Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis

A. Fournet1,2, A. Angelo Barrios2, V. Munoz2, R. Hocquemiller3, A. Cavé3
1 Institut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM), Département Santé, 213, rue La Fayette, 75480 Paris, Cedex 10, France; 2 Instituto Boliviano de Biologia de Altura (IBBA), CP 717, La Paz, Bolivia; 3 Laboratoire de Pharmacognosie, associé au CNRS, Faculté de Pharmacie, Université Paris XI, 92296 Châtenay-Malabry, Cedex, France

Abstract

Plumbagin, 3,3'-biplumbagin and 8,8'-biplumbagin are naphthoquinones isolated by activity-directed fractionation from a Bolivian plant, *Pera benensis*, used in folk medicine as treatment of cutaneous leishmaniasis caused by *Leishmania braziliensis*. BALB/c mice were infected with *L. mexicana* or *L. venezuelensis* and treated 24 h after the parasitic infection with plumbagin (5 or 2.5 mg/kg/day), 3,3'-biplumbagin, 8,8'-biplumbagin (25 mg/kg/d) or Glucantime® (200 mg/kg/d). Lesion development was the criteria employed to evaluate the inhibitory effect. The bis-naphthoquinones were less potent than Glucantime against *L. amazonensis* and *L. venezuelensis*. Plumbagin and Glucantime delayed the development of *L. amazonensis* and *L. venezuelensis*. Assays of a single local treatment on footpad infection two weeks after the parasitic inoculation with *L. amazonensis* showed that 8,8'-biplumbagin (50 mg/kg/d) was as potent as Glucantime (400 mg/kg/d).

Introduction

Cutaneous and mucocutaneous leishmaniasis are endemic diseases in the tropical subandean regions. Cutaneous leishmaniasis is popularly known as espundia in the area of Bolivia called Oriente by the natives. The use of medicinal plants for the specific treatment of cutaneous leishmaniasis is quite widespread, specially *Pera benensis* (Euphorbiaceae). The fresh stem barks are applied directly on the lesion.

We have previously reported the study of the chemical identification of active compounds and the leishmanial and trypanocidal activities in vitro of three active naphthoquinones (Fig. 1), plumbagin, 3,3'-biplumbagin and 8,8'-biplumbagin (Fournet et al., 1990). These compounds isolated by activity-directed fractionation from the stem barks and root barks of *Pera benensis*, displayed activity in vitro at 10 µg/ml against three strains of promastigote forms of *Leishmania* species, *L. amazonensis* (PH 8 and H-142), *L. braziliensis* (M 2903) and *L. donovani* (2682) and six strains of epimastigote forms of *Trypanosoma cruzi*. Plumbagin was also active against amastigote forms of *L. amazonensis* (PH 8) infecting the mouse peritoneal macrophages.

The aims of this present paper were to evaluate the activity of naphthoquinones in BALB/c mice infected with *L. amazonensis* or with *L. venezuelensis*, two species of American cutaneous leishmaniasis. We have used *L. venezuelensis* because this parasite produces for the hamster a rapid growing granuloma at the site of inoculation, containing abundant amastigotes. After a few months, we have observed necrosis on the nose and the head of the animal.

The mouse footpad infection has been used as model for these experiments (Avila et al., 1990; Coleman et al., 1989).

Materials and methods

Animals

Female or male BALB/c mice were supplied by Charles River Breeding Laboratory and then were bred in IBBA (Bolivia). Mice weighed 18–20 g and eight weeks old when bioassays were initiated.
Leishmania strains

L. amazonensis (IFLA/BR/67/PH 8) and *L. venezuelensis* (VE/74/PM-H3) were used. The source and history of this isolate have been described by Bonfante-Garrido (1983). BALB/c mice (*n* = 10, *n* = 8 or *n* = 6) were infected subcutaneously in the right rear footpad with 1 × 10⁴ amastigotes obtained from infected hamsters. The parasites were delivered in 200 µL phosphate buffered saline (PBS), with control mice receiving PBS only.

The growth of the lesion was determined weekly by measuring the diameter of both rear feet with a direct reading vernier caliper (Ref: Kroelin 10DI 0076). The size of lesion in millimeters (Index of Leishmaniasis) was calculated by subtracting the measurements obtained for the uninfected foot from that of the infected foot. Measurements started one day prior to the inoculation of amastigotes and continued for 8 or 9 weeks.

Drug treatment

Two experiments were conducted. Mice in the first experiment were treated by subcutaneous route. Glucantime was given at a dose of 200 mg/kg/d, plumbagin at 5 or 2.5 mg/kg/d, 3,3'-biplumbagin and 8,8'-biplumbagin at 25 mg/kg/d. Drug treatment started one day after the inoculation of amastigotes and continued once daily for 14 days.

In the second experiment, mice were treated directly on the infected rear footpad with a single dose 14 days after inoculation of parasites. For this experiment, mice were treated with Glucantime at 400 mg/kg/d, plumbagin at 10 mg/kg/d, 3,3'-biplumbagin and 8,8'-biplumbagin at 50 mg/kg/d.

The naphthoquinones were dissolved in 40 µL of polysorbate (Tween 80, Prolabo). For each experiment was calculated the mean and standard error of the mean (S.E.M.).

Results

Activity of naphthoquinones of Leishmania amazonensis

Separate experiments were conducted in which plumbagin was administered at different doses (7.5, 5, and 2.5 mg/kg daily) beginning 24 hr prior to infection with *L. amazonensis* (PH 8). Mice treated with 7.5 mg died within four weeks after the beginning of experiment. Figure 2 shows the combined results obtained with mice treated with 2.5 mg/kg daily of plumbagin compared to mice treated with 200 mg/kg daily of Glucantime. After eight weeks mice treated with plumbagin or with Glucantime had an average lesion size of 4 mm compared with 6.8 mm for control. We did not observe toxic effect of plumbagin at 2.5 mg/kg daily. We have obtained the same effects when plumbagin was administered at 5 mg/kg.

Table 1 presents the experiments of treatment with bis-naphthoquinones, 3,3'-biplumbagin and 8,8'-biplumbagin. These compounds were less toxic than plumbagin but less efficient at 25 mg/kg daily. After nine weeks, mice treated
of natural naphthoquinones in BALB/c mice

Table 2 Effect of Glucantime (400 mg/kg/d), plagabagin (10 mg/kg/d), 3,3'-biplumbagin (50 mg/kg/d) and 8,8'-biplumbagin (50 mg/kg/d) on the development of *L. amazonensis* (PH 8) in BALB/c mice (−/SEM). Drug were given on the infected rear food pad with a single treatment 14 days after the inoculation of *L. amazonensis*.

<table>
<thead>
<tr>
<th>Weeks post infection</th>
<th>Control**</th>
<th>Diameter of lesion*</th>
<th>Plumbagin**</th>
<th>3,3'-biplumbagin</th>
<th>8,8'-biplumbagin**</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.35 (0.08)</td>
<td>0.45 (0.05)</td>
<td>0.41 (0.34)</td>
<td>0.53 (0.21)</td>
<td>0.35 (0.12)</td>
</tr>
<tr>
<td>4</td>
<td>1.01 (0.20)</td>
<td>0.53 (0.23)</td>
<td>***</td>
<td>1.45 (0.38)</td>
<td>1.15 (0.38)</td>
</tr>
<tr>
<td>6</td>
<td>2.87 (0.29)</td>
<td>1.51 (0.37)</td>
<td>2.8 (0.64)</td>
<td>2.13 (0.72)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.9 (0.41)</td>
<td>2.63 (0.58)</td>
<td>3.75 (0.45)</td>
<td>3.13 (1.12)</td>
<td></td>
</tr>
</tbody>
</table>

*Averages measurements in mm for 6 mice. **Standard error of the mean (S.E.M.).*** 5 mice were dead one week after the treatment with plumbagin.

Table 3 Effect of Glucantime (200 mg/kg/d), plagabagin (5 mg/kg/d), 8,8'-biplumbagin (25 mg/kg/d) on the development of *L. venezuelensis* (H-3) in BALB/c mice (−/SEM). Drug were given for 14 d-period commencing 1 d after inoculation of *L. venezuelensis*.

<table>
<thead>
<tr>
<th>Weeks post infection</th>
<th>Control**</th>
<th>Diameter of lesion*</th>
<th>Plumbagin**</th>
<th>8,8'-biplumbagin**</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.6 (0.30)</td>
<td>0.45 (0.19)</td>
<td>0.45 (0.26)</td>
<td>0.32 (0.08)</td>
</tr>
<tr>
<td>4</td>
<td>2.1 (0.19)</td>
<td>0.95 (0.21)</td>
<td>1.18 (0.26)</td>
<td>1.12 (0.45)</td>
</tr>
<tr>
<td>6</td>
<td>4.1 (0.21)</td>
<td>2.5 (0.34)</td>
<td>2.95 (0.80)</td>
<td>2.98 (0.85)</td>
</tr>
<tr>
<td>8</td>
<td>6.6 (0.51)</td>
<td>4.25 (0.44)</td>
<td>4.22 (0.85)</td>
<td>5.43 (0.92)</td>
</tr>
</tbody>
</table>

*Averages measurements in mm for 6 mice. **−/SEM.***

with bis-naphthoquinone had an average lesion size of 5 mm and 5.6 mm respectively compared with 3.7 mm for the mice treated with Glucantime and 6.9 mm for the untreated controls.

Table 2 shows the results of a local injection of naphthoquinones or Glucantime near the site of the lesion on the infected footpad, 14 days after the injection of mice BALB/c with *L. amazonensis*. Mice treated with plagabagin at 10 mg kg⁻¹ died two weeks after the inoculation of this compound. Lesions for mice treated with 50 mg/kg of 8,8'-biplumbagin or with 400 mg/kg of Glucantime did not differ significantly after eight weeks, 3.1 mm and 2.8 mm respectively.

Activity of naphthoquinones on Leishmania venezuelensis

The results of the experiment with mice BALB/c infected with *L. venezuelensis* and treated 24 hr after the parasitic infection with 5 mg/kg daily of plagabagin for 14 days are presented in the Figure 3. The lesion development of mice treated with plagabagin or Glucantime were identical four weeks after the beginning of the experiment, 1.2 mm and 0.9 mm respectively. The last four weeks, the lesion size increased of 3.4 mm (Glucantime), 3 mm (plagabagin) and 5 mm (untreated controls).

Just a bis-naphthoquinone, 8,8'-bipplumbagin has been tested in mice infected with *L. venezuelensis* (Table 3). Lesion size of mice treated with this compound (25 mg/kg daily) and with Glucantime did not differ significantly during the first seven weeks of experiment, 3.9 mm and 3.7 mm respectively. Last week the lesion size of mice treated with 8,8'-bipplumbagin or with Glucantime increased of 1.5 mm and 0.6 mm.

Discussion

The antileishmanial effect of three naphthoquinones isolated from *Peria benensis*, on mice BALB/c infected with *L. amazonensis* or with *L. venezuelensis*, is different between plagabagin and its two dimers. Our results confirm the in vivo activity of plagabagin against *L. amazonensis* (Croft et al., 1985) and the in vitro activity against promastigote and amastigote forms of *Leishmania* spp. previously described (Fournet et al., 1990). Mice treated with plagabagin (2.5 mg/kg daily) developed an equivalent lesion size to mice treated with Glucantime. Higher concentrations of plagabagin do not increase the activity against *L. amazonensis* or *L. venezuelensis*, but produce toxic effects for mice. We have observed local necrosis in site of the treatment and weight loss during the first five weeks.

The both dimers of plagabagin, 3,3'-biplumbagin and 8,8'-biplumbagin, are less toxic but less active than plagabagin. Only 8,8'-biplumbagin has showed an equivalent activity as Glucantime when administered locally in the infected rear footpad.

This study has demonstrated that stem barks of *P. benensis* are efficient to cure the lesions of cutaneous leishmaniasis caused by the protozoan *L. braziliensis*. This antileishmanial activity is due to presence of high concentration of naphthoquinones, specialy plagabagin. Naphthoquinones affect *Leishmania* spp. by generating free oxygen radicals (Docampo et al., 1978; Neal and Croft, 1984) within parasites which are defective in protective mechanisms against oxygen radicals, particularly catalase (Goijman and Stoppani, 1985).

The results obtained with plagabagin are similar to those observed (Croft et al., 1985) using mice BALB/c.
infected with *L. amazonensis* (LV/78) or *L. donovani* (LV9). A bis-naphthoquinone isolated from the Indian plant, diospyr-
rine, a dimer of 7-methyl-juglone is also active in vitro against
L. donovani (Hazra et al., 1987). Several authors have reported an antiprotozoal activity of naphthoquinones (Callahan et al.,
1988; Pinto et al., 1987; Wright and Phillipson, 1990), partic-
larly of lapachol and β-lapachone isolated from *Tabebuia rosea* (Bignoniaceae) against *Plasmodium falciparum* (Carvalho et
al., 1988) and against *Trypanosoma cruzi* (Gonçalves et al.,
1980), and a derived of lapachone, lapinone (Hudson et al.,
1985) against *Plasmodium vivax*. Recently synthetic naph-
 throquinones (566C80) have been described as active against
Pneumocystis carinii (Welcombe Foundation, 1990). Several
authors have described the activity of naphthoquinones against
skin diseases, plumbagin (Gujar, 1990) and 2-hydroxy-1,4-
naphthoquinones for prevention of dermatitis on the scalps
(Tscha and Yutaka, 1990).

In conclusion, the results of this study show that treatment with a topical application directly on the lesion of leishmaniasis of stem barks of *Pera benensis* may be effective
against leishmaniasis. It could be possible to propose an effective ointment prepared locally with a low concentration of
plumbagin or an other derived of this naphthoquinone less toxic
as 8,8’-biplumbagin. These formulations would be developed in
demic regions of cutaneous and mucocutaneous leishmaniasis,
in particular in areas of colonization of Bolivia when occure
the lack of usual drugs as pentavalent antimonials.

References

Avila, J. L., T. Rojas, H. Monzon, J. Comití: Sinefungin as treatment for

Bonfante-Garrido, R.: New observations on *Leishmania mexicana

Callahan, H. K., R. K. Couch, E. R. James: Helminth anti oxidant
enzymes: a protective mechanism against host oxidant. Parasitol.

Carvalho, L. H., E. M. M. Rocha, D. S. Raslan, A. B. Oliveira, A. U.
Kretti: In vitro activity of natural and synthetic naphthoquinones

Coleman, R. E., J. D. Edman, L. H. Semprevivo: The effect of pen-
tostam and cimetidine on the development of leishmaniasis (*Leish-
mania mexicana amazonensis*) and concomitant malaria (*Plas-

Croft, S. L., A. T. Evans, R. A. Neal: The activity of plumbagin and other
electron carriers against *Leishmania donovani* and *Leishmania
653

Docampo, R., W. Desouza, F. S. Cruz, I. Roitman, R. Cover, W. E.
Gutteridge: Ultrastructural alterations and peroxide formation
induced by naphthoquinones indifferent stages of *Trypanosoma

Fournet, A., V. Muñoz, A. Angelo, M. Aguilar: Plantes médicinales
boîtières anti-parasitaires. International Congress of Parasiti-
tology S 9 A29 (1990) Paris

Goijman, S. G., A. O. M. Stoppani: Effects of β-lapachone, a peroxide-
generating quinone, on macromolecule synthesis and degradation
280

Gonçalves, A. M., M. E. Vascorcellos, R. Docampo, F. S. Cruz, W. De
Sousa, W. Leon: Evaluation of the toxicity of 3-allyl-β-lapachone
159–176

Gujar, G. T.: Plumbagin, a naturally occurring naphthoquinones. Its
pharmacological and pesticidal activity. Fitoterapia 59 (1990) 387–
393

tozaal activity of disopyrin towards *Leishmania donovani* pro-
741

Latter, N. McHardy, R. B. Williams: Novel antimalarial hydronap-
throquinone with potent broad spectrum antiprotozoal activity. Par-
asitol. 90 (1985) 45–54

Neal, R. A., S. L. Croft: An in vitro system for determining the activity
of compounds against the intracellular amastigote form of *Leish-

Pinto, A. V., V. F. Ferreira, R. S. Capella, B. Gilbert, M. C. R. Pinto, J.
Santana Da Silva: Activity of some naphthoquinones on blood
Hyg. 81 (1987) 609–610

Sofowora, A.: Medicinal Plants and traditional medicine in Africa. Ed.

Tscha, N., A. Yutaka: Topical formulations containing 2-hydroxy-1,4-
Kokai Tokko Kyo JP 02 42 012 (1990)

Wellcombe Foundation: Preparation of naphthoquinones derivatives and
pharmaceutical compositions containing them for treatment infec-
tion with *Pneumocystis carinii*. Jap. Kokai Tokko Kyo JP 02 91
037 (1990)

Wright, C. W., J. D. Pallipson: Natural products and the development of

Dr. Alain Fournet

Laboratoire de Pharmacognosie, Faculté de Pharmacie
Rue Jean-Baptiste Clément
F-92296 Chatenay-Malabry Cedex
France