EVALUACIÓN DE DOCE LÍNEAS PROMISORIAS DE TRIGO HARINERO (*Triticum aestivum*) EN LA COMUNIDAD TARAMAYA DEL MUNICIPIO DE ACHACACHI DEL DEPARTAMENTO DE LA PAZ

Tomas Claudio Lipa Larico

La Paz- Bolivia

2016
EVALUACIÓN DE DOCE LÍNEAS PROMISORIAS DE TRIGO HARINERO (*Triticum aestivum*) EN LA COMUNIDAD TARAMAYA DEL MUNICIPIO DE ACHACACHI DEL DEPARTAMENTO DE LA PAZ

Trabajo Dirigido presentado como requisito parcial para optar el título de Ingeniero Agrónomo

Tomas Claudio Lipa Larico

Asesor:

Ing. Ph. D. Carmen Rosa Del Castillo Gutierrez ..

Tribunal Examinador:

Ing. MSc. Juan Jose Vicente Rojas ..

Ing. MSc. Mario Wilfredo Peñafiel ..

Aprobado

Presidente Tribunal Examinador:
DEDICATORIA

A DIOS por darme la vida, sabiduría, y las fuerzas para recorrer un camino con cada etapa, como la culminación de este trabajo.

A mi mama Jacinta Larico, quien con su apoyo y cariño estuvo siempre a mi lado dándome ánimos para seguir adelante.

A mi Padre que desde el cielo siempre estuvo guiándome, el camino que tengo que recorrer.

A mi esposa, a mi príncipe Samyr y a mi princesa Chandni, por darme inspiración, y fuerzas para la conclusión de este trabajo y dale sentido a mi vida.

A mis hermanos Nicolas, Oswaldo, Jhonny y Flor, por estar a mi lado, en cada etapa de mi vida, con palabras de aliento y apoyo incondicional.

A todos los docentes de la Carrera de Ingeniería Agronómica, por compartir su sabiduría y experiencias. Gracias por la experiencia transmitida.
AGRADECIMIENTOS

Expreso mi profundo agradecimiento:

A la Facultad de Agronomía de la Universidad Mayor de San Andrés, por abrirme sus puertas, y sus docentes por las enseñanzas y formación profesional impartida.

A Dios Nuestro Padre, por su infinita providencia y permitirme llegar al término de este ciclo de profesionalización.

Un especial agradecimiento a Ing. Ph. D. Carmen Rosa Del Castillo Gutiérrez, de quien he recibido su valiosa orientación teórica y metodológica, así como el asesoramiento, sugerencia, revisión y corrección en la realización y redacción del presente documento.

Al Tribunal de Examinador: Ing. MSc. Juan José Vicente Rojas, Ing. MSc. Mario Wilfredo Peñafiel, por las observaciones y sugerencias realizadas.

A toda mi familia Lipa Larico, en especial a: mis padres Francisco Lipa (†) y Jacinta Larico, a mis hermanos por su cooperación y apoyo incondicional que me han brindado.
<table>
<thead>
<tr>
<th>Contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice General</td>
<td>i</td>
</tr>
<tr>
<td>Índice de Cuadros</td>
<td>iii</td>
</tr>
<tr>
<td>Índice de Figuras</td>
<td>iv</td>
</tr>
<tr>
<td>Índice de Anexos</td>
<td>v</td>
</tr>
</tbody>
</table>

ÍNDICE GENERAL

1. **INTRODUCCIÓN** ... 1
 1.1. Antecedentes .. 2
 1.2. Planteamiento del Problema .. 3
 1.3. Justificación .. 3
 1.4. **OBJETIVOS** .. 4
 1.4.1. Objetivo General .. 4
 1.4.2. Objetivos Específicos .. 4
 1.5. Metas ... 4

2. **MARCO TEÓRICO** ... 5
 2.1. Marco Normativo .. 5
 2.2. Marco Conceptual .. 6
 2.2.1. Generalidades ... 6
 2.2.1.1. Origen ... 6
 2.2.1.4. El cultivo de trigo en Bolivia 7
 2.2.3. Siembra ... 21
 2.2.4. Introducción de variedades .. 22
 2.2.5. Uso y Consumo del Trigo en Bolivia 23
 2.2.6. Adaptabilidad y Estabilidad .. 24
 2.2.6.1. Estabilidad Fenotípica .. 24
 2.2.6.2. Adaptabilidad fenotípica .. 24
 2.2.6.3. Ensayos de adaptación .. 25

3. **SECCIÓN DIAGNÓSTICA** ... 26
 3.2. Materiales y Métodos ... 26
 3.2.4. Localización y Ubicación .. 26
ÍNDICE DE CUADROS

Cuadro 1. Producción agrícola industrial y no – industrial (miles de TM)9
Cuadro 2. Superficie Cultivada de trigo bajo riego y a secano, según departamento, 2013 (En hectáreas) ...9
Cuadro 3. Productos sugeridos para el control de pulgones 14
Cuadro 4. Productos sugeridos para el control de gusanos defoliadores 14
Cuadro 5. Fungicidas sugeridos para el control de enfermedades en el cultivo de trigo ... 16
Cuadro 6. Umbral térmico por etapa fenológica del trigo 28
Cuadro 7. Líneas de trigo harinero .. 30
Cuadro 8. Cuadrados medios de los análisis de varianza correspondientes al número de macollos de las 12 líneas de trigo harinero 39
Cuadro 9. Cuadrados medios de los análisis de varianza correspondientes al número de días al espigamiento de las 12 líneas de trigo harinero 40
Cuadro 10. Análisis de varianza correspondientes a longitud de espigas de las 12 líneas de trigo harinero ... 41
Cuadro 11. Análisis de varianza correspondiente a Número de espiguillas por espigas de las 12 líneas de trigo .. 43
Cuadro 12. Análisis de varianza correspondientes a la altura de plantas de las 12 líneas de trigo ... 44
Cuadro 13. Análisis de varianza correspondientes peso de mil granos de las 12 líneas de trigo ... 46
ÍNDICE DE FIGURAS

Figura 3. Pulgón del tallo (Rhopalosiphumpadi) y pulgón verde (Schizaphisgraminum) presentes en las partes de la planta de trigo (ANAPO, 2016) .. 13
Figura 4. Pulgón verde (Schizaphisgraminum) sobre una hoja del cultivo de trigo (ANAPO, 2016) ... 13
Figura 5. Insectos defoliadores (Comedores de hojas) presentes en el cultivo de trigo (ANAPO, 2016) ... 14
Figura 6. Enfermedades más frecuentes en el cultivo de trigo (ANAPO, 2016) ... 15
Figura 7. Espiga de trigo afectada por la helada (FAO, 2000). ... 20
Figura 8. Mapa de localización del ensayo en una vista panorámica en la comunidad de Taramaya – Omasuyos ... 28
Figura 9. Ubicación de la parcela en el municipio de Achacachi de la Provincia Omasuyos del departamento de La Paz. .. 29
Figura 10. Flujo grama del trabajo experimental .. 32
Figura 11. Climadiagrama de la estación de Belén en el estudio de adaptabilidad de 12 líneas promisorias de trigo en el Altiplano norte durante la campaña agrícola 2010-2011 (Estación meteorológica Belén, 2010) ... 36
Figura 12. Número de macollos de 12 líneas de trigo harinero en la campaña (2010-2011).. 38
Figura 13. Número de días al espigamiento de 12 líneas de trigo harinero en la campaña (2010-2011) .. 39
Figura 14. Longitud de espigas de las 12 líneas de trigo harinero en la campaña (2010-2011) .. 41
Figura 15. Número de espiguillas por espigas de las 12 líneas de trigo harinero en la campaña (2010-2011) ... 42
Figura 16. Altura de plantas de 12 líneas de trigo harinero en la campaña (2010-2011) .. 44
Figura 17. Peso de mil granos de 12 líneas de trigo harinero en el Altiplano norte en la campaña (2010-2011) .. 45
ÍNDICE DE ANEXOS

Anexo 1. Cuadro de Material genético de 12 líneas avanzados de trigo procedentes del vivero 41 IBWSN del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) ..55

Anexo 2. Preparación de las semillas para su respectiva siembra en el terreno de las doce líneas de trigo en la comunidad de Taramaya...56

Anexo 3. Surcos listos para la implementación de los genotipos en el suelo definitivo para el experimento..56

Anexo 4. Croquis y orientación del campo de experimento de 12 líneas avanzadas de trigo en la comunidad de Taramaya...57

Anexo 5. Siembra a chorro continuo de los doce líneas en el terreno definitivo en la comunidad taramaya de la localidad de Achacachi.................................58

Anexo 6. Plántulas emergidas después de la siembra realizada de los doce genotipos en estudio...58

Anexo 7. Identificación de los bloques y líneas en estudio en el campo definitivo..59

Anexo 8. Toma de datos de la altura de plantas, en las doce líneas en observación del trigo harinero en la comunidad taramaya...59

Anexo 9. Cosecha de los doce genotipos en estudio según su madurez fisiológica..60

Anexo 10. Preparación de las doce líneas para el trillado y posterior ventead de forma individual..60

Anexo 11. Peso de mil granos de las distintas líneas que fueron estudiadas expresados en gr..61

Anexo 12. Peso de los granos libre de impurezas de las distintas genotipos que fueron estudiadas en la comunidad de taramaya.................................61
RESUMEN

El presente trabajo de investigación, se llevó a cabo durante la gestión agrícola 2010-2011, en el altiplano norte específicamente en la comunidad de Taramaya de la localidad de Achacachi, provincia Omasuyos. En la cual se evaluó la adaptabilidad de 12 líneas de trigo harinero correspondientes a una colección de las mejores líneas seleccionadas de campañas anteriores.

El objetivo planteado fue evaluar la adaptabilidad de doce líneas de trigo en el altiplano Norte de La Paz específicamente en la comunidad de Taramaya de la Provincia Omasuyos del departamento de La Paz.

El establecimiento de las parcelas experimentales se llevó a cabo bajo el diseño de Bloques Completos al Azar, midiéndose las variables de respuestas de días al espigamiento, altura de planta, numero de macollos, longitud de espigas, numero de espiguillas por espiga, peso de 1000 granos.

El material genético de este ensayo consistió de doce líneas avanzadas provenientes del CIMMYT. En la cual se utilizó un diseño experimental de bloques completos al azar con cuatro repeticiones, las parcelas experimentales consistieron de cuatro surcos de tres metros de largo separados a treinta centímetros.

El comportamiento diferencial mostrado por las doce líneas, permitió establecer la influencia determinante del medio ambiente sobre los caracteres agronómicos y sobre todo en el rendimiento. Observándose en la campaña agrícola a las líneas sobresalientes.

Determinándose que las líneas uno y nueve, presentan los comportamientos diferentes, con respecto a las características agronómicas.
SUMMARY

This research work was carried out during the 2010-2011 agricultural management, specifically in the highlands north of Taramaya community of the town of Achacachi province Omasuyos. In which the adaptability of 12 lines of bread wheat corresponding to a collection of the best selected lines of previous campaigns were evaluated.

The stated objective was to evaluate the adaptability of twelve lines of wheat in the northern highlands of La Paz.

The establishment of experimental plots was carried out under the design of randomized complete blocks, measuring variables responses days emergency days Tasseling, days to maturity, plant height, number of tillers, length of spikes, number of spikelets per spike, number of grains per spike, 1000 grain weight, grain type. The genetic material of this trial consisted of twelve advanced lines from CIMMYT. It used an experimental design of randomized complete block with four replications in which the experimental plots consisted of four rows of three meters long foot apart. The differential behavior shown by the twelve lines, allowed to establish the decisive influence of the environment on the agronomic characters and especially in performance. Observed in the crop year to outstanding lines. Determining that one nine lines, show different behaviors with respect to agronomic characteristics.
1. INTRODUCCIÓN

El trigo (*Triticum aestivum*) es una planta extensamente cultivada alrededor del mundo ya que este grano en todas sus formas constituye parte esencial de nuestra dieta alimentaria; fuente importante en hidratos de carbono, proteínas y lípidos además de aportar fibra, vitaminas y sales minerales; consolidándose así un cereal principal dentro de la canasta familiar (Edel y Rosell, 2007).

La producción mundial de trigo en las campañas 2010-2011, fue de 648,70 millones de toneladas; con un rendimiento promedio de 3060 kg/ha. Una clara evidencia de que la unión Europea es la principal zona productora de trigo con 135,67 millones de toneladas y un rendimiento promedio de 5300 kg.ha\(^{-1}\). Argentina, referente productor de trigo; tuvo una producción de 15,50 millones de toneladas en la campaña agrícola anterior (2010). Con un rendimiento promedio de 2870 kg/ha (Mora, 2011).

En Bolivia, la campaña agrícola 2013 – 2014 tuvo una producción total, de 112 a 255 toneladas que representa el 30% de la demanda nacional fijada en 700,000 toneladas. En los últimos 10 años el rendimiento promedio se ha mantenido en 1,2 toneladas por hectárea, en la zona oriental el promedio fue de 0,9 a 2 toneladas, superior al tradicional, que es de 0,7 a 0,9 toneladas por hectárea logrando un promedio nacional de 1,2 toneladas (MDRyT, 2015).

Existen dos especies de trigo: el trigo harinero y el trigo duro. El trigo harinero se caracteriza por contener altos contenidos de gluten. El gluten confiere a la harina propiedades de cohesión y extensibilidad, importantes para la elaboración del pan. El trigo duro se caracteriza por contener altos contenidos de semolina. La semolina confiere propiedades de cohesión a la masa para la elaboración de pastas (fideos, macarrones y otros derivados). Esta cohesión, conferida por semolina, permite que las pastas mantengan su integridad durante la cocción. En Bolivia, ambas especies de trigo son importantes. El precio del trigo duro es doble del trigo blando (Rojas et al., 2011).

En los países entre ellos el nuestro, donde originalmente los cereales no tenían importancia en la dieta, constituyen la base de las políticas de seguridad alimentaria. El trigo es el grano alimenticio más importante del mundo (Robles, 1991).
El trigo en Bolivia es uno de los cereales de mayor consumo y una de las bases alimenticias de su población. El país importa cada año más del 80% de su requerimiento en trigo o harina. El departamento de Santa Cruz posee condiciones para producir este cereal. Por todo esto, para el CIAT es de mucha importancia suministrar la información técnica para un buen manejo del cultivo (Aguilar, 2006).

A nivel del Altiplano se han realizado algunos trabajos con el ex-IBTA pero la extensión de este cultivo fue deficiente debido a la discontinuidad y perdida de enlace con el CIMMYT. Quedando así postergado su investigación y por ende la transferencia de tecnología. Sin embargo la producción agrícola en estas zonas se ve afectada por riesgos climáticos recurrentes como sequías, variación de temperaturas, heladas, granizos e inundaciones producto de la contaminación y el calentamiento global lo cual nos induce a adoptar un sistema agrícola del tipo de subsistencia de manera este pueda garantizar la seguridad alimentaria el presente estudio permite conocer, el comportamiento de líneas avanzadas de trigo en el altiplano norte de nuestro país, identificando claramente genotipos con características promisorias de adaptabilidad y estabilidad seleccionándose en función al mayor rendimiento.

El presente trabajo fue una etapa inicial de investigación y seguimiento posterior del material genético en estudio. Por tanto frente a estos acontecimientos de restricciones climáticas y de la naturaleza se ve la necesidad de realizar estos estudios sobre el cultivo de trigo en el altiplano sobre la adaptación y estabilidad de líneas avanzadas en trigo traídas del vivero internacional del CIMMYT (Centro de Investigación de Mejoramiento del Maíz y Trigo).

1.1. Antecedentes

El termino cereales tiene su origen en las palabras *cerealina numeras* que hacen referencia a las ofrendas a Ceres, diosa de la Agricultura y se usa normalmente para referirse al grupo de las plantas herbáceas cultivadas que producen un grano rico en almidón y que ocupan el lugar más destacado en la agricultura mundial, (Gonzáles Torres y Rojo Hernández, 2005). El origen del cultivo de los cereales se puede decir que se sitúa en el neolítico ya que han encontrado restos de trigo, cebada, avena y
centeno de esa época de la historia. Además se conoce que el arroz ya era cultivado en China años a.C. (Gonzáles Torres y Rojo Hernández, 2005)

En un principio el consumo de los cereales fue de forma cruda, luego el hombre aprendió a realizar ciertas transformaciones con alguno de esos granos, para obtener alimentos más apetitosos, más digestibles, más nutritivos y de mejor conservación (Gonzáles Torres y Rojo Hernández). Uno de los descubrimientos más importantes de la historia de la humanidad y del inicio de la agricultura como arte, ciencia y técnica fue el ver que al moler los granos del cereal se producía harina que al mezcla con agua fermentaba, es decir aumentaba de volumen y que sometida acalor llevó al descubrimiento de la fabricación del pan (Gonzáles Torres y Rojo Hernández, 2005).

Respecto al cultivo de trigo en el norte del departamento de La Paz donde es característica la producción de papa (*Solanum tuberosum*), haba (*Vicia faba*) y arveja (*Pisumsativum*), no se tiene mucho conocimiento debido a que esta actividad se reduce a pequeñas parcelas a nivel familiar o minifundio llegando al surco fundió, con deficiencia en el manejo, se tiene antecedentes del cultivo de trigo en la zona altiplánica del departamento, pero dichas investigaciones datan de los 1952.

1.2. **Planteamiento del Problema**

La región del Altiplano Norte del Departamento de La Paz presenta condiciones adversas y una serie de factores naturales que limitan la intensificación de la agricultura, el clima, déficit hídrico durante la mayor parte del año, heladas, granizadas y suelos deficientes en sus características físicas y químicas, además el mal manejo de los suelos que provocan erosión y poca fertilidad y por ende el bajo rendimiento de sus diferentes cultivos, por tanto el trigo se cultiva poco en estas regiones ocasionando deficiencias nutricionales en vitaminas y minerales que son aportados por este cereal.

1.3. **Justificación**

El trigo es considerado como uno de los principales alimentos, pero por su bajo rendimiento, y la escases de variedades mejoradas en rendimiento no se abocan a este cultivo en las localidades de la región del Altiplano norte del departamento de
La Paz, teniendo vocación agrícola, la única fuente de ingreso económico es la producción de leche cruda, papa y haba para el consumo familiar. El monocultivo y la parcelación de tierras ocasionan la baja fertilidad y mal manejo del suelo, con el presente trabajo se quiere presentar un aporte al conocimiento del cultivo y una alternativa para el uso en la rotación de cultivos en la zona de estudio.

1.4. **OBJETIVOS**

1.4.1. **Objetivo General**

- Evaluar el cultivo de doce líneas promisorias de trigo harinero en la comunidad de Taramaya del Municipio de Achacachi.

1.4.2. **Objetivos Específicos**

- Determinar el comportamiento agronómico de las 12 líneas promisorias de trigo harinero en condiciones del Altiplano.
- Identificar la adaptabilidad de las 12 líneas promisorias de trigo harinero.
- Evaluar el comportamiento de líneas elites precoces de las 12 líneas de trigo harinero.
- Identificar el material genético con mayor aptitud de adaptación, rendimiento, calidad y tolerantes a enfermedades de trigo harinero para el Altiplano norte de La Paz.

1.5. **Metas**

- Incentivar a la producción de trigo de las líneas que tendrán mejores comportamientos agronómicos y al consumo de las familias de la comunidad de Taramaya del municipio de Achacachi.

- Contribuir a la comunidad y al municipio con una fuente de ingreso por la venta de trigo a molineras de harina.
2. **MARCO TEÓRICO**

2.1. **Marco Normativo**

El presente trabajo se sujeta a normas y leyes que garantizan la seguridad alimentaria a toda la población del Estado Plurinacional de Bolivia.

En la Constitución Política del Estado en el artículo 16 de su párrafo I, indica que toda persona tiene derecho al agua y alimentación, en el párrafo II, señala que el Estado tiene la obligación de garantizar la seguridad alimentaria, a través de una alimentación sana adecuada y suficiente para toda la población.

La ley 1333 de Medio Ambiente en su artículo 66 señala que la producción agropecuaria debe ser desarrollada de tal manera que se pueda lograr sistemas de producción y uso sostenible considerando los siguientes aspectos:

La utilización de los suelos para uso agropecuario deberá someterse a normas prácticas que aseguren la conservación del medio de los agros sistemas.

En el artículo 67 indica: “las instituciones de investigación agropecuaria encargadas de la generación y trasferencia de tecnologías, deberá orientar sus actividades a objeto de elevar los índices de productividad a largo plazo”.

La seguridad alimentaria es un principio fundamental para las Naciones Unidas y para el Mundo en General, en la que hace hincapié el ofrecimiento de las formas y maneras de producir alimento para la población.

La ley 144 de la revolución productiva comunitaria agropecuaria en su artículo 2 señala que la presente Ley tiene por objeto normar el proceso de la Revolución Productiva Comunitaria Agropecuaria, para la soberanía alimentaria estableciendo las bases institucionales, políticas y mecanismos técnicos, tecnológicos y financieros de la producción, transformación y comercialización de productos agropecuarios y forestales, de los diferentes actores de la economía plural; priorizando la producción orgánica en armonía y equilibrio con las bondades de la madre tierra.

Y en su artículo 3 señala que tiene como finalidad lograr la soberanía alimentaria en condiciones de inocuidad y calidad para el vivir bien de las bolivianas y los
bolivianos, a través de la Revolución Productiva Comunitaria Agropecuaria en el marco de la economía plural.

2.2. **Marco Conceptual**

2.2.1. **Generalidades**

2.2.1.1. **Origen**

Por los años 3200 antes de cristo, desde que se inventó la escritura en Egipto, y en base a estos hallazgos se confirmó las referencias sobre la agricultura y el trigo, dando origen a las más variadas teorías en torno a su origen y cultivo. Las especies actualmente más difundidas en el mundo, el trigo común o de pan (*Triticum aestivum*) y el trigo duro o de fideo (*Triticum durum*) son relativamente nuevas en comparación con la extraordinaria antigüedad de las especies progenitoras (García 2004).

Edel y Rosel (2007), indican que este cereal fue uno de los primeros granos cultivados en la región del Medio Oriente hace 11 mil años aproximadamente, posteriormente, cuatro mil años a. C. se extendió la zona geográfica de su cultivo, convirtiéndose en el alimento básico en Inglaterra y China, añaden también; que los españoles fueron los que introdujeron el trigo en México hacia el año 1520, y consecutivamente lo hicieron en las demás colonias americanas.

Los estudios de Candolle indican que el trigo es originario de Mesopotamia, mientras que Vavilov afirma que las especies del género *Triticum* han tenido su centro de diferenciación en Turquía, Afganistán e India. Sin embargo otras investigaciones afirman que el trigo tuvo su origen en la zona comprendida entre Asia Menor y Afganistán. La evolución del trigo a partir de gramíneas silvestres tuvo lugar, probablemente, en algún lugar del Cercano Oriente, posiblemente en el área conocida como el Creciente Fértil (López Bellido, 1990)

El trigo aparece en murales descubiertos en tumbas egipcias a todo lo largo de la ribera del Nilo. Granos de trigo carbonizados, parecidos a los actuales *Triticum compactum* y *Triticum aestivum*, han sido encontrados en excavaciones
arqueológicas. Egipto es reconocido como el lugar donde se comenzó la elaboración del pan fermentado (López Bellido, 1990).

El cultivo del trigo se extendió en todas las direcciones desde el Medio Oriente al resto del mundo. Entre las primeras áreas de expansión figura la Cuenca Mediterránea, que según algunos autores ha jugado un papel importante en la diferenciación de los trigos, en particular del trigo duro. En la Península Ibérica el cultivo del trigo se extendió a partir del año 4000 a.C. destacando las producciones del valle del Duero Oriental y de las regiones lusitanas y tartésica, parte de las cuales ya eran exportadas en la denominación románica (López Bellido, 1990).

2.2.1.2. Importancia

El cultivo del trigo es uno de los más importantes, pues este cereal, el maíz y el arroz constituye la trinidad agrícola del mundo (Díaz del Pino, 1968). El trigo es el cereal cultivado más importante del mundo, su importancia se deriva de las propiedades físicas y químicas del gluten, que permiten la producción de una hogaza de pan de buen volumen. Además de su uso para la fabricación del pan, se utilizan grandes cantidades de trigo para pastelería y sémolas (Poehlman, 1987).

2.2.1.3. Distribución geográfica

El cultivo de trigo se extiende ampliamente en muchas partes del mundo, quizás por ser una especie que tiene un amplio rango de adaptación y por su gran consumo en muchos países, en los últimos años la distribución del cultivo se ha ido extendiendo debido a que se obtienen gran número de variedades nuevas de gran rendimiento (Robles, 1990).

2.2.1.4. El cultivo de trigo en Bolivia

Hervás(2008), sostiene que durante la primera época republicana y de la colonia, Bolivia fue capaz de autoabastecerse de trigo y de harina por una producción regional centrada en Cochabamba y Chayanta. Ya en el segundo auge de la plata, entre los años 1970 y 1980, con la construcción de la red ferroviaria interna y su conexión con la argentina y a los puertos del Pacífico, los productores ya no podían
competir en el mercado nacional debido al libre mercado incorporado a una nueva economía mundial.

Santa Cruz es una región productora de trigo, tanto en la región de los Llanos como en los valles, existiendo aún una amplia superficie que puede destinarse a la siembra de este cereal e incrementar los niveles de producción para incrementar la oferta alimentaria de los bolivianos. Adicionando la siembra directa, el trigo es considerado de mucha importancia para la rotación de cultivos que puede ser utilizado para realizar un manejo sostenible del suelo y agua, principalmente (ANAPO, 2015).

La superficie sembrada de trigo se ha incrementado paulatinamente para satisfacer principalmente al requerimiento que se tiene del alimento, de los precios y de la innovación en cuanto a variedades. A las zonas tradicionales de siembra como son el Norte, parte de San Julián, Chané, aparecen otras en las que sembrar trigo es un desafío como: Santa Rosa de Sara, zona Este y en los valles cruceños, todos ellos supeditados a la acumulación de las precipitaciones pluviales en la época de invierno (ANAPO, 2015).

El trigo es el único cultivo del cual Bolivia no es autosuficiente, ya que la demanda es de aproximadamente 700 mil toneladas y la producción nacional representa cerca de un 35% de los cuales Santa Cruz produce más del 70 por ciento, el saldo proviene de la importación de trigo (grano y harina) de países vecinos como Argentina principalmente, significando con ello una importante erogación de divisas para el país (ANAPO, 2015).

Durante los años de la bonanza económica que vivió el país a partir de la segunda mitad de los 2000, el sector agrícola ha presentado un desempeño favorable, debido en algunos casos al crecimiento de las exportaciones de algunos productos agrícolas que se beneficiaron de precios altos en el mercados internacionales, se obtuvieron tasas de crecimiento importantes en la producción de quinua, trigo y sorgo en grano (cuadro 1) la producción de trigo creció a una tasa promedio anual de 5.80%, la de sorgo a 4.99% y la de papa a 3.83% (INE, 2015).
En lo referido a los productos agrícolas industriales, también se observa un crecimiento importante en los principales productos. La producción de trigo muestra en el cuadro 1 que el crecimiento de la producción agrícola durante el periodo analizado se debe principalmente al aumento en la superficie sembrada (INE, 2015).

En Bolivia existen 130.476 hectáreas destinadas al cultivo de trigo. De este total, 74.708 hectáreas equivalente a 57,3% están en el departamento de Santa Cruz, en segundo lugar está Potosí con 17.715 hectáreas y en tercer lugar Cochabamba con 17.327 hectáreas (INE, 2015).

Cuadro 2. Superficie Cultivada de trigo bajo riego y a secano, según departamento, 2013 (En hectáreas)

<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>TOTAL SUPERFICIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOLIVIA</td>
<td>130.476</td>
</tr>
<tr>
<td>Chuquisaca</td>
<td>16.240</td>
</tr>
<tr>
<td>La Paz</td>
<td>2.080</td>
</tr>
<tr>
<td>Cochabamba</td>
<td>17.327</td>
</tr>
<tr>
<td>Oruro</td>
<td>697</td>
</tr>
<tr>
<td>Potosí</td>
<td>17.715</td>
</tr>
<tr>
<td>Tarija</td>
<td>1.676</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>74.708</td>
</tr>
<tr>
<td>Beni</td>
<td>18</td>
</tr>
<tr>
<td>Pando</td>
<td>16</td>
</tr>
</tbody>
</table>

Fuente: Instituto Nacional de Estadística
Censo Agropecuaria 2013 (Datos preliminares)
Los datos del Censo Agropecuario 2013 muestran que, a nivel nacional, el trigo se cultiva bajo riego y a secano. El primer sistema de cultivo cuenta con 5.743 hectáreas y el segundo, 123.117 hectáreas. Con relación al rendimiento de trigo se
contabiliza 1,1 toneladas métricas por hectárea. En el país, la producción de este cereal suma 3.199.906 quintales anuales (INE, 2015).

2.2.1.5. El cultivo de trigo en departamento de La Paz

Se realizaron trabajos para mejorar e incrementar las zonas de producción como los rendimientos de trigo en el departamento de La Paz. Siendo realizadas en la zona altiplánica del departamento, dichas investigaciones datan desde 1952, realizando investigaciones en la ex estación experimental de Belén (Condorco y Cortes, 1983), posteriormente las investigaciones realizadas en las zonas de Patacamaya y Belén durante los años de 1982 (PROTRIGO, 1997).

Cabe mencionar el trabajo realizado por Mamani en evaluación de 15 variedades de trigo en el altiplano central y norte de Bolivia, en las localidades de Caracollo (Oruro), Patacamaya (La Paz), Puerto Pérez (La Paz) y Ancoraimes (La Paz), estas dos ultimas localidades circundantes al Lago titicaca en la gestión 1996 – 1997 (Mamani 1999).

Años atrás se implemento el Programa Nacional de Investigación y trasferencia de tecnología para el cultivo de trigo (PROTRIGO), involucrando a los departamentos de Cochabamba, Santa Cruz, Chuquisaca, Potosí y Tarija, iniciando sus actividades en 1998, realizando introducción de germoplasma para la selección por adaptación, ensayos de rendimiento preliminar para la selección por adaptación y rendimiento, para selección por tolerancia a sequía, ensayos regionales, nacionales y viveros nacionales, dichos trabajos han dado como resultado la identificación de dos nuevas variedades una de trigo harinero y otra de duro, ambas con gran calidad panadera y macarronera, con rendimientos superiores a la variedad testigo utilizada como lo es la variedad Tarata – 80, con amplia adaptabilidad y moderada resistencia a enfermedades (PROTRIGO, 2000).

Como parte de difundir las experiencias obtenidas en Cochabamba, PROTRIGO incursionó con trabajos en el departamento de La Paz, mas propiamente en la zona del Altiplano Norte, a lo largo del lago Titicaca, donde se introdujo variedades mejoradas, para la difusión a los agricultores de la zona, agregados a esta introducción la transferencia de tecnología como ser: Desinfección de semillas,
Control de malezas, método de trilla mecanizada, implantándose parcelas demostrativas familiares (PROTRIGO, 2001).

2.2.1.6. **Descripción taxonómica**

El trigo tiene la siguiente clasificación taxonómica (Robles, 1991):

- **Reino**: Vegetal
- **División**: Tracheophyta
- **Sub división**: Pteropsida
- **Clase**: Angiospermae
- **Sub clase**: Monocotiledonneae
- **Grupo**: Glumiflora
- **Orden**: Gramilales
- **Familia**: Gramineae
- **Genero**: Triticum
- **Especie**: aestivum

El trigo pertenece a la familia de las gramíneas (Poaceae), siendo las variedades más cultivadas *Triticum durum* y *T. compactum*. El trigo harinero llamado *Triticumaestivum* es el cereal más utilizado especialmente para la elaboración del pan y en segundo lugar el fideo o pasta y por esta razón es un cultivo que predomina en el mundo entero (Martínez y Tico, 1998).

2.2.1.7. **Descripción botánica**

Las raíces son numerosas, fibrosas; existiendo dos clases de raíces, las primarias o seminales y las secundarias o adventicias. El tallo es una caña formada de nudos y entrenudos, en el nudo se encuentran las yemas que dan origen a las hojas como así también a los macollos, la altura del tallo varía según las variedades. La hoja nace del nudo, estando esta formada por la vaina y la lamina, con dos estructuras accesorias la ligula y las aurículas. En la parte superior tanto de los macollos como del tallo principal terminan en una inflorescencia compuesta llamada espiga en la que
están insertas las inflorescencias simples denominadas espiguillas, siendo estas donde las flores están agrupadas. El fruto es un cariópside de forma ovoide, siendo este un fruto seco indehiscente (Soldano, 1985).

2.2.1.8. Plagas y Enfermedades en trigo
2.2.1.8.1. Insectos plaga

Un insecto se considera plaga cuando llega a niveles poblacionales elevados los cuales provocan daño económico a la producción, y solo es esta situación se justifica la aplicación de medidas de control químico (ANAPO, 2016).

Figura 3. Pulgón del tallo (Rhopalosiphumpadi) y pulgón verde (Schizaphisgraminum) presentes en las partes de la planta de trigo (ANAPO, 2016)

Figura 4. Pulgón verde (Schizaphisgraminum) sobre una hoja del cultivo de trigo (ANAPO, 2016)
Productos sugeridos para el control de pulgones

Cuadro 3. Productos sugeridos para el control de pulgones

<table>
<thead>
<tr>
<th>Nombre técnico</th>
<th>Dosis comercial/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imidacloprid</td>
<td>120 - 300 cc</td>
</tr>
<tr>
<td>Thiametoxan</td>
<td>1 - 1.5 lt</td>
</tr>
<tr>
<td>Pirimicarb</td>
<td>80 - 100 cc</td>
</tr>
<tr>
<td>Thiodicard + Imidacloprid</td>
<td>100 - 150 gr</td>
</tr>
</tbody>
</table>

Fuente: ANAPO

Productos sugeridos para el control de gusanos defoliadores

Figura 5. Insectos defoliadores (Comedores de hojas) presentes en el cultivo de trigo (ANAPO, 2016)

Cuadro 4. Productos sugeridos para el control de gusanos defoliadores

<table>
<thead>
<tr>
<th>Nombre técnico</th>
<th>Dosis comercial/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diflubenzuron (*)</td>
<td>100 g</td>
</tr>
<tr>
<td>Lufenburon</td>
<td>150 - 200 cc</td>
</tr>
<tr>
<td>Teflubenzuron</td>
<td>150 - 200 cc</td>
</tr>
<tr>
<td>Benzoato</td>
<td>150 - 200 g</td>
</tr>
<tr>
<td>Clorpiriphos</td>
<td>0.8 - 1.0 lt</td>
</tr>
<tr>
<td>Methomil</td>
<td>150 - 200 g</td>
</tr>
<tr>
<td>Spinosad</td>
<td>50 - 60 cc</td>
</tr>
<tr>
<td>Betaciflutrina</td>
<td>50 cc</td>
</tr>
<tr>
<td>Lambdacyalotrina</td>
<td>100 - 150 cc</td>
</tr>
</tbody>
</table>

Fuente: ANAPO, 2016
2.2.1.8.2. Enfermedades

Las enfermedades en el cultivo de trigo constituyen un factor limitante para la producción de este cereal, principalmente cuando se tienen condiciones climáticas favorables, siembras fuera de época recomendada, variedades susceptibles y cuando se practica el monocultivo (siembras sin rotación de cultivos). Para el control de **Roya** y **Helmintosporiosis** la aplicación del fungicida se debe realizar a la aparición de las primeras pústulas. Para el control de **Piricularia** la aplicación de fungicidas debe realizarse de manera preventiva, cuando cerca del 80% de las **espigas** se encuentren completamente visibles (ANAPO, 2016).

Figura 6. Enfermedades mas frecuentes en el cultivo de trigo (ANAPO, 2016)
Cuadro 5. Fungicidas sugeridos para el control de enfermedades en el cultivo de trigo

<table>
<thead>
<tr>
<th>Nombre técnico</th>
<th>Nombre comercial</th>
<th>Grupo químico</th>
<th>Concentración de ingrediente activo (g/litro)</th>
<th>Dosis comercial (litro/ha)</th>
<th>Modo de acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiconazol</td>
<td>Tilt.Bumper, Propicio, Propiconazol Dow Agro y otros</td>
<td>Triazol</td>
<td>250</td>
<td>0.5</td>
<td>Sistémico</td>
</tr>
<tr>
<td>Tebuconazol</td>
<td>Foker, Folicur, Orius, Tilán y Otros</td>
<td>Triazol</td>
<td>250</td>
<td>0.50 - 0.75</td>
<td>Sistémico</td>
</tr>
<tr>
<td>Flutriafol*</td>
<td>Selective, Efective, espectrum y otros</td>
<td>Triazol</td>
<td>125</td>
<td>1</td>
<td>Sistémico</td>
</tr>
<tr>
<td>Trifloxystrobin + Cyproconazol</td>
<td>Sphere</td>
<td>Estrobilurinas + Triazol</td>
<td>187.5</td>
<td>0.3</td>
<td>Mesostémico</td>
</tr>
<tr>
<td>Trifloxystrobin + Propiconazol</td>
<td>Stratego</td>
<td>Estrobilurinas + Triazol</td>
<td>125</td>
<td>0.5</td>
<td>Mesostémico</td>
</tr>
<tr>
<td>Azoxytrobin + Cyproconazol</td>
<td>Priori Xtra</td>
<td>Estrobilurinas + Triazol</td>
<td>200</td>
<td>0.35 - 0.5</td>
<td>Sistemico</td>
</tr>
<tr>
<td>Piraclostrob in + Epoxiconazol</td>
<td>Opera</td>
<td>Estrobilurinas + Triazol</td>
<td>133</td>
<td>0.80 - 1.0</td>
<td>Translaminar Sistémico</td>
</tr>
<tr>
<td>Trifloxystrobin + Tebuconazol</td>
<td>Nativo</td>
<td>Estrobilurinas + Triazol</td>
<td>100</td>
<td>0.75 - 0.8</td>
<td>Sistémico</td>
</tr>
</tbody>
</table>

Fuente: ANAPO, 2016
Control de Roya y Helmitosporium

** Control de Roya, Helmitosporium y Piricularia

2.2.2. Ecología del cultivo

2.2.2.1. Clima

El área de producción más importante es la zona templada del hemisferio norte siendo menos cultivado en el hemisferio sur. Cultivándose también en otras climas creciendo bien en zonas de climas relativamente frescos y húmedo en la estación de crecimiento, seguido de periodo cálido y seco en la maduración. Adaptándose con dificultad a los climas cálidos permanentes. En estas condiciones las enfermedades pueden ocasionar severas pérdidas y dificultar la recolección y el almacenamiento (López, 1991).

2.2.2.2. Temperatura

Al igual que todas las plantas, requiere de cierto grado de temperatura para que germine la semilla y se produzcan todos los procesos vegetativos hasta lograr la cosecha; la semilla puede germinar desde una temperatura de 0° C como límite inferior y 40° C como límite superior; la temperatura óptima es de 28° C. Entre los 6° y 10° C, el trigo tiene un desarrollo lento emitiendo hojas y brotes pequeños; lo que se traduce en un alto grado de ahijamiento o macollamiento, cuando la temperatura se eleva por encima de los 10° C los brotes toman una dirección vertical para formar los tallos y posteriormente la floración. Durante la formación del grano requiere de mayor temperatura; siendo lo ideal 18° C, como temperatura media, durante unos cuarenta y cinco días (Díaz, 1968).

2.2.2.3. Fotoperíodo

La temperatura no es el único factor que decide el periodo más o menos largo del cultivo y que interviene en el rendimiento, la luz también desempeña un importantísimo papel en ello, ya que debido a su acción, se verifican ciertos fenómenos vitales, tales como la formación de la clorofila, el desarrollo de las partes verdes del vegetal y sobre todo la síntesis de los hidratos de carbono; en el caso
particular del trigo, contribuye a la formación del almidón. Como las radiaciones solares son calóricas y luminosas, a igualdad de temperatura, cuando más intensa es la luz, tanto mayor es su asimilación, más rápido el desarrollo de las planta y más pronta la maduración. De igual manera, cuando más prolongada es la asimilación diurna tanto mayor es la asimilación diaria del trigo y tanto menor el tiempo que emplea en fructificar (Díaz, 1968).

2.2.2.4. Umbrales térmicos

El desarrollo del trigo está influenciado por varios factores meteorológicos, de los cuales los que más tienen efecto en las variaciones anuales del rendimiento en las regiones agrícolas del norte, centro y sur del Estado son: La temperatura del aire y la duración de la luz del día (fotoperiodo) (INIFAP, 2009).

Para su desarrollo óptimo la planta de trigo requiere desde la germinación de la semilla hasta la madurez de un “estado de confort climático”. En términos de potencial de rendimiento, estas condiciones óptimas de temperatura del aire, tanto nocturnas que propician un estado de reposo o descanso del cultivo, como temperatura diurna que estimula su crecimiento, se presentan con mayor frecuencia en las regiones del centro y norte (INIFAP, 2009).

Las tolerancias térmicas se determinaron en base a la temperatura mínima y máxima de los ciclos de crecimiento frío y cálido, del histórico de la temperatura y el rendimiento en las diferentes zonas de producción de trigo (INIFAP, 2009).

Cuadro 6. Umbral térmico por etapa fenológica del trigo

<table>
<thead>
<tr>
<th>Temperatura del aire (°C)</th>
<th>Plántula</th>
<th>Amacollo</th>
<th>Encañe</th>
<th>Floración</th>
<th>Llenado del grano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínima letal</td>
<td>-4</td>
<td>-5</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mínima vital</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Rango óptimo</td>
<td>6 a 20</td>
<td>4 a 18</td>
<td>8 a 22</td>
<td>10 a 24</td>
<td>12 a 26</td>
</tr>
<tr>
<td>Máxima vital</td>
<td>24</td>
<td>22</td>
<td>26</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Máxima letal</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
</tbody>
</table>

Fuente: Valores determinados por el proyecto de agrometeorología del CEVY-CIRNO-INIFAP.
2.2.2.5. **Relación de las horas frío y las horas calor con el crecimiento de la planta de trigo**

Desde el punto de vista de clima, todas las etapas fenológicas del trigo son sensibles a la oscilación de la temperatura del aire. Su efecto extremo es irreversible cuando daña los tejidos; cuando su efecto es moderado, entre los límites tolerantes, se manifiesta controlando los períodos fenológicos de la planta y como consecuencia generando resultados variables en la producción (INIFAP, 2009).

Es importante distinguir la relación que guarda el desarrollo de la planta con las horas calor y con las horas frío. Las horas calor definen las etapas de crecimiento como una constante térmica (Pascale y Damario, 2004), es decir, al cumplirse un número determinado de horas calor, la planta cambia de etapa fenológica, independientemente de la fecha de siembra y de la localidad. Cuando el año es cálido, rápidamente se completan las horas calor necesario de cada etapa fenológica, acortando así la duración del ciclo biológico del trigo (INIFAP, 2009).

Las horas frío por el contrario, alargan los períodos fenológicos, proporcionando condiciones que reducen la velocidad con que se llevan a cabo los procesos fisiológicos y consecuentemente retardan el crecimiento. La experiencia indica que en años fríos se alarga el ciclo biológico del trigo, y por lo general se genera un mayor rendimiento de grano (INIFAP, 2009).

2.2.2.6. **Efectos de la temperatura**

La temperatura afecta la tasa de desarrollo de la planta a través de sus distintas fases y la producción de hojas, tallos y otros componentes. Todos los procesos fisiológicos de la planta ocurren más rápidamente a medida que la temperatura aumente entre la temperatura base y una temperatura óptima. Un buen manejo del cultivo puede contrarrestar más fácilmente los efectos negativos de las altas temperaturas que los de las bajas temperaturas, especialmente de las heladas (FAO, 2000).

2.2.2.6. **Temperaturas bajas**

A medida que desciende la temperatura el desarrollo se hace más lento. Si las temperaturas son lo suficiente bajas como para llegar a helar, puede producirse un
daño severo en los tejidos jóvenes; por ejemplo los tallos vegetativos pueden morir a -5 °C. Dos o más heladas consecutivas durante un periodo que va desde la emergencia de las espigas hasta el inicio del llenado del grano pueden tener consecuencias graves sobre el rendimiento. Temperaturas de 1.5 °C registradas en la casilla meteorológica a 1.5 m del suelo son lo suficientemente bajas como para producir daños ya que equivalen a 0 C sobre la superficie del cultivo. Una noche con helada durante este periodo puede no ser decisiva para la planta porque pude que solo mueran los tejidos nuevos que están expuestas al aire; como en las espigas con bandas de espiquillas muertas. Después de su exposición al aire todos los tejidos se vuelven más resistentes (FAO, 2000).

Figura 7. Espiga de trigo afectada por la helada (FAO, 2000).

2.2.2.7. Humedad y precipitación

Además del calor y la luz, la humedad es otro de los factores climáticos que ejercen una influencia decisiva en la vegetación del trigo. En muchos países el trigo no se riega, sino que es suficiente con el agua de la lluvia o con la humedad que absorbe la tierra de la atmósfera; en cambio, en otros se hace necesarios los riegos, porque durante la época en la que se lleva a cabo el cultivo no llueve o son insuficientes las
precipitaciones o la atmósfera carece de humedad. Este cereal sufre muchas veces por falta de agua, y la sequía es uno de los peores enemigos. Cuando en el terreno existe poca humedad, la germinación es muy imperfecta, el macollamiento se reduce, la planta crece poco y si persiste en la formación de grano, el rendimiento es bajo y aquel que no se desarrolla bien y se contrae mucho, dando un producto de mala calidad (Díaz, 1968). El cultivo de trigo para su normal desarrollo requiere entre 400 y 1300 mm por año (Parsons, 1989).

2.2.2.8. Suelo

Los mejores suelos para el cultivo de trigo son los de textura media a pesada y de buena estructura que permitan un buen drenaje, obteniéndose los mejores rendimientos en suelos arcilloso – limosos a arcillosos. En terrenos suelos el trigo manifiesta deficiencias nutricionales y estrés hídrico en el periodo de maduración del grano. Los suelos excesivamente arcillosos, con mala estructura e insuficiente aireación, provocan en la planta asfixia radicular y limitan su desarrollo y la funcionalidad de las raíces. Con relación a la salinidad del suelo, el trigo presenta una tolerancia moderada, siendo esta menor que la cebada y el sorgo (López, 1991).

2.2.3. Siembra

La siembra se realiza generalmente con semillas que se compran de las instituciones especializadas, distribuidas por comerciales, intermediarios o en las mismas cooperativas. Estas semillas son consideradas de alta calidad vienen ya desinfectadas.

De esta manera se recomienda que se debe emplear una cierta cantidad en secano de unos 120 a 200 kg/ha, dependiendo de la calidad del terreno y opinión del agricultor.

La siembra es a chorrillo con sembradora propulsada por un tractor. La distancia más frecuente entre líneas es de 17 a 18 cm (Reina, 2005).
2.2.4. **Introducción de variedades**

2.2.4.1. **Variedad**

La variedad se constituye en un grupo de plantas similares, que debido a sus características estructurales y comportamiento se puede diferenciar de otras variedades de la misma especie. Dentro de una especie cultivada puede existir un sinnúmero de tipos genéticos, denominándose líneas experimentales, una vez aislada una línea sobresaliente, se le dan nombre, se lo multiplica y se distribuye como una variedad agronómica (Poehlman, 1987).

2.2.4.2. **Introducción de variedades**

Las primeras introducciones de trigo fueron realizadas por los primeros colonizadores que trajeron semilla de los Estados Unidos. Los inmigrantes procedentes de la parte occidental de Europa trajeron trigos blandos de esa región (Poehlman, 1987). A latinoamérica los españoles introdujeron el cultivo de trigo a principios de la década de 1520, poco después de su llegada (Robles, 1991).

Tomando en cuenta que en muchas partes del mundo se cultiva todavía variedades antiguas y en otras existen plantas silvestres de la misma especie, el primer paso que puede dar el genotecnista y tener éxito, es el introducir todas las variedades que pueda de la especie cultivada que desea mejorar o aún de especies silvestres, observar su variación, sus cualidades de adaptación e intentar mejorarlas por simple selección de acuerdo a las necesidades de los agricultores (Brauer, 1987).

Se menciona que los trabajos de mejoramiento genético en algunas regiones del país son escasos y que solamente se circunscriben a introducción de nuevas variedades, tal el caso de resultados encontrados de trabajos realizados en el chaco Tarijeño (Cusicanqui, 1992).

El método de introducción consiste en incorporar a una localidad germoplasma que ha sido desarrollado en otras regiones. De ahí que viene una variedad mejorada pueda ser considerada introducida si proviene de una selección. Indicando, además, que las plantas introducidas pueden ser cultivadas con mejores provechos lejos de su lugar de origen (Mantilla, 1995).
2.2.4.3. **Rendimiento en grano**

El rendimiento en grano tiene mucha importancia ya que determina los ingresos totales del productor de trigo. En el rendimiento influyen todas las condiciones ambientales que afecten al crecimiento de la planta así como la herencia de la misma. La capacidad intrínseca de rendimiento puede quedar expresada por características morfológicas de la planta, como el macollamiento, la longitud y densidad de la espiga, el número de granos por espiguilla o el tamaño del grano, sin embargo, ninguno de estos componentes físicos puede considerarse como índice de rendimiento. El rendimiento de una variedad se mide en kilogramos o en hectolitro por ha (Poehlman, 1987).

2.2.5. **Uso y Consumo del Trigo en Bolivia**

Herbas (2008), señala que el uso del trigo en nuestro país, el 72% se destina a la panificación, 24% para la producción de pastas alimenticias y 4% para la industria de galletas, pastelerías y otros.

Las harinas tienen múltiples aplicaciones en la industria alimentaria y se utilizan habitualmente en repostería, mezcladas con grasas y aceites, azúcar y otros componentes como el cacao, la vainilla y otras esencias. Con ellas se prepara una gran variedad de productos que incluye pasteles, tortas, bizcochos, galletas, rosquillas y hojaldres. Asimismo se emplean para elaborar pastas, para lo cual se usan harinas de trigo duro, si bien en algunos países se dispone también de pastas hechas a partir de la harina de soja (IBCE, 2010).

La inmensa mayoría de la harina de trigo producida se emplea para fabricar pan. La variedad más apropiada para este tratamiento es el trigo crecido en climas secos, que posee mayor dureza y alcanza un valor en proteínas comprendido entre el 11 y el 15%. Los trigos de clima húmedo, de contenido proteínico más bajo, son más blandos y recomendables para la producción de pastas y tortas. Aunque la mayor parte del trigo sembrado se utiliza para el consumo alimenticio humano y alrededor del 10% se destina a nueva siembra, se reservan pequeños porcentajes para empleo industrial en la elaboración de féculas, almidones, pastas, dextrosas, alcoholes y otros productos. Los trigos de calidades no aptas para el consumo humano, así como
los subproductos de la molienda, se utilizan como alimentos para el ganado y los animales domésticos (IBCE, 2010).

2.2.6. Adaptabilidad y Estabilidad

Existen una clara diferencia entre adaptabilidad y estabilidad, difiriéndose la primera como la respuesta relativa de un genotipo avaluado a través de un rango de localidades, mientras que estabilidad es la respuesta relativa de un genotipo a factores ambientales a través del tiempo en una misma localidad (Laing, 1978).

2.2.6.1. Estabilidad Fenotípica

Según Valenzuela, J. (1985) citando a Márquez, (1976) desde el punto de vista lógico y convencional, algo estable es aquello que no cambia a través del tiempo y del espacio, pero que no obstante, según Eberhart y Russell, (1966) una variedad estable responde exactamente a las fluctuaciones ambientales y no interacciona con el ambiente.

Cuando se emplea el término estabilidad en su connotación común, se corre el riesgo de definir a la variedad más estable aquella que no rinde nada en todos los ambientes, si se usa estabilidad como sinónimo de adaptabilidad, es decir que una variedad se adapte a cualquier condición ambiental midiendo siempre lo mismo, ya que el caso de la variedad de rendimiento cero en todos los ambientes, se clasifica como la más adaptable de todas, pero con adaptación nula en cada lugar (Márquez, 1991).

2.2.6.2. Adaptabilidad fenotípica

El término adaptación, implica el desarrollo normal, suficiente producción de gametos y sin restricción, producción de granos y un rendimiento aceptable, es una característica varietal. Así mismo, existen diferencias notables en la capacidad adaptiva entre variedades, calificándose a una variedad con buena adaptabilidad general a aquella que se adapta bien a un rango amplio de ambientes (Sevilla, 1982, citado por Cusicanqui, 1992).
2.2.6.3. **Ensayos de adaptación**

Los ensayos de adaptación se siembran en muchos lugares, abarcando grandes regiones, donde la variable está relacionada con los distintos ambientes que soporta la especie, desde el límite por deficiencia térmica y pluviometría, estos ensayos se lo realizan por años (Aquize, 1998).

El objeto principal es someter el cultivo a las condiciones, más diversos cuando un cultivo se introduce a una nueva área de producción puede no tener adaptación en un principio, pero cuando se cultivan varias veces, presentan mejor adaptación y mejor productividad posibles de los elementos del tiempo, para estudiar el comportamiento de las variedades (PROTRIGO, 2001).

En la gestión 1993 – 1994, se continuó el trabajo con las entradas de trigo harinero y trigo duro seleccionadas en la gestión anterior en la EE Patacamaya, además se incluyeron nuevas introducciones (germplasma proveniente del CIMMYT) a fin de enriquecer el germoplasma para el altiplano. Como resultado se seleccionaron 709 líneas de trigo harinero, de un total de 1406 entradas, también se seleccionaron 105 líneas de trigo duro, de un total de 356 entradas esta selección se realizó en base a adaptabilidad, tipo agronómico, rendimiento, formación de grano y llenado de grano. Lo cual demuestra que existe una buena posibilidad para seguir estudiando dentro de este campo (PROTRIGO, 1994).

Por otra parte existen variedades que aún no han sido estudiadas en el ámbito regional, sobre todo en lo que respecta a sus características de precocidad, agronómica y en general la adaptabilidad del material. Por esta razón el mejoramiento y selección de nuevas variedades para diversos ambientes y su tolerancia y/o resistencia a factores bióticos y abióticos adversos, son aspectos básicos que necesitan ser investigados (PROTRIGO, 1994)
3. **SECCIÓN DIAGNÓSTICA**

3.2. **Materiales y Métodos**

3.2.4. **Localización y Ubicación**

Achacachi, primera Sección y Capital de la Provincia Omasuyos, está dividido en 13 cantones; y se encuentra en el nordeste del departamento de La Paz. Se encuentra a 3.823 m.s.n.m, a 16°03’ 00” Latitud Sur y 68°11’00”. Longitud Oeste (Plan de Desarrollo Municipal, 2006-2010).

3.2.4.1. **Características del área de estudio**

Achacachi por la presencia de la Cordillera Real y el lago Titicaca, presenta formaciones fisiográficas tales como: montañas, colinas, laderas y planicies, principalmente. La diversidad fisiográfica es diversa con pendientes que van desde 40 a 60%, y con altitudes de 3.823 m.s.n.m. a 5.000 m.s.n.m.

Las formaciones particulares de la zona que dan un toque especial al paisaje existente en la zona, en su mayoría son producto de las interacciones del clima, material parental, actividad biológica y efectos tectónicos (Plan de Desarrollo Municipal, 2006-2010).

3.2.4.2. **Clima**

El Municipio presenta una variedad de características climáticas, debido a su (i) ubicación geográfica, (ii) características topográficas, (iii) ecosistemas diferenciados, y (iv) particularidades ambientales. Sin embargo, la influencia de la Cordillera Real y la influencia lacustre, son determinantes para su comportamiento climático.

Las zonas de la Puna Alto andina y el altiplano presentan dos estaciones muy marcadas en el año: (i) época seca en los meses de abril, agosto y parte de septiembre, y (ii) húmeda, que se inicia en el mes de octubre hasta el mes de marzo. El clima se presenta en altitudes mayores al 4.500 m.s.n.m. (Puna) condiciones que determinan que la actividad pecuaria sea más favorable.

En el área lacustre, existe la particularidad de la presencia de microclima, así las temperaturas se elevan en un 2.5° a 3°C con respecto a otras regiones con
condiciones similares. Las temperaturas normales diurnas están alrededor de 20°C, sin embargo en zonas abrigadas y con bastante vegetación estas alcanzan a 23° C. Las temperaturas mínimas registradas en invierno alcanzan a - 8° C (Plan de Desarrollo Municipal, 2006- 2010).

3.2.4.3. Suelo

En el área del Municipio de Achacachi predominan tres clases de suelo:

Los suelos clasificados en la “clase 6”, mismos que no son aptos para una producción anual, dada principalmente sus condiciones de textura y los problemas de erosión. Las principales características de este tipo de suelos son: capa arable superficial (0-20 cm); textura mediana mezclado con gravas y piedras principalmente en el horizonte profundo, con poca capacidad de retención de humedad y excesivo drenaje. El contenido de Ca y Mg varía entre bajo y moderado; Na de moderado a alta y K de de bajo a moderado.

En esta área, la mayor parte de agricultores se dedican a la producción pecuaria, principalmente ganado vacuno, pero con la escasez en el forraje existen problemas de productividad. Por lo tanto, este tipo de suelos deberían ser utilizados para el cultivo de forraje, entre una mezcla de alfalfa con forraje de hierba. Estos suelos están principalmente recomendados para cultivos permanentes como la alfalfa.

Suelos clasificados en la “clase 4”, cuyas características generales son similares al anterior perfil, siendo superficial con baja capacidad de retención de humedad. Estos suelos pueden ser recomendados para cultivar alfalfa asociado con especies forrajeras. Los suelos en esta área requieren mucho cuidado cuando se maneja con riego, es necesario introducir buenas prácticas de manejo de riego.

Estos suelos que no son aptos para cultivos anuales por los problemas de erosión de suelo y humedad; sin embargo existe áreas clasificadas como “ 4S” pueden ser utilizadas para cultivos intensivos. El tercer tipo de suelo “clase 3”, corresponde a una topografía plana; estos son moderadamente desarrollados y con una profundidad moderada, con una fina textura, teniendo un color café oscuro. Tiene muy buena retención de humedad y cuyas características químicas varían desde una
reacción neutral hasta fuerte alcalino, muestra un pH de 6.7 en el perfil arable, y un pH 9.0 a una profundidad de 50-64 cm, Contiene Ca y Mg entre bajo y moderado y Na alto especialmente el parte profunda. Por ello es necesario tener sumo cuidado en la manejo de riego pudiéndose correr el riego de salinización de los suelos.

Estos suelos son recomendables para cultivos anuales; sin embargo, actualmente existe uso intensivo de estos suelos por los comunarios de la zona (Plan de Desarrollo Municipal, 2006-2010)

La localización del área de estudio se presenta en la figura 8.

Figura 8. Mapa de localización del ensayo en una vista panoramica en la comunidad de Taramaya – Omasuyos
Figura 9. Ubicación de la parcela en el municipio de Achacachi de la Provincia Omasuyos del departamento de La Paz.
3.3. **Materiales**

3.3.4. **Material genético**

El material genético que fue objeto de estudio, consistió en 12 líneas avanzadas de trigo harinero provenientes del banco de germoplasma del centro de Investigación de Kallutaca, y que estas fueron traídas del Vivero Internacional del banco de germoplasma del Centro de Investigación de Mejoramiento del Maíz y Trigo (CIMMYT), clasificadas como viveros de observación que son recomendados por el programa nacional de investigación y transferencia de tecnología para el cultivo de trigo (PROTRIGO, 2001).

Las líneas en estudio se presentan en el cuadro 7.

Cuadro 7. Líneas de trigo harinero.

<table>
<thead>
<tr>
<th>LÍNEAS EN ESTUDIO</th>
<th>ENTRADA</th>
<th>EN EL ESTUDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LÍNEA 2</td>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 3</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 7</td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 10</td>
<td>T4</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 12</td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 13</td>
<td>T6</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 14</td>
<td>T7</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 17</td>
<td>T8</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 20</td>
<td>T9</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 21</td>
<td>T10</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 22</td>
<td>T11</td>
<td></td>
</tr>
<tr>
<td>LÍNEA 25</td>
<td>T12</td>
<td></td>
</tr>
</tbody>
</table>

En la comunidad de Taramaya de la primera sección de la localidad de Achacachi de la Provincia Omasuyos del Departamento de La Paz, no se cuenta con antecedentes de una zona productora de trigo (*Triticumaestivum*), la comunidad, donde se realizó la introducción de las doce líneas de trigo harinero, se caracteriza por ser una comunidad que se dedica a la ganadería, específicamente a la producción de leche cruda y por concerniente a la producción de forrajes para el sustento de sus ganados lecheros y animales menores.
3.4. Equipos y herramientas

Para este efecto se utilizó un tractor con arado mecánico, además de picotas, palas chontas, rastrillos, cinta métrica, bolsas, cordel, estacas de maderas, balanza analítica, reglas, fluxómetro de 5m, hoz, cámara fotográfica, cuaderno de campo, bolas plásticas, manteles

3.4.4. Material de gabinete

Respecto al material de gabinete se dispuso de una computadora, impresora y todo el material de escritorio necesario como hojas, papel bond, cuadernos. Lapiceros, libros, revistas, consultas a internet, material bibliográfico con relación al tema, estos fueron los materiales que se utilizaron para recabar información para el desarrollo y conclusión del presente trabajo.

3.5. Metodología

3.5.4. Método

El flujo grama del trabajo experimental en la cual se muestra la metodología que se usó durante el desarrollo, desde su implementación de las doce líneas promisorias de trigo harinero al campo, hasta la conclusión del documento (figura 10).
3.5.5. Desarrollo del ensayo

3.5.5.1. Establecimiento de la parcela de observación

De acuerdo con las características del trabajo en estudio se empleará un diseño de bloques al azar (Calzada, 1982) con 12 tratamientos (líneas promisorias de trigo harinero) con cuatro repeticiones, el área experimental en la comunidad de Taramaya de la Provincia Omasuyos, presentó las siguientes características (Anexo 4):
- Tipo de siembra: chorro continuo
- Largo de surcos: 3,00 m
- Distancia entre surcos: 0,30 m
- Ancho de calles: 0,50 m
- Ancho de bordes: 0,50 m
- Número de surcos de la unidad experimental: 8
- Total de surcos del experimento: 384
- Densidad de siembra: 85 kg/ha⁻¹
- Superficie de cada unidad experimental: 3,60 m²
- Superficie del área cultivada: 172,80 m²
- Superficie total (con calles y bordes): 303.05 m²

3.5.5.2. Preparación del suelo

El terreno en la comunidad de Taramaya, fue roturado y mullido con una maquinaria agrícola, el nivelado del suelo se realizó de forma manual, ya contando con el terreno establecido para el objeto en estudio se delimitó los bloques con sus respectivos unidades experimentales para cada tratamiento.

3.5.5.3. Siembra

Inicialmente se apertura de forma manual con una chonta donde se tenía remarcado las parcelas dentro de cada bloque empleando estacas y cordel. La siembra se realizó de forma manual distribuyendo la semilla a chorro continuo a una densidad de siembra de 85 kg.ha⁻¹, posteriormente las semillas fueron cubiertos con tierra con la ayuda de una chonta, a una profundidad de 0,04m aproximadamente. La siembra se realizó en veintitrés de octubre de dos mil diez.

3.5.5.4. Control de Malezas

El control de malezas se efectuó en forma manual, con la ayuda de una chonta después de los 45 días a la emergencia.
3.5.5.5. Cosecha

La cosecha se realizó de forma escalonada esto debido a la mudares fisiológica que presentaron cada una de las líneas en estudio, cuando las plantas alcanzaron la madurez fisiológica (coloración amarillo oro), adoptándose el corte de forma manual.

El trillado se realizó en forma manual, se extendió una lona sobre el cual se vació la cosecha de cada línea de los cuatro bloques, y se empezó a trillar, ya teniendo los granos de trigo se empezó a ventar por cada línea en forma individual.

3.5.6. Variables en estudio

Estableciendo el número de individuos por unidad experimental, se seleccionaron cinco plantas (muestras) de forma aleatoria para la toma de datos excepto las variables que se miden de manera general como: días a la emergencia, número de espigas por metro, madurez fisiológica, peso hectolítico y rendimiento en grano, los mismo que fueron identificados con marbetes correspondientes, asignándoles una identificación a cada una de ellas, tomando en cuenta el punto inicial de partida y el final.

3.5.6.1. Días a la madurez

El número de días a la madurez se registró desde la fecha de emergencia hasta que más del 50% de las plantas en cada unidad experimental manifestaran coloración amarillo-oro (madurez fisiológica).

3.5.6.2. Altura de planta

La altura de planta se midió en el tallo principal de cada planta, desde la base del tallo hasta la punta de la espiga, excluyendo la barba. Se efectuaron mediciones en diferentes sectores de cada parcela obteniéndose luego un promedio.

3.5.6.3. Número de macollos

El número de tallos o número de macollos, se determinó contando los brotes por planta, para ello se realizó un muestreo de un metro lineal de surco en cada parcela, se consideraron solo macollos fértiles (con espiga)
3.5.6.4. **Longitud de espigas**

La longitud de espiga se midió en el tallo principal desde el punto de inserción hasta la punta de la espiga (excluyendo la barba), esto se realizó en cinco muestras por cada unidad experimental.

3.5.6.5. **Número de espiguilla por espiga**

El número de espiguillas por espiga se determinó contando el número de espiguillas en la espiga del tallo principal, lo cual se realizó con la muestra de cinco espigas en cada unidad experimental.

3.5.6.6. **Peso de 1000 granos**

Previamente se realizó el conteo de 1000 granos del total de cada unidad experimental, procediéndose luego a la determinación del peso mediante una balanza de precisión.

3.6. **ANÁLISIS ESTADÍSTICO**

3.6.4. **Procesamiento de datos**

La información colectada fue vaciada en una base de datos diseñadas en una hoja Excel, donde se hizo el ingreso de los datos en forma secuencial. El procesamiento estadístico se la realizó con los paquetes estadísticos como el S.A.S. (Statistical Analysis System).

3.6.5. **Análisis de varianza**

Los datos extractados de la parcela en observación fueron analizados mediante el análisis de varianza, de acuerdo al modelo lineal propuesto por Calzada (1982). El análisis se realizó por parcela de cada variedad, las cuales fueron analizadas bajo el siguiente modelo matemático.

\[Y_{ij} = \mu + T_i + \beta_j + E_{ij} \]

\(Y_{ij} \) = Promedio de la i-esima línea en la j-esima repetición

\(\mu \) = Media general
\(T_i \) = Efecto de i-esima línea de trigo

\(\beta_j \) = Efecto de j-esima bloque

\(E_{ij} \) = Error intra bloques o interparcelas (error experimental)

4. **RESULTADOS Y DISCUSIÓN**

4.2. **Aspectos climáticos**

El ciclo agrícola 2010 – 2011, según el climadiagrama de la Figura 11, muestra el comportamiento climatológico para el periodo que comprende en estudio (octubre 2010 hasta julio 2011). Las precipitaciones de interés para el cultivo registradas durante los meses de investigación fueron 379,5 mm donde las mayores precipitaciones pluviales mensuales se presentaron desde diciembre hasta marzo con 86,3; 58,5; 125,7 y 67,4 mm respectivamente.

Figura 11. Climadiagrama de la estación de Belén en el estudio de adaptabilidad de 12 líneas promisorias de trigo en el Altiplano norte durante la campaña agrícola 2010-2011 (Estación meteorológica Belén, 2012).

El déficit hídrico (después de la siembra), fue marcado durante dos meses del periodo vegetativo, destacándose la falta de precipitaciones durante los meses de octubre y noviembre, donde normalmente se acentúa el consumo de agua para la emergencia de las plántulas por lo que se tuvo que regar de forma manual.
Bajo estas condiciones de precipitación, se puede decir que durante el período de investigación estuvieron distribuidas de forma relativamente variadas en todo el ciclo del experimento. Se presentaron también heladas de forma esporádica en los meses noviembre, durante el ciclo de desarrollo del cultivo, de los cuales en meses de abril y mayo se manifestaron con poca intensidad ya que las líneas de trigo en investigación se encontraban en la etapa final de la maduración fisiológica, afectando al rendimiento del trigo, provocando de esta manera una pérdida de 1 hasta un 2% en grano.

La temperatura media fue de 3,5 ºC y 13 ºC como máxima media y mínima de -6 ºC respectivamente. En la Figura 11 se muestra una relativa variación de las temperaturas durante el ciclo vegetativo del cultivo de trigo, evidenciándose temperaturas por debajo a 0ºC, extendiéndose las heladas hasta, los meses de abril a julio, los cuales no causaron daño de mayor significancia, reduciendo la producción en un 1 a 2 % en el rendimiento.

4.3. Análisis individual
4.3.4. Número de Macollos

Para esta variable, se determinó que no existe, diferencias significativas entre bloques Cuadro 8, pero no así entre las líneas en estudio, en la figura 12 el promedio más alto, se obtuvo en la línea once con 9 macollos, mientras que los más bajo se presentó en la línea cinco con 5 macollos, las líneas 2, 4 y 9 presentaron un número de 6 macollos y las líneas 1, 3, 6, 8, 10 y 12 presentaron 7 números de macollos, en la línea 7 se contabilizó 8 números de macollos.

La campaña muestra una media general de 7 para el número de macollos con rangos de 9 macollos en la línea once y 5 macollos en la línea cinco según el análisis de varianza, en la campaña se mostró diferencias significativas entre las líneas en estudio.

Sobre el particular Artemac (2010), sostiene que el número total de macollos por planta puede fluctuar entre uno y cinco, dependiendo fundamentalmente del cultivar, de la fertilidad del suelo, de la fecha de siembra, de la densidad de población y del abastecimiento hídrico. Sin embargo, lo normal es que un 30 a 50% de los macollos sea poco productivo, o improductivo; esto ocurre principalmente en los macollos de formación más tardía, los cuales, por quedar relegados bajo la vegetación producen espigas pequeñas; éstas en muchos casos no completan su madurez. Para condiciones de alta tecnología debe privilegiarse el uso de cultivares que produzcan un bajo número de macollos por planta, lo que permitirá maximizar la cantidad de macollos productivos, y con ello la eficiencia de las plantas. En definitiva, bajo buenas condiciones de cultivo, lo normal es que cada planta logre entre uno y dos macollos productivos.
Cuadro 8. Cuadrados medios de los análisis de varianza correspondientes al número de macollos de las 12 líneas de trigo harinero.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>9.23</td>
<td>3.08</td>
<td>1.61</td>
<td>0.21 NS</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>11</td>
<td>50.80</td>
<td>4.62</td>
<td>2.41</td>
<td>0.03 *</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>60.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 20,65% Media
General = 6,73%

4.3.5. Días al espigamiento

El análisis de varianza individual Cuadro 9 presenta una significancia estadística para las líneas en estudio, donde se puede evidenciar que la línea uno se muestra como la más precoz de las líneas en estudio, esto debido a que presentó todo el potencial de los genotipos.

En promedio en la línea precoz se registró la línea uno como la más precoz con 88 días, observando que los mejores promedios se encuentran con 95,3 días, seguidamente por 96,5 días y las más tardías podíamos señalar a las líneas tres, cuatro, cinco, seis, nueve, once y doce.

Los valores del análisis estadístico presentan diferencias significativas entre las líneas Figura 13, esto debido que cada línea presenta diferentes potencialidades genotípicas y fenotípicas. En la figura se puede apreciar que las líneas 4,6 y 11 registraron los mayores días de espigamiento con 100.8, 102 y 102.3 respectivamente, en tanto la línea 1 es la que presenta los menores días al espigamiento con 88 días.

Cuadro 9. Cuadrados medios de los análisis de varianza correspondientes al número de días al espigamiento de las 12 líneas de trigo harinero.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>78.41</td>
<td>49.25</td>
<td>1.70</td>
<td>0.1861 *</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>11</td>
<td>38.11</td>
<td>120.22</td>
<td>2.06</td>
<td>0.1539 *</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>426.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 8.36% Media general = 96.50%

El espigamiento adelantado de la línea 1 se debe a que esta línea se adapta a la zona y a las condiciones ambientales reinantes en las mismas, por lo que sus reacciones fisiológicas responden más fácilmente frente al comportamiento normal de las otras líneas, Mamani (1999), asevera que las diferencias entre las variedades se deben al potencial varietal, debido a la diversidad de su origen genético, habiendo sido seleccionado de distintos ambientes climáticos.

4.3.6. Longitud de espigas

El análisis de varianza manifiesta que se presentaron diferencias en la longitud de espigas de todas las líneas Cuadro 10, Figura 14 estas diferencias son acentuadas principalmente en la línea cinco registrando 11.9 cm de longitud, en cuanto que las líneas ocho, uno y diez son las que registraron las menores longitudes de espiga con 10, 10.1 y 10.1 respectivamente, mientras que las demás líneas se ubican entre los rangos mencionados.

En la presente variable se registran diferencias entre líneas Figura 14, tal como lo muestra la prueba de medias sobresaliendo las líneas cinco con una longitud de espiga de 11,9 cm, seguido por las líneas tres y once con longitudes de 11,3 cm. Siendo estas significativamente superiores al resto de las líneas en estudio.

Las diferencias significativas encontradas en la longitud de espigas de las diferentes líneas son debidas principalmente a la manifestación genética de cada línea. Lo que indicará notablemente en el rendimiento de grano. Al respecto Mamani (1999), indica que la longitud de espigas está relacionada estrechamente con el potencial genético de cada variedad y la longitud de espigas es determinante sobre el número de granos que puede presentar cada espiga.

Cuadro 10. Análisis de varianza correspondientes a longitud de espigas de las 12 líneas de trigo harinero.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>6.05</td>
<td>2.02</td>
<td>4.63</td>
<td>0.0082*</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>11</td>
<td>19.70</td>
<td>1.79</td>
<td>4.11</td>
<td>0.0008*</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>25.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 6.13%
Media General = 10.77%
4.3.7. **Número de espiguillas por espiga**

Para esta variable en estudio se registraron desigualdades entre las líneas Figura 15, se puede apreciar que la línea seis sobre sale de las demás líneas teniendo esta la mayor cifra de espiguillas por espiga, con 56,3 espiguillas, seguidos por las líneas cinco, cuatro y once con 54,9, 54,6 y 54,5 espiguillas respectivamente, en tanto que las líneas nueve, dos y doce representan las menores cifras de espiguillas por espiga con 48, 49,2 y 49,4 respectivamente.

![Diagrama de barras de espiguillas por espiga]

Figura 15. Número de espiguillas por espigas de las 12 líneas de trigo harinero en la campaña (2010-2011).

Se puede apreciar en el Cuadro 11 que existen diferencias significativas entre las líneas en estudio sobresaliendo la línea seis representa la mayor cantidad de espiguillas por espiga con 56.3 espiguillas por espiga.

Las variaciones en el número de espiguillas por espiga se deben al comportamiento diferenciado de cada línea y la respuesta a los procesos fisiológicos ocurridos en la planta, en tal sentido Ayaviri (2000), indica que las variedades tienen comportamientos diferentes en la formación del número de espiguillas por espiga con relación a otras variedades, siendo uno de los componentes importantes del rendimiento por presentar una relación directa, Robles (1991), señala que el número de espiguillas varía de 8 a 12 según las variedades.
Cuadro 11. Análisis de varianza correspondiente a Número de espiguillas por espigas de las 12 líneas de trigo harinero.

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>78.41</td>
<td>26.14</td>
<td>1.70</td>
<td>0.1861</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>11</td>
<td>348.11</td>
<td>31.65</td>
<td>2.06</td>
<td>0.0539</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>426.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 7.50%
Media general = 52.31%

4.3.8. Altura de planta

Para esta variable, se determinó que no existen diferencias significativas entre bloques cuadro 12, tampoco entre las líneas esto indica que existen diferencias no significativas por el efecto de los bloques ni en las líneas.

Al observar los resultados obtenidos en la altura de plantas, en promedio general la que más sobresalió fue la línea cinco figura 16 a comparación con las demás líneas en estudio.

De la misma manera se puede observar que la línea uno fue la de menos en altura con respecto a esta característica.

Al respecto, Condori (2005), reportó alturas de plantas de trigo en promedio de 78,81 y 91 cm en Charazani, Mocomoco y Chuma respectivamente, los cuales muestran alturas aproximadas a los obtenidos en el presente trabajo de investigación. Sin embargo en este periodo de desarrollo, se adicionó un riego por inundación con el cual se superó el déficit hídrico.
Figura 16. Altura de plantas de 12 líneas de trigo harinero en la campaña (2010-2011)

Valera (2010) reportó que el crecimiento vegetativo está en función de la sequía, el cual es causado por la insuficiencia hídrica (precipitación), sometiendo a las plantas a un estrés hídrico.

El promedio más alto lo obtuvo la línea cinco con 130 cm seguido por la línea seis con 111 cm. En general se puede apreciar que las líneas en estudio no muestran diferencias significativas, esto posiblemente por las características que expresa cada línea.

Cuadro 12. Análisis de varianza correspondientes a la altura de plantas de las 12 líneas de trigo

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td></td>
<td>3</td>
<td>71.09</td>
<td>23.69</td>
<td>0.27</td>
<td>0.85</td>
<td>NS</td>
</tr>
<tr>
<td>Tratamiento</td>
<td></td>
<td>11</td>
<td>956.04</td>
<td>86.91</td>
<td>0.99</td>
<td>0.47</td>
<td>NS</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>1027.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 16.16% Media General = 57.90%
Esta variable en particular es importante en la cosecha ya que está directamente relacionado al acame de los cultivos a consecuencia de granizadas y fuertes vientos que son típicos en la zona altiplánica.

Las variaciones en altura entre las líneas posiblemente sean debidas a las características genotípicas y fenotípicas de cada una de las líneas, sumados a estos los efectos medioambientales, que en la época se presentaron este hecho se corrobora por Gómez (1992), que indica que existen una directa relación entre la cantidad de precipitación y altura de plantas.

Complementando, Gómez (2001), señala que la gran importancia de la resistencia al acame en la obtención de buenos rendimientos indica al mismo tiempo que los tallos cortos y fuertes aumentan la duración es decir que el trigo puede permanecer en pie sin romperse, la altura promedio de trigo en zonas altiplánicas llegarían a 70 – 90 cm.

4.3.9. Peso de mil granos

El promedio más alto, se obtuvo en las líneas uno y nueve con 36 g seguido por la línea dos con 34 g; posteriormente tenemos a la línea diez con 31 g los valores más bajos que se registraron es de la línea seis con 20 g seguido por la línea siete con 23 g (Figura 17).

Figura 17. Peso de mil granos de 12 líneas de trigo harinero en el Altiplano norte en la campaña (2010-2011)
De acuerdo a los resultados obtenidos se puede deducir que existe relación directamente proporcional entre el peso de mil granos y el peso hectolitrico, sin embargo esta relación depende del cuajado del grano y de otros factores ambientales.

Al respecto, San Martin (2001) señala que el peso de mil granos influye en la calidad del grano teniendo como grano mínimo de 35 gramos. Por lo que las líneas de trigo mayores a 35 gramos se pueden atribuir a las características genéticas de las cuales son descendientes y desarrolladas en el medio geográfico de estudio favorable.

Cuadro 13. Análisis de varianza correspondientes peso de mil granos de las 12 líneas de trigo

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>71.09</td>
<td>181,55</td>
<td>0.27</td>
<td>0.85</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>11</td>
<td>956.04</td>
<td>492,31</td>
<td>0.03</td>
<td>NS</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>0.47</td>
</tr>
</tbody>
</table>

CV = 12,67% CM = 11,19%

En las líneas uno y nueve se obtuvieron 36 gramos en mil granos que no esta muy lejos de los que reportó San Martin (2001) 32 gramos de peso promedio de mil granos para la variedad Totora 80.

Así mismo se puede señalar que las líneas T6, T7 y T11 han obtenido los menores pesos de mil granos, la que hace suponer que no han tenido un llenado completo de sus granos.
5. **CONCLUSIONES**

- El periodo vegetativo del cultivo se prolongó debido a las condiciones climatológicas durante la campaña agrícola 2010-2011. A pesar de esto, es posible distinguir material genético precoz, como son las líneas uno y nueve, las cuales superan a la línea seis, con posibilidad de mejorar aún más en años normales, hasta alcanzar el umbral máximo de precocidad.

- Las características genotípicas de cada tratamiento (líneas) tuvieron poca influencia en las variables en estudio (altura de planta, peso de mil gramos, número de macollos, longitud de espigas, número de espiguillas por espiga. Pero si fueron influenciados notablemente por las condiciones, medioambientales especialmente la humedad del suelo en la siembra y posteriormente a la emergencia de las plántulas.

- De las variables medidas en los cultivares que fueron evaluadas dependen muy poco de las características genotípicas de cada variedad al contrario está determinada principalmente por las condiciones del medio es decir por las características de humedad del suelo, donde la presencia de humedad en el momento de la siembra hasta la germinación y posterior emergencia es decisiva para la fase de emergencia en el cultivo.

- Existen diferencias notables en cuanto el comportamiento de las líneas del material en estudio. Este comportamiento diferencial de los cultivares permite determinar que el medio ambiente tiene influencia en la expresión de los caracteres agronómicos y los componentes de rendimiento.

- En función del potencial genético de cada línea, las características medio ambientales e interacción genotipo-ambiente, existen líneas sobresalientes y deseables para las campañas, no siendo coincidente el hecho de que la mejor en una localidad, lo sea también en otra o en todas las campañas. Las mejores líneas en estudio fueron el uno y el nueve los cuales muestran rendimientos superiores a las otras líneas resaltando también las líneas dos y diez.

- El peso de mil granos, obteniendo en las líneas seleccionadas permiten avizorar con optimismo la posibilidad de mejorar la calidad comercial del grano
de trigo harinero producido en las zonas potencialmente trigueras del Altiplano y en el futuro poder obtener variedades con características cualitativas básicas requeridas por la industria molinera.

- Las características del grano obtenidas en la campaña, permite identificar cultivares potencialmente promisorios, tanto para el Altiplano central como también para el Altiplano norte.
6. **RECOMENDACIONES**

- Es necesario continuar este trabajo en las siguientes gestiones agrícolas y en la medida de las posibilidades incrementar el número de localidades en estudio de forma que se pueda enriquecer la interacción del comportamiento de las variedades seleccionadas a fin de poder consolidar los resultados obtenidos y lograr identificar cuando menos una o dos líneas de alto rendimiento, adaptadas a la zona altiplánica.

- Del mismo modo es indispensable realizar estudios para determinar la época de siembra más adecuada para este cultivo en el Altiplano, para poder acondicionar de la forma más óptima al ciclo del cultivo a las características climáticas imperantes, principalmente al periodo de lluvias a fin de asegurar la producción y el llenado del grano, el cual constituye el objetivo principal de la producción de este cereal.

- Es indispensable identificar y caracterizar las líneas que se están manejando actualmente en esta área ya que al constituirse en un material genético completamente adaptado, es factible utilizarlo como material base para iniciar trabajos de mejoramiento genético a objeto de iniciar trabajos de mejoramiento genético a objeto de aumentar la precocidad, rendimiento, resistencia a enfermedades y por su puesto mejorar la calidad y llenado del grano.
7. **BIBLIOGRAFÍA**

ANAPO, 2015 - 2016. Asociación de Productores de Oleaginosas y Trigo Disponible en http://www.anapobolivia.org/ consultado en 30 de septiembre de 2016

CALZADA, J. 1982 Métodos estadísticos para la investigación. Lima, PE. Universidad Nacional Agraria La Molina. p 295-308, 560-576

DÍAZ, A. 1968. Cereales de primavera. 1ra ed. Cuba. pp. 191 - 228

GARCÍÁOSVALD, 2004. Programa nacional de calidad de trigo

HERVAS, R. 2008 El Estado de Situación del Trigo en Bolivia centro de investigación y promoción del campesino. 1 p.

INSTITUTONACIONAL DE ESTADÍSTICA INE, 2015.

REINA, J. M. 2005 El trigo revista digital de investigación educación

<table>
<thead>
<tr>
<th>ID</th>
<th>LINEAS</th>
<th>ORIGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KAUZ/PASTORKAUZ/PASTOR</td>
<td>L-II</td>
</tr>
<tr>
<td>2</td>
<td>WEEBILLI1CGSS95B00014T-099Y-099B-099Y-099B-35Y</td>
<td>L-13</td>
</tr>
<tr>
<td>3</td>
<td>JUP/ZP//COC/3/PVN/4/GEN/5/KAL/BBEG*BOLTA03898-0T-5SB-2E-0A-0CHU-0CHU-0CHU-</td>
<td>EAR II ZA L-I</td>
</tr>
<tr>
<td>4</td>
<td>OR791432/VEE#6/3/REDENBOLTA02498-0T-8SB-3E-0A-0CHU-0CHU0CHU</td>
<td>L-2</td>
</tr>
<tr>
<td>5</td>
<td>KLIM//D6301/NAI60/3/CUC.FI/4/ASPS7LIRA.BOLTA03798-0T-10SB-5E-0A-0CHU-0CHU-</td>
<td>L-20</td>
</tr>
<tr>
<td>6</td>
<td>KAUZ//PRL/VEE#6/3REDENBOLTA02498-0T-4SB-1E-0A-0CHU-0CHU-0CHU</td>
<td>L-23</td>
</tr>
<tr>
<td>7</td>
<td>GALVEZ/WEAVER/3/VERONA/CN079//KAUZCMSS93B00271S-23Y-01 OM-010 Y-010M-6Y-0M</td>
<td>EAR II ZA L-8</td>
</tr>
<tr>
<td>8</td>
<td>JUP/ZP//COC/3/PVN/4/GEN/5/BB/TOB/4/CN067..BOLTA10898-0T0-6SB-4E-0A-0CHU-0CHU-0CHU</td>
<td>L-17</td>
</tr>
<tr>
<td>9</td>
<td>KAUZ*2/4/CAR//KAL/BB/3/NAC/5/KAUZ/6/OR..BOLTA01998-0T-2SB-4E-0A-0CHU-0CHU-0CHU</td>
<td>L-21</td>
</tr>
<tr>
<td>10</td>
<td>KAUZ//PRL/VEE#6/3REDENBOLTA02498-0T-10SB-4E-0 A-0CHU-0CHU</td>
<td>L-24</td>
</tr>
<tr>
<td>11</td>
<td>ATTILA*2/PBW65CGSS96B00123F-099M-037Y-099M-26Y-OB</td>
<td>ERR ZA L-13</td>
</tr>
<tr>
<td>12</td>
<td>TEPOCA T89 (TESTIGO)</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 1. Cuadro del Material genético de 12 líneas avanzadas de trigo procedentes del vivero 41 IBWSN del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT).
Anexo 2. Preparación de las semillas para su respectiva siembra en el terreno de las doce líneas de trigo en la comunidad de Taramaya.

Anexo 3. Surcos listos para la implementación de los genotipos en el suelo definitivo para el experimento
Anexo 4. Croquis y orientación del campo de experimento de 12 líneas avanzadas de trigo en la comunidad de Taramaya.
Anexo 5. Siembra a chorro continuo de los doce líneas en el terreno definitivo en la comunidad Taramaya de la localidad de Achacachi.

Anexo 6. Plántulas emergidas después de la siembra realizada de los doce genotipos en estudio.
Anexo 7. Identificación de los bloques y líneas en estudio en el campo definitivo.

Anexo 8. Toma de datos de la altura de plantas, en las doce líneas en observación del trigo harinero en la comunidad de taramaya.
Anexo 9. Cosecha de los doce genotipos en estudio según su madurez fisiológica.

Anexo 10. Preparación de las doce líneas para el trillado y posterior venteado de forma individual.
Anexo 11. Peso de mil granos de las distintas líneas que fueron estudiadas expresados en gr.

Anexo 12. Peso de grados libre de impurezas de las distintas genotipos que fueron estudiadas en la comunidad de Taramaya.
PROPUESTA
DIFUSIÓN E INCENTIVO DEL CULTIVO DE TRIGO DE LINEAS PROMISORIAS
EN LA COMUNIDAD DE TARAMAYA, PROVINCIA OMASUYOS

1. Antecedentes

En la Constitución Política del Estado en el artículo 16 de su párrafo I, indica que toda persona tiene derecho al agua y alimentación, en el párrafo II, señala que el Estado tiene la obligación de garantizar la seguridad alimentaria, a través de una alimentación sana adecuada y suficiente para toda la población.

La ley 1333 de Medio Ambiente en su artículo 66 señala que la producción agropecuaria debe ser desarrollada de tal manera que se pueda lograr sistemas de producción y uso sostenible considerando los siguientes aspectos:

La utilización de los suelos para uso agropecuario deberá someterse a normas prácticas que aseguren la conservación del medio de los agros sistemas.

En el artículo 67 indica: "las instituciones de investigación agropecuaria encargadas de la generación y trasferencia de tecnologías, deberá orientar sus actividades a objeto de elevar los índices de productividad a largo plazo".

La seguridad alimentaria es un principio fundamental para las Naciones Unidas y para el Mundo en General, en la que hace hincapié el ofrecimiento de las formas y maneras de producir alimento para la población.

La ley 144 de la revolución productiva comunitaria agropecuaria en su artículo 2 señala que la presente Ley tiene por objeto normar el proceso de la Revolución Productiva Comunitaria Agropecuaria, para la soberanía alimentaria estableciendo las bases institucionales, políticas y mecanismos técnicos, tecnológicos y financieros de la producción, transformación y comercialización de productos agropecuarios y forestales, de los diferentes actores de la economía plural; Priorizando la producción orgánica en armonía y equilibrio con las bondades de la madre tierra.

Y en su artículo 3 señala que tiene como finalidad lograr la soberanía alimentaria en condiciones de inocuidad y calidad para el vivir bien de las bolivianas y los bolivianos, a través de la Revolución Productiva Comunitaria Agropecuaria en el marco de la economía plural.
En este entendido, se pretende difundir e incentivar en el cultivo, producción, consumo y comercialización del trigo, de dos líneas promisorias de trigo harinero que tuvo mejor adaptación y características agrícolas y rendimiento, en la introducción que se hizo en la campaña agrícola 2010 – 2011, en la comunidad de Taramaya del municipio de Achacachi, de la provincia Omasuyos.

2. **Planteamiento del problema**

El Altiplano Norte del Departamento de La Paz, donde se hizo la introducción de líneas de trigos promisorios y donde se encuentra la comunidad de Taramaya, presenta condiciones adversas y una serie de factores naturales que limitan la intensificación de la agricultura, el clima, déficit hídrico durante la mayor parte del año, heladas, granizadas y suelos deficientes en sus características físicas y químicas, además el mal manejo de los suelos que provocan erosión, poca fertilidad y por ende el bajo rendimiento de sus diferentes cultivos, hace que el trigo se cultive poco en estas regiones ocasionando deficiencias nutricionales en vitaminas y minerales que son aportados por este cereal, en la vida alimenticia de los habitantes y su calidad de vida.

Por ello, la presente propuesta, a través de la difusión e incentivo en el cultivo de líneas de trigo promisorias, con la participación y gestión de instituciones como el municipio de Achacachi e Instituto Nacional de Innovación Agropecuaria Forestal, pretende dar una respuesta a la siguiente interrogante.

3. **Formulación del problema**

¿De qué manera contribuirá a la mejora de la calidad de vida y uso adecuado de los suelos, el cultivo de trigos promisorios en la comunidad de Taramaya?

4. **Delimitación del problema**
 a. **Delimitación geográfica**

La propuesta se desarrollara en el altiplano Norte del departamento de La Paz, específicamente en la comunidad de Taramaya, del municipio de Achacachi de la provincia Omasuyos, situada a 96 Km aproximadamente del sede de gobierno. Limita
al Norte con la provincia Larecaja y Camacho, al Sur con la provincia Los Andes, al Este con la Cordillera de Oriental o Real y al Oeste con el Lago Titicaca.

b. Delimitación espacial

El área donde se introdujo líneas de trigo promisorio y donde se pretende incentivar su cultivo, se encuentra ubicada en la comunidad de Taramaya del municipio de Achacachi de la provincia Omasuyos del Departamento de La Paz.

c. Delimitación temporal

Esta propuesta es a largo plazo, puesto que al inicio tendrá la participación del Municipio de Achacachi y el Instituto Nacional de Innovación Agropecuaria Forestal, posteriormente será autosustentable por cada comunario.

5. Justificación del proyecto

El Estado Plurinacional de Bolivia, actualmente tiene normas y políticas de gobierno, de garantizar la seguridad y soberanía alimentaria, a través de una alimentación sana, adecuada y suficiente para toda la población.

Por lo que el trigo es considerado como uno de los principales alimentos, pero por su bajo rendimiento, y la escases de variedades mejoradas a factores abióticos y bióticos, la población no se dedica a este cultivo en las localidades de la región del Altiplano norte del departamento de La Paz, teniendo vocación agrícola, la única fuente de ingreso económico es la producción de leche cruda, papa y haba para el consumo familiar. El monocultivo y la parcelación de tierras ocasionan la baja fertilidad y mal manejo del suelo. Por tanto, con la presente propuesta se quiere coadyuvar en el cumplimiento de la soberanía alimentaria con el incentivo al cultivo de trigos promisorios y dar una alternativa para el buen uso suelos, con la rotación de cultivos en la zona mencionada.

6. Objetivos
 a. General
 - Difundir e incentivar el cultivo de las dos líneas promisorias de trigo harinero que se mostraron mejor en cuanto a características agronómicas y rendimiento, introducidas en la campaña agrícola del 2010-2011, para coadyuvar en la mejora de la calidad de vida y el uso adecuado de suelos, en
la comunidad de Taramaya del municipio de Achacachi de la provincia Omasuyos.

b. **Específicos**

- Gestionar la aprobación y su factibilidad de la propuesta de difusión de líneas promisorias de trigo harinero, a las autoridades pertinentes.
- Gestionar la coordinación entre las autoridades del municipio de Achacachi, Instituto Nacional de Innovación Agropecuaria Forestal y las autoridades sindicales de la comunidad, para su cometido.
- Capacitar a familias beneficiarias en el tema de siembra, manejo de plagas, enfermedades y uso adecuado del suelo.
- Realizar el seguimiento y acompañamiento técnico a parcelas cultivadas en la comunidad durante todo el ciclo productivo del cultivo.

7. **Propósito**

Coadyuvar en la consolidación de la seguridad y soberanía alimentaria del Estado Plurinacional, a partir de la difusión y multiplicación de granos de las líneas promisorias de trigo harinero, asegurando la producción de la misma en la comunidad de Taramaya primero, para posteriormente proveer a las comunidades aledañas, dando de esta forma una alternativa de tener otra fuente que genere ingresos y mejore la calidad de vida de los estantes.

8. **Descripción de actividades**
 a. **Beneficiarios**
 i. **Directos**

Los beneficiarios directos de esta propuesta serán 750 familias aproximadamente

 ii. **Indirectos**

Serán las familias de las comunidades aledañas quienes se beneficiarán con esta propuesta

Instituciones como el municipio de Achacachi y el Instituto Nacional de Innovación Agropecuaria y Forestal

9. **Desarrollo de actividades**

La presente propuesta se realizará en el presente ciclo agrícola de la región 2016 – 2017.
10. **Gestión interinstitucional**

Comprometer recursos económicos del municipio de Achacachi e involucrados en la presente propuesta, para la ejecución del mismo.

Fortalecer a las autoridades locales de la comunidad, para la formación de sociedades unitarias productoras.

11. **Cronograma**

<table>
<thead>
<tr>
<th>Nº</th>
<th>Actividad</th>
<th>Meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gestionar la aprobación y su factibilidad de la propuesta de difusión de líneas promisorias de trigo harinero, a las autoridades pertinentes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gestionar la coordinación entre las autoridades del municipio de Achacachi, Instituto Nacional de Innovación Agropecuaria Forestal y las autoridades sindicales de la comunidad, para su cometido.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Capacitar a familias beneficiarias en el tema de siembra, manejo de plagas, enfermedades y uso adecuado del suelo.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Realizar el seguimiento y acompañamiento técnico a parcelas cultivadas en la comunidad durante todo el ciclo productivo del cultivo.</td>
<td></td>
</tr>
</tbody>
</table>

CRONOGRAMA DE ACTIVIDADES

<table>
<thead>
<tr>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

67