	28	19	10	SECO	No	1,506
1E-a	10	3H:2V	28	22	10	SECO	No	1,438
1E-b	10	3H:2V	28	19	5	SECO	No	1,243
1E-c	10	3H:2V	17	19	10	SECO	No	1,065
1E-d	10	3H:2V	28	19	10	SECO	No	1,506

Caso	Altura (m.)	Inclinación talud	Angulo de fricción interno (º)	γap (KN/m3)	C` (Kpa)	NF Agua (m.)	Sismo	FS (Morgenstern Price) M&P
1D	10	3H:2V	28	19	10	SECO	Si	1,342
1D-a	10	3H:2V	28	22	10	SECO	Si	1,281
1D-b	10	3H:2V	28	19	5	SECO	Si	1,108
1D-c	10	3H:2V	17	19	10	SECO	Si	0,946
1D-d	10	3H:2V	28	19	10	SECO	Si	1,272

ф (°)	Estático	Dinámico
Indice sensibilidad cohesión	0,0452	0,0455
Indice sensibilidad ang. Rozamiento	0,1746	0,1744
Indice sensibilidad Peso específico	0,2928	0,2951
Índice sensibilidad sismo	0,0000	0,0522
INDICE DE SENSIBILIDAD FINAL	0,3439	0,3497
La dispersión ζ	0,334	0,340
Valor medio de distribución Lognormal λ	0,354	0,236
El indice de confianza β	1,057	0,696
PROBABILIDAD ANUAL DE FALLO φ(-β)	1,5E-01	2,4E-01

CoV	φ (<u>°</u>)						
	26	28	30	32	34		
0	3,67E-02	1,39E-02	4,23E-03	1,04E-03	2,07E-04		
0,1	5,33E-02	2,35E-02	8,82E-03	2,85E-03	7,99E-04		
0,2	8,16E-02	5,62E-02	2,86E-02	1,33E-02	9,89E-03		
0,3	1,39E-01	8,92E-02	6,78E-02	5,26E-02	3,15E-02		
0,4	1,81E-01	1,45E-01	1,17E-01	9,52E-02	7,81E-02		

Resumen de la Probabilidad de fallo Vs. Angulo de fricción interno (Dinámico) NIVEL II

CoV	φ (º)						
	26	28	30	32	34		
0	1,29E-01	6,83E-02	7,81E-03	1,13E-02	3,47E-03		
0,1	1,55E-01	8,88E-02	9,40E-03	1,98E-02	7,56E-03		
0,2	1,91E-01	1,42E-01	4,07E-02	4,89E-02	3,56E-02		
0,3	2,54E-01	1,84E-01	1,13E-01	1,14E-01	7,55E-02		
0,4	2,93E-01	2,43E-01	1,91E-01	1,68E-01	1,19E-01		

Probabilidad de fallo(%) Vs Angulo de fricción interno (°) "Dinámico" NIVEL II

Angulo de fricción interno (º)

ANEXO III

CALCULOS REALIZADOSPARA EL NIVEL II

NIVEL III PARA P ESTATICO	ESO ESPECIFICO			23Mean F of S	1.6006
	1 7040	21Mean F of S	1.6436	Reliability Index	2.228
16 Wean F of S	1.7842	Reliability Index	2.385	P (Failure) (%)	1.290000
Reliability Index	2.409	P (Failure) (%)	0.870000	Standard Dev.	0.27
P (Failure) (%)	0.780230	Standard Dev.	0.27	Min F of S	0.4754
Standard Dev.	0.326	Min E of S	0.5254	May F of S	2 5 0 7 2
Min F of S	0.4395	WITT F OF S	0.5254	WIAX F OI S	2.5972
Max F of S	3.22	Max F of S	2.6554	# of Trials	10000
# of Trials	10000	# of Trials	10000		
				25Mean F of S	1.5639
19 Moon E of S	1 7102	22Mean F of S	1.6214	Reliability Index	2.223
	1.7195	Reliability Index	2.23	P (Failure) (%)	1.300000
Reliability Index	2.375	P (Failure) (%)	1.270000	Standard Dev.	0.254
P (Failure) (%)	0.890090	Standard Dev.	0.279	Min F of S	0.5182
Standard Dev.	0.303	Min F of S	0.44424	Max F of S	2.5264
Min F of S	0.42952	May E of S	2 6526	# of Trials	10000
Max F of S	2.8434		2.0550		10000
# of Trials	10000	# of Trials	10000		
				24Mean F of S	1.5814
19Mean F of S	1.6913	20Mean F of S	1.6663	Reliability Index	2.226
Reliability Index	2 278	Reliability Index	2.382	P (Failure) (%)	1.300000
	2.378	P (Failure) (%)	0.880000	Standard Dev.	0.261
P (Failure) (%)	0.890000	Standard Dev.	0.28	Min F of S	0.49782
Standard Dev.	0.291	Min F of S	0.49869	Max F of S	2.555
Min F of S	0.46761	Max F of S	2 7004	# of Trials	10000
Max F of S	2.768	# af T-t-1-	10000		10000
# of Trials	10000	# of Irials	10000		

26.-Mean F of S 1.5476

Reliability Index	2.219	P (Failure) (%)	1.410000	Reliability Index	1.98
P (Failure) (%)	1.320000	Standard Dev.	0.22	P (Failure) (%)	2.340230
Standard Dev.	0.247	Min F of S	0.61178	Standard Dev.	0.269
Min F of S	0.53689	Max F of S	2.3937	Min F of S	0.39078
Max F of S	2.5	# of Trials	10000	Max F of S	2.5302
# of Trials	10000			# of Trials	10000
		34Mean F of S	1.4522		
28Mean F of S	1.5186	Reliability Index	2.172	19Mean F of S	1.5074
Reliability Index	2.21	P (Failure) (%)	1.500000	Reliability Index	1.966
P (Failure) (%)	1.390000	Standard Dev.	0.208	P (Failure) (%)	2.440000
Standard Dev.	0.235	Min F of S	0.64481	Standard Dev.	0.258
Min F of S	0.5701	Max F of S	2.3451	Min F of S	0.41868
Max F of S	2.4529	# of Trials	10000	Max F of S	2.4635
# of Trials	10000			# of Trials	10000
		NIVEL III PARA P	ESO ESPECIFICO		
29Mean F of S	1.5056	16 - Mean F of S	1 5911	21 Mean F of S	1.4651
Reliability Index	2.205	Reliability Index	2 005	Reliability Index	1.941
P (Failure) (%)	1.400000	P (Failure) (%)	2 200660	P (Failure) (%)	2.540000
Standard Dev.	0.229	Standard Dev	0.295	Standard Dev.	0.24
Min F of S	0.58496	Min E of S	0.41626	Min F of S	0.47493
Max F of S	2.4318	May E of S	2 6880	Max F of S	2.3669
# of Trials	10000	that Triple	10000	# of Trials	10000
			10000		
31Mean F of S	1.4822			22 Mean F of S	1.4457

18.-Mean F of S 1.5322

22.- Mean F of S 1.4457

Reliability Index 2.193

Reliability Index 1.799

P (Failure) (%)	3.600000	Standard Dev.	0.225	Min F of S	0.51425
Standard Dev.	0.248	Min F of S	0.46765	Max F of S	2.1876
Min F of S	0.40444	Max F of S	2.2528	# of Trials	10000
Max F of S	2.3634	# of Trials	10000		
# of Trials	10000			29Mean F of S	1.3429
20 Mean F of S	1.4852	24 Mean F of S	1.4102	Reliability Index	1.682
Reliability Index	1.954	Reliability Index	1.767	P (Failure) (%)	4.470000
P (Failure) (%)	2.540000	P (Failure) (%)	3.930000	Standard Dev.	0.204
Standard Dev.	0.248	Standard Dev.	0.232	Min F of S	0.52739
Min F of S	0.44988	Min F of S	0.44913	Max F of S	2.1689
Max F of S	2.4034	Max F of S	2.2782	# of Trials	10000
# of Trials	10000	# of Trials	10000		
				31Mean F of S	1.3221
		26Mean F of S	1.3802	Reliability Index	1.647
23 Mean F of S	1.4272	Reliability Index	1.733	P (Failure) (%)	4.750000
Reliability Index	1.783	P (Failure) (%)	4.110000	Standard Dev.	0.196
P (Failure) (%)	3.760000	Standard Dev.	0.219	Min F of S	0.55109
Standard Dev.	0.24	Min F of S	0.48443	Max F of S	2.1351
Min F of S	0.42813	Max F of S	2.2294	# of Trials	10000
Max F of S	2.3133	# of Trials	10000		
# of Trials	10000			34Mean F of S	1.2955
		28Mean F of S	1.3544	Reliability Index	1.595
25 Mean F of S	1.3946	Reliability Index	1.699	P (Failure) (%)	5.270000
Reliability Index	1.75	P (Failure) (%)	4.330000	Standard Dev.	0.185
P (Failure) (%)	4.030000	Standard Dev.	0.209	Min F of S	0.57615

Max F of S	2.0919	Min F of S	0.99229	Max F of S	3.329
# of Trials	10000	Max F of S	4.1553	# of Trials	100000
		# of Trials	100000		
NIVEL III PAI ESTATICO	RA COHESION			15Mean F of S	1.952
12 Mean F of S	1.8044	10Mean F of S	1.7018	Reliability Index	4.768
Reliability Index	4.394	Reliability Index	4.1	P (Failure) (%)	0.000000
P (Failure) (%)	0.000000	P (Failure) (%)	0.002000	Standard Dev.	0.2
Standard Dev	0 183	Standard Dev.	0.171	Min F of S	1.1234
Min E of S	1 0202	Min F of S	0.95539	Max F of S	4.8935
May E of S	4 2014	Max F of S	3.9192	# of Trials	100000
	4.3914	# of Trials	100000		
# of Trials	100000			13Mean F of S	1.8558
		8Mean F of S	1.5953	Reliability Index	4.516
11Mean F of S	1.7516	Reliability Index	3.714	P (Failure) (%)	0.000000
Reliability Index	4.241	P (Failure) (%)	0.026000	Standard Dev.	0.19
P (Failure) (%)	0.000000	Standard Dev.	0.16	Min F of S	1.0664
Standard Dev.	0.177	Min F of S	0 88976	Max E of S	4 6278
Min F of S	1.0766	May E of S	2 5004	# of Trials	100000
Max F of S	3.5386		5.5904		100000
# of Trials	10000	# of Trials	100000		
				9Mean F of S	1.6506
11Mean F of S	1.7531	7Mean F of S	1.5385	Reliability Index	3.924
Reliability Index	4.256	Reliability Index	3.481	P (Failure) (%)	0.011000
P (Failure) (%)	0.001000	P (Failure) (%)	0.055000	Standard Dev.	0.166
Standard Dev	0.177	Standard Dev.	0.155	Min F of S	0.91837
		Min F of S	0.8487	Max F of S	3.6832

# of Tria	ls	100000

13.-Mean F of S 1.8558

18Mean F of S	2.0942	Reliability Index	4.516	17Mean F of S	2.0282
Reliability Index	4.998	P (Failure) (%)	0.000000	Reliability Index	7.126
P (Failure) (%)	0.000000	Standard Dev.	0.19	P (Failure) (%)	0.000000
Standard Dev.	0.219	Min F of S	1.0664	Standard Dev.	0.144
Min F of S	1.2261	Max F of S	4.6278	Min F of S	1.4751
Max F of S	5.5477	# of Trials	100000	Max F of S	2.6156
# of Trials	100000			# of Trials	1000
		17Mean F of S	2.0468		
16Mean F of S	1.9994	Reliability Index	4.93	19Mean F of S	2.0258
Reliability Index	4.854	P (Failure) (%)	0.000000	Reliability Index	6.873
P (Failure) (%)	0.000000	Standard Dev.	0.212	P (Failure) (%)	0.000000
Standard Dev.	0.206	Min F of S	1.1918	Standard Dev.	0.149
Min F of S	1.1576	Max F of S	5.3296	Min F of S	1.3942
Max F of S	5.1115	# of Trials	100000	Max F of S	2.7871
# of Trials	100000			# of Trials	10000
		17 CUANDO GA	AMA SUELO SIN		
14Mean F of S	1.9047	Mean E of S	2 024	21Mean F of S	2.2068
Reliability Index	4.672	Reliability Index	7	Reliability Index	7.879
P (Failure) (%)	0.000000	P (Failure) (%)	,	P (Failure) (%)	0.000000
Standard Dev.	0.194	Standard Dev	0.146	Standard Dev.	0.153
Min F of S	1.0893	Min E of S	1 220	Min F of S	1.5422
Max F of S	4.6756	May E of S	2 9053	Max F of S	3.1296
# of Trials	100000		2.3035	# of Trials	100000

			# of Trials	100000		
NIVEL III PA	RA	COHESION			13Mean F of S	1.6531
12 Moon E of S	1 6075		8Mean F of S	1.4224	Reliability Index	3.871
	ITS 1.6075		Reliability Index	2.955	P (Failure) (%)	0.002000
Reliability Index	3.72	27	P (Failure) (%)	0.115000	Standard Dev.	0.169
P (Failure) (%)	0.0	09000	Standard Dev	0 1/13	Min F of S	0 9494
Standard Dev.	0.1	63		0.145		0.5454
Min F of S	0.91649		Min F of S	0.79286	Max F of S	4.1162
Max F of S	3.9061		Max F of S	3.1974	# of Trials	100000
# of Trials	100000		# of Trials	100000		
	100				9Mean F of S	1.4711
	1.562 3.565	7Mean F of S	1.3719	Reliability Index	3.187	
IIIVIEan F of S		Reliability Index	2.695	P (Failure) (%)	0.086000	
Reliability index		P (Failure) (%)	0.200000	Standard Dev.	0.148	
P (Failure) (%)	0.026000		Standard Dev.	0.138	Min F of S	0.81795
Standard Dev.	0.1	58	Min F of S	0 7564	Max F of S	3 2771
Min F of S	0.88361			2.0642	u of Trials	100000
Max F of S	3.6962	Max F of S	2.9643	# of Trials	100000	
# of Trials	100000		# of Trials	100000		
					18Mean F of S	1.8604
10Mean F of S	1.5166 3.386	15Mean F of S	1.7373	Reliability Index	4.448	
		Reliability Index	4.152	P (Failure) (%)	0.000000	
Reliability Index		P (Failure) (%)	0.001000	Standard Dev.	0.193	
P (Failure) (%)	0.048000		Standard Dev	0 178	Min E of S	1 0853
Standard Dev.	0.153		Standard Dev.	0.175		1.0055
Min F of S	0.85076		Min F of S	0.99914	Max F of S	4.8722
Max F of S	3.4862		Max F of S	4.3462	# of Trials	100000
			# of Trials	100000		

16Mean F of S	1.7782	P (Failure) (%)	0.000000	Reliability Index	1.563	
Reliability Index	4.268	Standard Dev.	0.188	P (Failure) (%)	4.452230	
P (Failure) (%)	0.000000	Min F of S	1.0556	Standard Dev.	0.278	
Standard Dev.	0.182	Max F of S	4.6828	Min F of S	0.35512	
Min F of S	1.0259	# of Trials	100000	Max F of S	3.4582	
Max F of S	4.4935			# of Trials	10000	
# of Trials	100000	NIVEL III PARA PHI ESTATICO				
14Mean F of S	1.6954	26Mean F of S	1.4392	23Mean F of S	1.3138	
Reliability Index	4.037	Reliability Index	1.565	Reliability Index	1.198	
P (Failure) (%)	0.002000	P (Failure) (%)	4.391680	P (Failure) (%)	9.549550	
Standard Dev.	0.172	Standard Dev.	0.281	Standard Dev.	0.262	
Min F of S	0.96887	Min F of S	0.30022	Min F of S	0.33136	
Max F of S	4.1529	Max F of S	6.2983	Max F of S	4.2825	
# of Trials	100000	# of Trials	100000	# of Trials	10000	
21Mean F of S	1.984	26Mean F of S	1.4373	21Mean F of S	1.2337	
Reliability Index	4.658	Reliability Index	1.537	Reliability Index	0.894	
P (Failure) (%)	0.000000	P (Failure) (%)	4.203780	P (Failure) (%)	17.652950	
Standard Dev.	0.211	Standard Dev.	0.284	Standard Dev.	0.262	
Min F of S	1.1744	Min F of S	0.33707	Min F of S	0.26664	
Max F of S	5.4405	Max F of S	4.6581	Max F of S	4.2036	
# of Trials	100000	# of Trials	10000	# of Trials	10000	
17Mean F of S	1.8193	26 RAMDON	Mean F of S	18Mean F of S	1.1176	
Reliability Index	4.363	1.7570		Reliability Index	0.45	

P (Failure) (%)	33.747370	Standard Dev.	0.284	Min F of S	0.11997
Standard Dev.	0.261	Min F of S	0.32107	Max F of S	3.8653
Min F of S	0.11626	Max F of S	4.6182	# of Trials	10000
Max F of S	4.0891	# of Trials	10000		
# of Trials	10000			30Mean F of S	1.6064
		22Mean F of S	1.2735	Reliability Index	2.126
16Mean F of S	1.0395	Reliability Index	1.045	P (Failure) (%)	0.820330
Reliability Index	0.162	P (Failure) (%)	13.145770	Standard Dev.	0.285
P (Failure) (%)	45.456370	Standard Dev.	0.262	Min F of S	0.38526
Standard Dev.	0.245	Min F of S	0.30502	Max F of S	4.8252
Min F of S	0.24317	Max F of S	4.2427	# of Trials	10000
Max F of S	3.827	# of Trials	10000		
# of Trials	10000			27Mean F of S	1.4785
		20Mean F of S	1.1947	Reliability Index	1.683
28Mean F of S	1.5203	Reliability Index	0.745	P (Failure) (%)	2.942650
Reliability Index	1.828	P (Failure) (%)	23.016830	Standard Dev.	0.284
P (Failure) (%)	2.021410	Standard Dev.	0.261	Min F of S	0.40145
Standard Dev.	0.285	Min F of S	0.30905	Max F of S	4.6987
Min F of S	0.36549	Max F of S	4.1649	# of Trials	10000
Max F of S	4.7401	# of Trials	10000		
# of Trials	10000			24Mean F of S	1.3547
		17 Mean F of S	1.0786	Reliability Index	1.353
25Mean F of S	1.3969	Reliability Index	0.321	P (Failure) (%)	6.645320
Reliability Index	1.397	P (Failure) (%)	39.012420	Standard Dev.	0.262
P (Failure) (%)	6.006610	Standard Dev.	0.245	Min F of S	0.32552
Max F of S	4.3229	# of Trials	10000	Max F of S	4.1425
-------------------	-----------	-------------------	-------------	-------------------	-----------
# of Trials	10000			# of Trials	10000
		34Mean F of S	1.79		
32Mean F of S	1.6962	Reliability Index	2.762	23Mean F of S	1.1695
Reliability Index	2.438	P (Failure) (%)	0.260000	Reliability Index	0.732
P (Failure) (%)	0.370070	Standard Dev.	0.286	P (Failure) (%)	23.365700
Standard Dev.	0.286	Min F of S	0.43164	Standard Dev.	0.232
Min F of S	0.47184	Max F of S	5.0066	Min F of S	0.30301
Max F of S	4.9139	# of Trials	10000	Max F of S	3.8024
# of Trials	10000			# of Trials	10000
		31Mean F of S	1.6507		
29Mean F of S	1.5629	Reliability Index	2.278	21Mean F of S	1.097
Reliability Index	1.974	P (Failure) (%)	0.570110	Reliability Index	0.427
P (Failure) (%)	1.260630	Standard Dev.	0.286	P (Failure) (%)	34.514870
Standard Dev.	0.285	Min F of S	0.41387	Standard Dev.	0.227
Min F of S	0.33224	Max F of S	4.869	Min F of S	0.26925
Max F of S	4.7822	# of Trials	10000	Max F of S	3.6753
# of Trials	10000			# of Trials	10000
		NIVEL III PARA P	HI DINAMICO		
19Mean F of S	1.1558			18Mean F of S	0.99214
Reliability Index	0.596	26Mean F of S	1.2805	Reliability Index	-0.035
P (Failure) (%)	28.225160	Reliability Index	1.113	P (Failure) (%)	54.282280
Standard Dev.	0.261	P (Failure) (%)	11.431430	Standard Dev.	0.227
Min F of S	0.27292	Standard Dev.	0.252	Min F of S	0.11556
Max F of S	4.1268	Min F of S	0.33253	Max F of S	3.572

# of Trials	10000

		22Mean F of S	1.1329	30Mean F of S	1.4316
16Mean F of S	0.92286	Reliability Index	0.585	Reliability Index	1.709
Reliability Index	-0.362	P (Failure) (%)	28.634360	P (Failure) (%)	2.731370
P (Failure) (%)	67.140850	Standard Dev.	0.227	Standard Dev.	0.253
Standard Dev.	0.213	Min F of S	0.27055	Min F of S	0.37326
Min F of S	0.20489	Max F of S	3.7107	Max F of S	4.2909
Max F of S	3.3503	# of Trials	10000	# of Trials	10000
# of Trials	10000				
		20Mean F of S	1.0617	27Mean F of S	1.3171
28Mean F of S	1.3548	Reliability Index	0.272	Reliability Index	1.257
Reliability Index	1.408	P (Failure) (%)	40.901350	P (Failure) (%)	8.326660
P (Failure) (%)	5.845260	Standard Dev.	0.227	Standard Dev.	0.252
Standard Dev.	0.252	Min F of S	0.24379	Min F of S	0.3112
Min F of S	0.37438	Max F of S	3.6404	Max F of S	4.1786
Max F of S	4.2152	# of Trials	10000	# of Trials	10000
# of Trials	10000				
				24Mean F of S	1.2061
25Mean F of S	1.2444	17Mean F of S	0.95808	Reliability Index	0.89
Reliability Index	0.97	Reliability Index	-0.185	P (Failure) (%)	17.697700
P (Failure) (%)	15.286820	P (Failure) (%)	60.414790	Standard Dev.	0.232
Standard Dev.	0.252	Standard Dev.	0.227	Min F of S	0.33526
Min F of S	0.30422	Min F of S	0.12184	Max F of S	3.8383
Max F of S	4.1071	Max F of S	3.5384	# of Trials	10000
# of Trials	10000	# of Trials	10000		

21Mean F of S	1.097	Reliability Index	0.118	P (Failure) (%)	17.216140
Reliability Index	0.427	P (Failure) (%)	47.460680	Standard Dev.	0.228
P (Failure) (%)	34.514870	Standard Dev.	0.227	Min F of S	0.28471
Standard Dev.	0.227	Min F of S	0.2562	Max F of S	5.181
Min F of S	0.26925	Max F of S	3.606	# of Trials	10000
Max F of S	3.6753	# of Trials	10000		
# of Trials	10000				
		34Mean F of S	1.5956		
32Mean F of S	1.5118	Reliability Index	2.353		
Reliability Index	2.025	P (Failure) (%)	0.480050		
P (Failure) (%)	1.130340	Standard Dev.	0.253		
Standard Dev.	0.253	Min F of S	0.43633		
Min F of S	0.43554	Max F of S	4.4519		
Max F of S	4.3694	# of Trials	10000		
# of Trials	10000				
		31Mean F of S	1.471		
29Mean F of S	1.3928	Reliability Index	1.861		
Reliability Index	1.557	P (Failure) (%)	1.790360		
P (Failure) (%)	3.982790	Standard Dev.	0.253		
Standard Dev.	0.252	Min F of S	0.37623		
Min F of S	0.36661	Max F of S	4.3296		
Max F of S	4.2527	# of Trials	10000		
# of Trials	10000				
		24 Mean F of S	1.2068		
19Mean F of S	1.0268	Reliability Index	0.909		