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ORIGINAL ARTICLE

Cardiac and vascular disease prior to hatching in chick
embryos incubated at high altitude

C. E. Salinas', C. E. Blanco?, M. Villena', E. J. Camm?, J. D. Tuckett’, R. A. chrakkodf R
A. D. Kane®, A. M. Shelley’, F. B. P. Wooding®, M. Quy’ and D. A. Giussani’*

! Instituto Boliviano de Biologia de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Pas, Bolivia
Department of Pediatrics, Maastricht University, Maastricht, The Netherlands
3Depzzrtmmt of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

The partial contributions of reductions in fetal nutrition and oxygenation to slow fetal growth and a developmental origin of cardiovascular
disease remain unclear. By combining high altitude with the chick embryo model, we have previously isolated the direct effects of high-altitude
hypoxia on growth. This study isolated the direct effects of high-altitude hypoxia on cardiovascular development. Fertilized eggs from sea-level
or high-altitude hens were incubated at sea level or high altitude. Fertilized eggs from sea-level hens were also incubated at high altitude with
oxygen supplementation. High altitude promoted embryonic growth restriction, cardiomegaly and aortic wall thickening, effects which could
be prevented by incubating eggs from high-altitude hens at sea level or by incubating eggs from sea-level hens at high altitude with oxygen
supplementation. Embryos from high-altitude hens showed reduced effects of altitude incubation on growth restriction but not on cardio-
vascular remodeling. The data show that: (1) high-altitude hypoxia promotes embryonic cardiac and vascular disease already evident prior to
hatching and that this is associated with growth restriction; (2) the effects can be prevented by increased oxygenation; and (3) the effects are

different in embryos from sea-level or high-altitude hens.
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Introduction

Despite healthy skepticism,"? evidence derived from human
epidemiologic studies linking small size at birth with greater
cardiovascular risk has gathered increasing support in recent
years.>* This risk of cardiovascular disease not only results
from intrauterine growth retardation in complicated preg-
nancy, but the association also extends across the normal
range of birth weight in healthy pregnancy."” A component
of fetal growth is determined by the quality of the intrauterine
environment. In turn, the quality of the intrauterine envir-
onment is largely determined by the available nutrient and
oxygen supply to the growing young. Consequently, there
have been many reports investigating the association between
reduced fetal growth and increased risk of cardiovascular
disease in animal models in which development has been
complicated by reductions in fetal nutrition and/or in fetal
oxygenation.”'°

Under physiologic conditions, in humans, fetal hypoxia
occurs most commonly during the hypobaric hypoxia of
pregnancy at high altitude.’ Although several investigators
have reported reduced birth weight in human babies with
increasing altitude,'*™” there have been no reports on the

*Address for Correspondence: Dr D. A. Giussani, Department of
Physiology, Development and Neuroscience, University of Cambridge,
Cambridge, CB2 3EG, UK.

(Email dag26@cam.ac.uk)

association between fetal growth restriction and alterations in
cardiovascular development already evident prior to birth at
high altitude in any species. Most high-altitude human
populations are impoverished, therefore the extent to which
any effects on fetal development during pregnancy at high
altitude is governed by fetal under-nutrition or fetal under-
oxygenation, remains uncertain. By using the chick embryo as
an animal model, an earlier study in our laboratory isolated
the direct effects of developmental hypoxia owing to high
altitude on embryonic growth, independent of changes in
maternal nutrition and of the physiology of the mother or the
placenta.'® The data in that study showed that high-altitude
incubation of fertilized eggs laid by sea-level hens markedly
restricted growth of the chick embryo. Incubation at high
altitude of fertilized eggs laid by high-altitude hens also
restricted embryonic growth, but to a lesser extent compared
to eggs laid by sea-level hens. By contrast, incubation at sea
level of fertilized eggs laid by high-altitude hens not only
restored, but also enhanced growth relative to sea-level con-
trols. Incubation at high altitude of sea-level eggs with oxygen
supplementation completely prevented the high-altitude-
induced growth restriction. Thus, the oxygenation of the
chick embryo, independent of maternal nutrition, has a
predominant role in the control of its growth during devel-
opment at high altitude. Further, prolonged high-altitude
residence confers protection against the deleterious effects of
hypoxia on growth.



The present study tested the hypothesis that development
at high altitude is related to a prenatal origin of cardiovascular
disease and that hypoxia is the mechanism underlying the
relationship. The hypothesis was tested three-fold: (1) by
investigating the effects on the cardiovascular development
of fertilized eggs laid by sea-level hens when incubated at high
altitude; (2) by investigating whether alterations in the
embryonic cardiovascular system induced by development at
high altitude could be prevented by incubation at sea level of
fertilized eggs laid by high-alticude hens; and (3) by investi-
gating whether alterations in the embryonic cardiovascular
system induced by development at high altitude could be
prevented by incubation at high altitude of sea-level eggs with
oxygen supplementation. We were also interested in whether
prolonged high-altitude residence conferred any protection
against any deleterious effects of hypoxia on cardiovascular
development.

Methods

The study was done in Bolivia, in the high-altitude city of La
Paz (3600 m, 494 mmHg, approximate ambient dry PO,
100 mmHg) and the sea-level city of Santa Cruz (420 m,
760 mmHg, approximate ambient dry PO, 160 mmHg). The
incubation procedures have been published earlier in detail."®
In brief, fertilized eggs were obtained from Black Leghorn
chickens that had been reared at the sea-level city of Santa
Cruz or at the high-altitude city of La Paz for at least six
generations. Fertilized eggs from sea-level hens, laid at sea
level, were randomly divided and incubated either at sea level
(SLSL, == 31) or high altitude (SLHA, » = 19). Eggs from
high-altitude hens, laid at high altitude, were randomly
divided and incubated either at high altitude (HAHA,
n=33) or sea level (HASL, n=25). SLHA embryos were
also incubated with oxygen supplementation (SLHA + O,,
n=21) at rates to maintain sea-level oxygen partial pressures
according to Dalton’s Law."”

All incubations (Polyhatch; Brinsea Products Ltd, UK) were
carried under conditions to optimize development, with con-
trolled temperature (38°C), humidity (60%) and appropriate
egg rotation. On day 20, out of the 21-day incubation period,
the egg was weighed, the air cell was exposed and chorio-
allantoic venous blood was drawn into a 1 ml syringe for analysis
of PO, (ABL 500; Radiometer, Copenhagen, Denmark),
whenever possible in duplicate. Following euthanasia by spinal
transection, the embryo was removed from the eggshell and
weighed. Head diameter and body length (crown—rump length)
were measured with a digital micrometer.

The embryonic heart was dissected and weighed. In a
subset of animals, following maximal dilatation using ethylene-
diaminetetraacetic acid (EDTA; 50 mg/kg), a 5 mm segment of
the thoracic aorta was dissected at the level of the apex of the
heart, and the heart and aortic segment were fixed in 4%
phosphate buffered paraformaldehyde for 24h and then

stored in physiologic buffer. Hearts and vessels were then
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embedded in paraffin. To account for possible shrinkage
because of paraffin processing, the diameter of erythrocytes in
heart sections was measured and compared to that obtained
by measuring fresh erythrocytes from chick embryos at the
same stage of incubation.”® All measurements were corrected
using this factor. Mid-cardiac 4-pum coronal sections and
7-pm transverse aortic sections were stained with van Gieson’s
solution. Slices were digitally recorded and analyzed by
computerized morphometric systems (Quantimet 570; Leica,
The Netherlands and Hauppauge Computer Works, UK).

All procedures were approved by the local ethics committee
of the Bolivian Institute for High Alttude Biology (Consejo
Técnico, IBBA, Universidad Mayor de San Andrés, La Paz,
Bolivia). Comparisons between groups were assessed statistically
using one-way ANOVA with the Student—Newman—Keuls
post-hoc test (Sigma-Stat; SPSS Inc., Chicago, IL, USA). The
relationships between indices of cardiovascular remodeling and
embryonic size or PO, were assessed using the Pearson Product-
Moment correlation. A comparison between the slopes and
intercepts of regression lines was conducted according to
Armitage and Berry.”' For all comparisons, statistical sig-
nificance was accepted when P <C0.05.

Results
Oxygenation and biometry in the chick embryo

Analysis of this subset of animals confirms that incubation at
high altitude induced embryonic systemic hypoxia and
growth restriction (Table 1). The embryonic growth restric-
tion is disproportionate as the ratio of the head diameter to
body length was increased following incubation at high ald-
tude (Table 1). When weight was expressed as a percentage of
the initial egg mass, HAHA embryos showed partial protec-
tion against the effects of high-altitude incubation on growth.
Further, the relative body weight in HASL embryos was
greater than any other group (Table 1).

Cardiac measurements in the chick embryo

Relative to SLSL chick embryos, SLHA and HAHA groups
showed significant increases of similar magnitude in the
relative cardiac weight, and in the relative wall thickness of
the left and right ventricles and septum (Fig. 1 and Table 2).
In contrast, HASL and SLHA + O, embryos had cardiac
measurements similar to SLSL embryos (Fig. 1). However,
the relative thickness of the walls of the left and right ven-
tricles was significantly reduced when compared to all other
groups in SLHA + O, embryos (Fig. 1).

Aortic measurements in the chick embryo

SLHA embryos showed significant aortic medial thickening,
as indexed by calculation of the aortic wall to lumen area ratio
(Fig. 2). Aortae from HAHA embryos had the greatest wall
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Table 1. Oxygenation and biometry in the chick embryo

PO, (mmHg) Absolute body weight (g) Relative body weight (%) Head diameter : body length
SLSL 56 6 (9)* 28 =1 (31)* 40 =1 (31)* 0.177 =0.001 (31)*
SLHA 38 +2 (12)° 15+1(19)° 22 +1 (19)° 0.202 % 0.005 (19)°
HAHA 36+ 2 (10)° 15+1 (33)° 31+1 (33)° 0.201 * 0.003 (33)"
HASL 64%9 (7)° 24+1 (25)° 55+2 (25)¢ 0.176 £ 0.001 (25)°
SLHA + O, 64+ 4 (10)° 30+ 1 (21)° 45+1 (21)° 0.173 + 0.003 (21)°

Values are mean = seM for the partial pressure of oxygen in chorio-allantoic venous blood, the embryonic weight expressed as a percentage of
the initial egg mass and the ratio of the head diameter to crown—rump length in sea-level chick embryos incubated either at sea level (SLSL) or
high altitude (SLHA), high-altitude embryos incubated at high altitude (HAHA) or sea level (HASL), and from sea-level chick embryos

incubated at high altitude with oxygen supplementation (SLHA + O,).

Number (7) of chicks for each variable in parentheses.

04 Values within columns that have different letters as superscripts are significantly different from each other (one-way ANOVA with

Student—Newman—Keuls test; 2 << 0.05).

Heart weight/BW LV area/BW RV area/BW
(x100) (mma2ig) (mm?ig)
b
0.3 o 0.31
a
0.2 aa 0.2
b b

0.1 0.1 2 aa

3119 33 25 21 "% 6 6 6 8 s 6668

Septum thickness/BW LV thickness/BW RV thickness/BW

(mmig) (mmig) (mm/g)
0.16 1
012l Ly
0.08{ a &
0.04 1 £
0 3 -
6 6 6 6 8 66 6 6 8 6 6 6 6 8

Fig. 1. Bars represent the mean * SEM for the heart weight, area
and thickness of the walls of the left and right ventricles and
thickness of the cardiac septum expressed relative to body weight
in sea-level chick embryos incubated either at sea level (SLSL, open
bar) or high altitude (SLHA, filled bar), high-altitude embryos
incubated at high altitude (HAHA, stippled bar) or sea level
(HASL, hatched bar), and in sea-level chick embryos incubated at
high altitude with oxygen supplementation (SLHA + O,, gray bar).
n of each group for each variable are shown at the bottom of the
histograms. Values within columns that have different letters as
superscripts are significantly different from each other (one-way
ANOVA with Student—Newman—Keuls test; 2<<0.05).

thickening relative to all other groups, as indexed by sig-
nificant differences in all aortic measurements and derived
calculations (Table 3 and Fig. 2). HASL or SLHA + O,
prevented the aortic thickening induced by incubation at high
altitude (Fig. 2).

Relation between cardiovascular remodeling and
embryonic size or PO,

Correlation analysis revealed that the embryonic body weight
and PO, were negatively related to the aortic wall to lumen
area ratio in all groups independent of treatment (Fig. 3). By
contrast, the ratio of the embryonic head diameter to body
length was positively related to the aortic wall to lumen area
ratio in all groups independent of treatment (Fig. 3). When
body weight was related to the cardiac weight across all
groups, the association was best described by a reverse
exponential (y = 1.8951e 93¢ = 0.85) (Fig. 44). Though
SLSL, HASL and SLHA + O, embryos were distributed
across the right-hand side, SLHA and HAHA groups
were distributed across the left-hand side of the association
(Fig. 4a). The relation between body weight and cardiac weight
remained significant even across the normal range for body
weight in SLSL embryos (Fig. 46). Though the embryonic body
and cardiac weights were obtained in every chick, only organs
from smaller subgroups of embryos were prepared for histology.
Similarly, chorio-allantoic PO, was obtained only from
subgroups of embryos. Therefore, the relationship between
embryonic body weight and any variable other than cardiac
weight (for instance aortic wall to lumen area ratio or PO,)
within any one group could not be investigated.

Discussion

Several experimental techniques, employed primarily in
pregnant sheep, rats and guinea pigs, have been used to
induce sustained fetal hypoxemia, including reductions in

22-25

uterine and umbilical blood flow, placental emboliza-

tion,”® pre-conceptual removal of endometrial caruncles””"*®
and maternal chronic hypoxia.”>" All these elegant studies
have reported marked effects on the developing cardiovascular
system. More recently, attention has focused on whether

sustained prenatal hypoxia may have adverse consequences for



Table 2. Cardiac measurements in the chick embryo
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Heart LV area RV area Septum LV wall RV wall
weight (mg) (mm?) (mm?) thickness (mm) thickness (mm) thickness (mm)
SLSL 196 = 4 (31) 5.5+ 0.8 (6) 2.2+0.2 (6) 1.11 = 0.05 (6) 1.87 = 0.16 (6) 1.59 = 0.17 (6)
SLHA 185 + 7 (19) 4.6+02 (6) 1.8+ 0.2 (6) 1.10 + 0.05 (6) 2.13 +0.07 (6) 132+ 0.07 (6)
HAHA 175 %5 (33) 4.2+0.5 (6) 1.8 0.3 (6) 1.02 +0.05 (6) 2.08 +0.09 (6) 1.31 = 0.07 (6)
HASL 188 =6 (25) 4.0=*=0.3 (6) 1.8+ 0.1 (6) 1.00 = 0.06 (6) 1.74 + 0.07 (6) 1.47 = 0.07 (6)
SLHA + O, 194+ 9 (21) 5.0 % 0.6 (8) 23+0.3 (8) 1.01 +0.09 (8) 0.93 =+ 0.15 (8) 1.08 + 0.07 (8)

Values are mean = SEM for absolute cardiac measurements in sea-level chick embryos incubated either at sea level (SLSL) or high altitude
(SLHA), high-altitude embryos incubated at high altitude (HAHA) or sea level (HASL), and from sea-level chick embryos incubated at high

altitude with oxygen supplementation (SLHA + O,).
Number (7) of chicks for each variable in parentheses.
*P<0.05 ». SLSL, ANOVA + Student—Newman—Keuls test.

Aortic wall:lumen area
C

b ab
| I § a
SLSL SLHA HAHA HASL SLHA+02
(n=8) (n=7) (n=8) (n=7) (n=10)

Fig. 2. Photomicrographs of representative examples of aortic
sections and the mean % sem of the aortic wall to lumen area ratio
for sea-level chick embryos incubated either at sea level (SLSL,
open bar) or high altitude (SLHA, filled bar), high-altitude
embryos incubated at high altitude (HAHA, stippled bar) or sea
level (HASL, hatched bar), and in sea-level chick embryos
incubated at high altitude with oxygen supplementation

(SLHA + O,, gray bar). Values within columns that have different
letters as superscripts are significantly different from each other
(one-way ANOVA with Student—Newman—Keuls test; 2 < 0.05).

the function of the cardiovascular system after birth and in
later life. For instance, the groups of thlng,8 McMillen and
Davidge®** have reported that pregnant dams exposed to
chronic hypoxia produce offspring with unequivocal cardiac
and vascular dysfunction. However, because placental insuf-
ficiency decreases the delivery of nutrients as well as oxygen to
the fetus and because chronic maternal hypoxia decreases
maternal food intake,>*> > the extent to which the effects on
the developing cardiovascular system of all the above inter-
ventions are because of fetal under-nutrition or under-
oxygenation remains uncertain. Employing the chick embryo
as an animal model, a few studies have been able to isolate the

effects on the developing cardiovascular system of chronic
hypoxia, independent of changes in maternal nutrition and of
the physiology of the mother and the placenta. Studies by
Blanco and colleagues®® and the group of le Noble®” have
confirmed that oxygen deprivation can act alone to remodel
the developing cardiovascular system. Incubation of chick
embryos with isobaric hypoxia induced embryonic aortic
hypertrophic growth, left ventricular dysfunction and sym-
pathetic hyperinnervation of peripheral arteries.**° The
present study combined the use of the chick embryo model
with incubation at high altitude to determine for the first
time: (1) whether chronic hypoxia during development at
high altitude is the mechanism underlying the relationship
between growth restriction and cardiovascular disease already
evident prior to hatching; (2) whether such effects are dif-
ferent in embryos from sea-level or high-altitude hens; and
(3) whether the effects could be prevented by incubation of
fertilized eggs from sea-level hens at high altitude with oxygen
supplementation, or by incubation of fertilized eggs from
high-altitude hens at sea level.

Analysis of this subset of animals confirms that incubation
at high altitude induced embryonic growth restriction and
that this effect was diminished in embryos from high-altitude
hens. These findings support the observations of other studies
reporting that in human populations prolonged high-altitude
residence ancestry can confer protection against the effects of
high altitude on fetal growth.'”'*!® The cardiovascular data
in the present study show that incubation at high altitude
leads to cardiac and aortic wall thickening in the chick
embryo, independent of highland ancestry. Such cardiac and
vascular remodeling could be prevented by incubation at sea
level of fertilized eggs laid by high-altitude hens, or by
incubation at high altitude of seca-level eggs with oxygen
supplementation. Significant negative relationships were
obtained between embryonic body weight or chorio-allantoic
venous PO, (equivalent to umbilical venous PO, in mam-
malian pregnancy) with aortic wall thickening, and a sig-
nificant positive relationship occurred between the ratio of
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Table 3. Aortic measurements in the chick embryo

Outer diameter Lumen diameter Wall thickness Wall thickness/ Wall area Lumen area
(wm) (m) (pm) lumen radius ratio (mm?) (mm?)
SLSL 995 *+ 63 508 * 30 244+ 17 0.96 = 0.03 593 =78 207 = 24
SLHA 1085 = 39 488 + 18 288 * 14 1.14 +0.05 727 =57 184 + 14
HAHA 1036 £+ 39 396 * 24* 320 £16* 1.66 = 0.14* 794 + 58 126 £ 15*
HASL 996 + 82 464 *+ 36 266 =29 1.16+0.12 637 £ 108 175+ 27
SLHA + O, 939 + 68 515 % 38 212+ 28 0.85*0.13 500 £ 85 216+ 32

Values are mean = SEM for aortic measurements in sea-level chick embryos incubated either at sea level (SLSL, 7= 8) or high altitude
(SLHA, n = 7), high-altitude embryos incubated at high altitcude (HAHA, 7 = 8) or sea level (HASL, » = 7), and from sea-level chick embryos
incubated at high altitude with oxygen supplementation (SLHA + O,, = 10).

*P<0.05 v. SLSL, ANOVA + Student—Newman—Keuls test.
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Fig. 3. Relationship between cardiovascular remodeling and
embryonic size or PO,. Body weight, the head diameter to body
length ratio and chorio-allantoic venous PO, at the end of the
incubation period were related to the aortic wall to lumen area
ratio in all embryos independent of treatment. 7, Pearson Product-
Moment correlation coefficient; 7, number of observations.

SLSL (O); SLHA (@); HAHA (gray circles); HASL (A) and
SLHA+O, ().

the embryonic head diameter to body weight (an index of
growth symmetry) and the vascular changes. Combined,
therefore, the data presented strongly implicate that hypoxia
owing to high altitude is an important mechanism, retarding
embryonic growth as well as triggering a developmental origin
of cardiovascular disease, already evident prior to hatching/
birth. Interestingly, when body weight was related to cardiac
weight, data in the present study also show that: (1) a significant

negative relationship occurs across the normal range of
weights; (2) that this relationship is shifted to the left and
upwards by developmental high-altitude hypoxia; and (3) that
the shift of the relationship could be restored by incubation at
sea level of eggs from high-altitude hens, or by incubation at
high altitude of sea-level eggs with oxygen supplementation.
These observations have many commonalities with the ori-
ginal findings of Barker and colleagues,l’3 who related birth
weight with increased rates of cardiovascular disease in human
populations. They also reported a phenotypic association
between asymmetric fetal growth restriction and cardiovas-
cular risk factors, and that this relationship extended across
the normal range of birth weights."

There is general agreement that cardiovascular remodeling
of this type results from an increase in peripheral resis-
tance.”*?”?” The aortic thickening may be a response to
restore wall stress, as is typical of an increase in load, and the
ventricular wall thickening occurs in response to the increased
cardiac afterload.>>*® The hemodynamic overload may
increase protein synthesis via a plethora of cellular and
molecular pathways, including activation of stretch receptors,
proto-oncogenes and vascular growth trophic factors.***!
Hypoxia may also affect hypoxia-sensitive growth factors,
such as VEGF (vascular endothelial growth factor).>*4?
Consistent with the idea that this cardiovascular remodeling
results from an increase in peripheral resistance, it has been
reported that chronic hypoxia in the chick embryo promotes
sympathetic hyper-innervation and enhanced norepinephrine
release from perivascular sympathetic nerves;*®®” that it
decreases NO-dependent relaxation; and that it increases
constrictor reactivity in the peripheral vasculature.®®

The data presented using the chick embryo model are of
important human relevance. Three separate clinical stu-
dies®®™* have reported that babies born from pregnancies
complicated by placental insufficiency show aortic thickening
with increased vascular stiffness and reduced distensibility. A
component of aortic thickening in the human fetus in preg-
nancies complicated by placental insufficiency may therefore
be triggered by developmental hypoxia alone.
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Fig. 4. Relationship between the cardiac weight and body weight
in embryos following incubations at sea level and at high aldtude
(7, Pearson Product-Moment correlation coefficient; 7, number of
observations): (2) shows that a significant negative relationship
occurs across all groups independent of treatment (<< 0.001);
and (6) shows that a significant negative relationship occurs across
the normal range of weights in SLSL embryos (< 0.001).

In conclusion, the data show that hypoxia owing to high
altitude induces pronounced cardiovascular changes asso-
ciated with disease in the chick embryo, which are already
evident by the end of the incubation period, and that these
cardiovascular alterations are associated with disproportionate
growth restriction. The effects can be prevented by incubation

Altitude-induced fetal cardiovascular remodeling 65

at sea level of fertilized eggs laid by high-altitude hens, or by
incubation at high altitude of sea-level eggs with oxygen
supplementation. Prolonged high-altitude residence ancestry
confers partial protection against the effects of high-altitude
incubation on growth but not on cardiovascular remodeling.
It is of obvious interest whether these cardiovascular changes
in ovo persist, resolve or amplify in later life.
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