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ABSTRACT  We developed a simple, non-invasive, and affordable method for estimating net
energy expenditure (EE) in children performing activities at high altitude. A regression-based
method predicts net oxygen consumption (VOy) from net heart rate (HR) along with several
covariates. The method is atypical in that, the “net” measures are taken as the difference between
exercise and resting VOg (AVO,) and the difference between exercise and resting HR (AHR);
AVOg partially corrects for resting metabolic rate and for posture, and AHR controls for inter-
individual variation in physiology and for posture. Twenty children between 8 and 13 years of
age, born and raised in La Paz, Bolivia (altitude 3,600m), made up the reference sample.
Anthropometric measures were taken, and VO, was assessed while the children performed graded
exercise tests on a cycle ergometer. A repeated-measures prediction equation was developed, and
maximum likelihood estimates of parameters were found from 75 observations on 20 children.
The final model included the variables AHR, AHRZ, weight, and sex. The effectiveness of the
method was established using leave-one-out cross-validation, yielding a prediction error rate of
0.126 for a mean AVO; of 0.693 (SD 0.315). The correlation between the predicted and measured
AVO; was r = 0.917, suggesting that a useful prediction equation can be produced using paired
VO, and HR measurements on a relatively small reference sample. The resulting prediction
equation can be used for estimating EE from HR in free-living children performing habitual
activities in the Bolivian Andes. Am. J. Hum. Biol. 15:554-565, 2003. © 2003 Wiley-Liss, Inc.

INTRODUCTION

Assessment of energy expenditure (EE)

(HR) method, and the use of portable equip-
ment, each method has several limitations,

has become increasingly important with a
mounting awareness of its association with
physical activity, obesity, growth and devel-
opment, health, and work levels (Bailey
et al., 1995). While much effort over the last
decade has gone into quantifying EE in
adults performing subsistence labor tasks
(e.g., Katzmarzyk et al., 1994; Leonard et al.,
1995, 1996, 1997), less work has been done
on children (discussed in Johnson et al.,
1998; Benefice and Cames, 1999; Trost et al.,
2000). This reflects, in part, problems of
measuring EE in children. These difficulties
stem from the invasiveness of procedures to
measure EE ard from measurement equip-
ment that is not sized for children. )
Assessing EE in children performing sub-
sistence labor tasks (e.g., herding, fetching
water, or working in fields) is challenging
because measurements must be taken out-
side of the laboratory setting. While several
methods have been developed to assess EE in
field settings, including the factorial method,
double-labeled water, the flex heart rate
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discussed in more detail later. A few particu-
larly important limitations are the lack of
tabulated activity-specific energy costs for
children in the factorial method, the inabil-
ity to measure EE over a few hours or for
specific activities by the double-labeled
water method, and the need for individual
calibration using VO; measuring equipment
with the flex HR method. Additional difficul-
ties in assessing EE arise in harsh environ-
ments and high-altitude settings. Extreme
cold and high winds compel the use of stur-
dier equipment, and the low pressure of oxy-
gen in the atmosphere necessitates custom,
portable equipment. Oxygen analyzers, such
as the Aerosport Team 100, cannot be used
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at atmospheric pressures below 670hPa
(~500mmHg, altitudes above 3,400m on a
standard day) (C. Beall, 1999, personal com-
munication to IS-M). The Cosmed K4 port-
able oxygen analyzer can be used at lower
atmospheric pressures, but its high price
makes the machine inaccessible for many
researchers.

Thus, there is a need to explore alternative
methods for estimating the EE children
spend on performing subsistence labor in
harsh environments. The ideal method
would be simple, non-invasive, and afford-
able and would not require individual
calibration. Our particular interest is in
assessing net EE of children living in high-
altitude regions where labor tasks performed
by children make up an important part of
the economy and may play a role in survival
(Collins, 1983, 1985; Thomas, 1976). Here
we develop a method that estimates oxygen
consumption (VOs) as a proxy for predicting
EE. A regression model is developed for esti-
mating net VO, from net HR along with
several covariates. An atypical aspect of our
approach is use of the difference between
exercise and resting VO, (AVOy) and the
difference between exercise and resting HR
(AHR) as the primary measures. The reason-
ing is that AVOs partially corrects for resting
metabolic rate (RMR) and posture, and AHR
controls for inter-individual variation in physi-
ology (e.g., the difference in resting heart
rate or in stroke volumes due to training
or other factors) and posture. We applied the
method by developing a prediction equation
from a sample of Bolivian children living in
the Andean highlands at about 3,600m. The
effectiveness of the method was established
using leave-one-out cross-validation.

Limitations of current approaches

Energy expenditure, defined as the rate
at which heat is produced by the body, is
ideally measured by direct calorimetry.
Direct calorimetry measures EE as the rate
at which heat is lost from the body to the
environment. A subject must be enclosed in
a chamber, and heat production is measured
(Consolazio et al., 1963). Direct calorimetry
has been most widely used in animal studies
(Mount et al., 1967), but it has also been
used in studies of humans (Bonjour et al.,
1976). Indirect calorimetry estimates heat
production using a proxy measure, usually
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a quantitative measurement of the chemical
by-products of metabolism. Typically the
by-products reflect respiratory gas exchange,
like the volume of Oy consumption (VOy)
and CO, production (VCOy), or CO, produc-
tion measured as excretion of isotopes. Other
indirect methods include measurements of
time and task-specific energy costs such as
the factorial method or heart rate monitor-
ing (Flex-HR method). Methods that involve
the estimation of EE from the rate of
respiratory gas exchange have been used
on adults in the laboratory (“on-line” oxygen
analyzers, Brutsaert et al., 1999; Mc Murray
et al., 1998; or metabolic carts, Cicutti and
Jetté, 1991; Cooper et al.,, 1984; Rowland
et al., 1997) and in the field (Douglas
bag method, Booyens and Hervey, 1960;
Borghols et al., 1978; Goldsmith and
Hale, 1971; Katzmarzyk et al., 1996; and
portable respirometers, Billat et al., 2001;
Doyon et al., 2001). However, the methods
are either invasive, expensive, require
complex equipment, or are not designed for
children. Indirect estimation by excretion
of isotopes in COg (double-labeled water
method, Davies, 1996; Livingstone et al,,
1992; Wells and Davies, 1996) has the disad-
vantage that only total daily energy expendi-
ture (TDEE) over several days can be
estimated, not EE for any specific activity
(Ceesay et al., 1989; Kashiwazaki, 1999).
Furthermore, isotopes are very expensive,
allowing only small-scale studies.

The factorial method estimates energy
costs using tabulated data for task-specific
metabolic costs, the subject’s basal metabolic
rate (BMR), and the amount of time spent
on a task. This method has been widely
used (e.g., Leonard, 1991; Leonard et al.,
1995; 1997; Smith, 1981; Spurr et al., 1996;
Westerterp, 1991) but has a number of prob-
lems when used for children. Most import-
antly, the task-specific tables are primarily
applicable to adults. Additionally, metabolic
constants are provided for a limited number
of activities that are not well described, and
the prediction equations for BMR derived
from Western populations may not be suit-
able for individuals in non-industrial settings
(Geissler et al., 1986).

Changes in HR are known to be strongly
correlated with changes in heat production
(Benedict, 1907), VO,, and physical activity
(Lindhard, cited in Booyens and Hervey,
1960). These relationships have been shown
in sheep (Brockway and McEwan, 1969;
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Webster, 1967) and birds (Culick et al., 1990;
Wooley and Owen, 1977). The ease of meas-
uring HR motivated the development of the
flex-HR method for assessing EE and TDEE
in humans under field conditions (Spurr
et al., 1988). The method uses HR to predict
EE for various activities based on a calibra-
tion curve. The curve is composed of two
different slopes, which describe low and
high EE activities; the HR at the intercept
is designated the “flex-HR”. Because of
inter-individual variability, a calibration curve
for each subject must be developed in a
laboratory setting or with the help of a
portable gas analyzer. The flex-HR method
has been used to measure EE in adults
(Katzmarzyk et al.,, 1994; Lambert et al.,
1994; Leonard et al., 1995, 1996; 1997
Moon and Butte, 1996; Spurr et al., 1996,
1997) and children (Filozof et al., 1999;
Livingstone et al., 2000; Panter-Brick et al.,
1996a,b; Spurr et al, 1996, 1997). The
method has several advantages: it can be
used on free-living individuals performing
habitual activities, it is relatively non-
invasive (Murgatroyd et al., 1993), and
it is acceptable to children (Sarton-Miller,
2000). The method provides useful results,
even without conversion to EE, through
intergroup comparisons of the percentage
of time spent above the flex point (Panter-
Brick et al, 1996b). Murayama and
Ohtsuka (1999) propose the same approach,
with a few modifications, that Panter-Brick
took to simplify EE estimation in field

settings.
The flex-HR method, however, has several
disadvantages. First, calibration -curves

must be developed for each subject; this
requires the availability of equipment for
gas analysis (Murgatroyd et al., 1993).
Second, determination of the flex point can
be problematic because of different inter-
pretations of its definition. For example, the
following is one definition of the flex-HR
point: the average of the highest HR at rest
and the lowest HR during exercise. By this
definition, different exercises used for cali-
bration will result in different lowest exer-
cise HRs. This leads to different flex-HR
points, resulting in different slopes (Panter-
Brick et al., 1996a; Spurr et al., 1988). Third,
the method does not work well for light
activities, and several ad hoc methods have
been developed using the product of a con-
stant and BMR to estimate EE for activities
falling below the flex point (Ceesay et al.,
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1989; Schofield, 1985; Norgan, 1996). How-
ever, EE for activities performed at, or
immediately below, the flex point is under-
estimated (Spurr et al., 1997). Despite the
increasing popularity of HR monitoring,
the flex-HR method is still experimental
(Panter-Brick et al., 1996b), and the need
for individual calibration is at odds with the
goal of a simple, non-invasive, affordable
method.

In contrast to direct and indireet calori-
metric methods that rely on thermodynamic
laws, accelerometery, which relies on the
laws of Newtonian mechanics, has become a
new focus of interest in the estimation of EE.
The acceleration of a point on the body,
measured with an accelerometer, is directly
proportional to muscular force and therefore
related to EE (Benefice and Cames, 1999).
For activities that have dynamic properties,
the direct relationship between body accel-
eration and EE can be used. An important
limitation of accelerometry is that it does not
measure static EE, i.e., the EE of standing
still with a load on the back or the head.
Many accelerometers measure movement
only on one axis (Caltrac is used for vertical
movement) and therefore appear to have
limited value for assessing EE in a field
study with activities in many directions
(Allor and Pivarnik, 2001; Johnson et al.,
1998). More accurate estimation of EE
requires that multiple accelerometers be
attached to specific points of the body in
order to represent all the mobile elements.
This results in discomfort and may interfere
with the physical activity to be measured
(Nichols et al., 1999; Westerterp, 1999).
Finally the calculation of EE, based on the
theory of dynamic equilibrium, requires
complex computation, especially when mul-
tiple accelerometers are used (Jakicic et al.,
1999).

Multiple regression modeling

Although prediction of energy cost from a
single variable such as running speed has
been used in the past (Walker et al., 1999),
the use of HR as one of the covariates in
a regression—prediction model is a recent
approach for estimating VOs over a range
of activities. The approach addresses many
of the problems of the flex-HR method. Once
a regression-based prediction equation is
developed from a sample of reference indi-
viduals, it can be used to predict VO, for a
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target sample of individuals without the
need for individual calibration.

The success of the regression approach
depends strongly on how well the method
controls for inter-individual variability and
posture. Inter-individual variability refers to
the variation in the physiology of the heart,
such as different resting heart rates or
stroke volumes reflecting differences in
training or other factors. Posture may also
influence the relationship between VO, and
HR. For example, for a given VO, there will
be a decrease in HR in the standing position,
compared to the sitting position. This effect
results from an increase in stroke volume
that is a consequence of an increase in
return blood volume caused by gravitational
forces (Ceesay et al., 1989; Dauncey and
James, 1979). Previous work has addressed
inter-individual variability or posture in
limited ways, such as controlling for surface
area (Goldsmith et al., 1966; Inaoka and
Suzuki, 1982), lean body mass, body cell
mass, height and VOs/weight (Inacka and
Suzuki, 1982), slope/weight (Cooper et al.,
1984); body mass (Culik et al., 1990;
Hiilloskorpi et al., 1999), age and gender
(Hiilloskorpi et al., 1999; Inacka and Suzuki,
1982), and AHR (Inaoka and Suzuki,
1982). We propose herein a more complete
approach using combined methods and
ideas of Inaoka and Suzuki (1982), Culik
et al. (1990), and Hiilloskorpi et al. (1999).
The approach we adopt is to predict net VO,
from net HR, that is AVO, from AHR, rather
than predicting VO, from HR, in conjunc-
tion with other individual covariates. The
reasoning is that AVO, partially corrects
for posture and resting metabolic rate
(RMR), and AHR controls for posture and
inter-individual variation in physiology;
individual covariates (sex, age, weight, etc.)
control for additional inter-individual vari-
ation not captured by controlling for RMR
(Goldsmith et al., 1966). Our approach is
particularly targeted to assessment of EE in
children performing subsistence labor tasks,
based on extensions to methods previously
proposed for use in children. Of these
studies, one considered different sets of
activities and postures and built several
equations, including one for sleeping
(Treuth et al., 1998), but did not simultan-
eously adjust for BMR, independent covari-
ates and postures; also, the regressions were
developed on an individual basis. Another
study of children addressed RMR and HR
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adjusted for different resting stages (Bailey
et al., 1995), but no regression was built.

In this study, we use data from a sample of
Bolivian children born and living at an alti-
tude of 3,600m in the city of La Paz. The
original study objective was to identify
and troubleshoot problems in measuring
maximum VOs (VO, max) in non-Western
children, i.e., children unfamiliar with the
equipment (ergocycle) and with the concept
of pushing oneself to maximum effort. Other
criteria for evaluating VO, max were stud-
ied, because the usual criteria for VO, max
(maximal HR, presence of a “plateau” or
respiratory quotient >1.2) could not be used
in this population (Sarton-Miller, 1998).
For all children we had measured oxygen
consumption and HRs for a series of work-
loads performed on an ergocycle in a labora-
tory setting. Anthropometric measurements
were taken for each participant. With these
data, we explored regression-based predic-
tion equations in which AVOy could be esti-
mated (as a proxy for task-specific EE) from
HR in children engaged in non-laboratory
activities.

After we controlled for repeated measures,
which would otherwise underestimate
standard errors of the parameter estimates,
the most parsimonious prediction equation
included AHR, AHR? body mass, and sex
while excluding age, height, arm circum-
ference, and skinfold. Leave-one-out
cross-validation showed that, even with a
relatively small reference sample (75 obser-
vations on 20 children), the model had a
usefully small prediction error rate (0.127L1/
min) and a high correlation (= 0.917) between
predicted and measured AVOs,.

SUBJECTS AND METHODS
Subjects

The study was conducted in La Paz,
Bolivia (3,600 m). Twenty 8- to 13-year-old
children (13 boys and 7 girls) born and raised
in La Paz were recruited by contacting par-
ents working as employees in hotels or the
Instituto Boliviano de Biologia de Altura
(IBBA). Only subjects who had not yet
reached sexual maturation (boys) or menarche
(girls) were enrolled into the study. Sexual
maturation is delayed in this population, as
has been observed for other high-altitude
populations in the region (Gonzales et al.,
1996; Greksa, 1990).
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The purposes of the measurements were
explained to the parents and to the children
by local personnel from IBBA and consent
was obtained from the parents. Subject test-
ing was performed in a laboratory setting
with a physician present (HS) to ensure
that subjects were healthy and could partici-
pate in the study with minimal health risks.

Anthropometry

Anthropometric measures (body mass,
height, mid-upper arm circumference, and
skinfold thickness) were assessed by pre-
scribed methods (Frisancho, 1993). Body
mass was measured to the nearest 0.5kg
with a calibrated scale, and height was meas-
ured to the nearest cm with a stadiometer.
Arm circumference was taken with a tape
measure to the nearest mm, and skinfold
measurements (triceps, biceps, subscapular,
supraillliac, and calf) were taken with a
Lange skinfold caliper to the nearest mm.
Each skinfold was taken as the average of
three separate measurements.

Oxygen consumption testing and
HR monitoring

Oxygen consumption was measured by the
protocol described in Brutsaert et al. (1999)
using a graded exercise test on a mechanic-
ally braked cycle ergometer. Children were
given an opportunity to become familiar
with the ergometer and its use, since many
of the children had no experience using a
bicycle. (The steep streets of La Paz discour-
age the widespread use of bicycles.) Resting
position HR and VO, were measured for the
first 3 min while the subject was sitting still
on the bicycle. After that, the subject pedaled
against the lowest workload (0.25 or 0.5kg,
depending on a child’s size and ability).
Every 3min thereafter, the workload was
increased in increments of 0.25kg for a
total of-from three to five different levels.
Subjects were encouraged to pedal at a speed
of about 60rpm. Each subject’s maximum
VO, was reached at the last workload.

Heart rate was measured continuously
with a Polar Vantage XL heart rate monitor
(Polar Electro Oy, Finland). The device has
a lightweight transmitter, which is held on
the chest by a belt, with dry electrodes on
the inner surface and a watch-like device
attached to the wrist. Heart rate was recorded
every 5 sec and then averaged over 30 sec.
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Throughout the test, the subject ingpired
room air through a low-resistance breathing
valve. Expired fractions of VOy and VCO,
were measured continuously from a mixing
chamber by gas analyzers (provided by
T. Brutsaert) calibrated to gas standards
before the test. Oxygen was measured with
an Applied Electrochemistry S-3A oxygen
analyzer, (Ametek, Pittsburgh, PA, USA)
and CO; was measured using a Beckman
LB-2 CO; analyzer (Beckman Instruments,
Inc., Fullerton, CA, USA) as described in
Brutseart et al. (1999, 2000). Data were pro-
cessed by an automated oxygen uptake
system (REP-200B, Rayfield Electronics,
Waitsfield, VT, USA) and recorded every
30sec. For each subject, resting VO, and
HR were taken as an average of the last
two measurements made before adding the
first workload. For each exercise, VOy was
taken as an average of the final two values at
that level. These values were matched to the
corresponding average HR.

Statistical methods

The prediction equation was developed as
a regression of a series of variables on AVOs,.
Because measures on the reference subjects
are repeated for individuals at different
exercise levels, we used a repeated measures
regression and maximum likelihood param-
eter estimation.

Individual-level covariates considered in
the regression were sex, age, weight, height,
arm circumference, sum of three skin folds
(hereafter, skinfold), and delta heart rate
(AHR and AHR®) measured for N = 20 indi-
viduals. There were m; exercises, where m;
ranged from 3 to 5, each at a different load,
for the ith individual. Most covariates are
fixed across all exercises within an individ-
ual;, only AHR changed for each exercise
level. Call x;;, = (%14, Xigk, .- -, Xinz) 80 array
of n covariates for the ith individual (i from
1 to N) and for the £th exercise (k from 1 tom;).
Outcomes are a series of m; AVO, measures
v, = (V;1, Vi, ..., Vi) for the ith individual.
Raw AVO, values were multiplied by 100 for
all analyses.

A series of n parameters were estimated,
B = (B, Bs,..., Bn), that quantify the effects
of AHR and other covariates on AVOs.
Workload was not included as a covariate in
the regression equations, since our purpose
was to develop a general prediction equation
to estimate VOy across a wide variety of
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workloads. The effect of covariates for the
ith individual was modeled on the mean
value of AVOsy as y; = p + x;/B. If there had
been but a single exercise measured for all
individuals (that is, if m was 1), then linear
regression using ordinary least-squares
methods could have been used to estimate
the parameters of the prediction equation.
To accommodate the repeated measures,
however, and to provide a more flexible mod-
eling and estimation framework, maximum
likelihood estimation was used. The equiva-
lent regression model using a likelihood
approach is to maximize the likelihood

N

L=]]fGiln+xB, o) (1)

i=1

where f, is the distribution of AVO, around
the regression line p + x;/B, with a variance
of o2, f, is assumed to be a normal distribu-
tion. With repeated measures (different
exercise levels) on each individual, the
likelihood must be modified to incorporate
individual-specific effects, which controls
for correlations among repeated measures.
Suppose there is some value z; for the ith
individual that quantifies the individual-
level effect on mean AVO,. Rather than mea-
suring or estimating separate values of this
covariate for each individual, we assume that
z is distributed among individuals as a nor-
mal distribution, g.(z|0, &), with a mean of
zero and a variance (c,”) that can be esti-
mated from the observations. The resulting
likelihood is taken as an expectation over the
distribution of g.:

N x m;
L=]] / g:(e10,) [ [ .ol

i=1

+x,B+20)dz (2)

Values of 8, 11, 0, and &, that maximize Eq. (2)
are the maximum likelihood estimates of
these parameters.

Model selection

Initially parameters for all covariates
except exercise level were included in the
regression. Covariates were eliminated
sequentially until the most parsimonious
set of parameters were found. The selection
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criterion we used was minimum Akaike’s
Information Criterion (AIC) (Akaike, 1973,
1992; Burnham and Anderson, 1998). This
criterion penalizes models for having an
excess number of parameters or for fitting
poorly to the data. The final model included
the set of parameters that minimized AIC.

Numerical methods

Parameter estimates were found by
maximizing numerically evaluated likelihoods
using the mle programming language
(Holman, 2000). Numerical integration was
done by a closed trapezoidal approximation
over 100 points. Standard errors of the
parameter estimates were found from the
inverse of the observed Fisher’s information
matrix.

Model evaluation

Given parameter estimates B, i, &, &, and
for the prediction equation, the next step is
model evaluation, with the goal of assessing
how well the resulting prediction equation
predicts AVO, given a sample with a known
AVO,. We used leave-one-out cross-validation
(Efron, 1982), which has been shown to
provide reasonable estimates of prediction
error for smooth functions (Efron, 1983).

The procedure for leave-one-out cross-
validation is that multiple prediction equa-
tions are developed, each time withholding
one observation, and then predicting a value
for the withheld observation. Here, we found
parameter estimates for 75 different regres-
sion equations, each time withholding, in
sequence, one observation. Each resulting
prediction equation was then used to predict
AVOQy for the withheld observation. The
error of prediction for that observation was
taken as the difference between the meas-
ured AVO; and the AVO, predicted from
the equation. Since the measured AVO, for
each observation is not included in the
regression equation used to predict AVO,,
the procedure effectively eliminates biases
of using a reference sample for validation
(Efron, 1982). The cross-validated prediction
error rate was computed as the mean of the
squared difference between the measured
and predicted AVOy. The cross-validated
prediction error rate can be used as an
estimate of the prediction standard error and
can be used to compute prediction intervals.



560
RESULTS

Our sample was made up of repeated
observations on 20 children, for a total of
75 observations. Descriptive statistics for
the variables in the Bolivian data set are
given in Table 1. The most parsimonious
model, assessed by AIC, included the four
covariates AHR, AHR?, weight, and sex, and
excluded age, height, arm circumference,
and skinfold. A normal distribution for
AVO; was found by AIC to fit the data sub-
stantially better than did a lognormal distri-
bution. The parameter estimates for the
most parsimonious model are given in
Table 2.

The cross-validated prediction error rate
was 0.127 L/min for a mean AVO, of 0.693
(SD 0.315). An F-test for the difference
between the variance in prediction error and
AVO; yields 30.3, which suggests the predic-
tion error variance is significantly lower
than the variance in AVO,. Figure 1 shows
the difference between measured AVO, and
the cross-validated predicted AVO,. The
mean difference is 0.0013 (SD 0.127, SE
0.0015), and is not significantly different
from the expected difference of zero. Figure
2 shows the excellent correspondence
between the predicted values of AVOg
and measured values AVO,, as well as the
95% prediction interval. The correlation
between the predicted and measured AVO,
is r = 0.917, indicating that the predicted
AVO, “explains” about 84% of the measured
AVOs,. Figure 3 shows cross-validated pre-
dicted AVO, within each child at different
exercise levels. The AVOy values are pre-
dicted from a regression developed without
the observation used for prediction, and the
variable for exercise level is not included in
any way in the regression. The predicted
AVO; values generally show a pattern of lin-
ear increase for a constant increment in
exercise load within a child, suggesting that
the prediction equation can be used to pre-
dict AVO,, over a wide range of activities for
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which the exercise load itself is not quanti-
fied.

Examples of estimating EE from AHR
are given in Table 3 for one child engaged
in three subsistence activities. The child’s
heart rate was assessed as the average over
about 8 min of activity. Because the activities
took place using upright postures, standing
RHR was taken and averaged over 4 min.
Parameter estimates from Table 2 were used
to compute AVO, and EE for each activity.
For example, the activity feeding animals,
AHR was computed as 109.44 - 91.5 = 17.94.
AVO, was then found as (u + Bagr X 17.94 +
Barr: X 17.94% + Buoignt X 36.5 + Boex X 1)/
100 = 0.357. A 1000% prediction interval
can be computed as 0.357 = 0.1267 X £1_ys,
so that the 95% prediction interval is
0.109-0.605 for this example. The increase
in EE for this activity was found by convert-
ing 1L of Oy = 20.1kdJ or 4.803 keal.

DISCUSSION

The purpose of this research was to
develop a non-invasive and affordable tech-
nique to estimate energy expenditure in chil-
dren performing tasks under non-laboratory
field conditions (e.g., where children perform
subsistence labor tasks). Indirect calorim-
etry, where EE is calculated from VO,
(EE = VO3 x energy equivalent of 1L of Oy)
(Norgan, 1996), is widely recognized as a
useful way to estimate EE (Murgatroyd
et al., 1993). Even so, direct measurement
of VOg is difficult under natural workload
conditions and is particularly challenging
under extreme conditions like high altitude,
where extreme cold, wind, and low atmos-
pheric pressure prevail. The flex-HR method
has been successfully used under these con-
ditions; however, the need for individual
calibration makes the method more difficult
and expensive. Our results suggest that VO,
can be predicted from variables that are
easier to measure, specifically heart rate

TABLE 1. Summary statistics for variables for the Bolivian data set

Age Weight Height Arm circumference Skinfold AHR 100 x AVO,
Variable (yr) (kg) (cm) (cm) (mm) (beats/min) (L/min)
Mean 11.0 33.8 138.4 214 58.2 51.1 69.3
Std dev 1.54 491 7.90 1.93 19.6 24.1 31.5
Minimum 8.3 25.0 114.3 19.0 33.8 6.0 16.0
Maximum 13.4 42.5 152.0 25.8 112.3 110.5 132.0
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TABLE 2. Parameter estimates for the most
parsimonious prediction model (excluded variables:
age, height, arm circumference, and skinfold)*

Parameter Estimate SE £
o, 8.524 1.732 4.92
m —69.80 16.17 -4.32
Banr 1.725 0.1830 9.43
Barre —0.004971 0.00166 —3.00
Buweight 1.664 0.4892 3.40
sex 15.31 5.071 3.02
c 8.219 0.7773 10.6

*Log likelihood, —280.06; AIC, 574.12; 75 observations on 20
high-altitude Bolivian children.

(HR) and individual covariates like weight
and sex, once a prediction equation has
been developed from a small reference sam-
ple. Measuring heart rate is relatively simple
and requires minimal subject cooperation
and competence, whereas direct measure-
ment of VOy requires a high degree of sub-
ject cooperation and training.

Heart rate can be monitored and recorded
using simple electronic devices that operate
well even in high-altitude environments
(Sarton-Miller, 2000), so our approach should
work under natural workload conditions
in extreme environments. The lightweight
transmitter, which is held on the chest by
a belt, and the watch-like sensor do not
materially interfere with a subject’s activity.
In fact, many children enjoy wearing the
watch (Murgatroyd et al., 1993; Sarton-
Miller, 2000).

The relationship between VO, and HR
may be influenced by posture. For example,
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for a given VO, there will be a decrease in
HR in the standing position, compared to the
sitting position. This effect results from an
increase in stroke volume that is a conse-
quence of an increase in return blood volume
caused by gravitational forces (Ceesay et al.,
1989; Dauncey and James, 1979). In this
study, the calculation of net EE with the
delta approach should, in part, correct for
posture since for a higher HR in sitting posi-
tion (bicycling), a higher sitting HR is seen.
Nevertheless, we investigated only one posture,
so that additional adjustments for posture
warrants further investigation. Additional
research is also needed to determine whether
a reference sample using one posture and
one type of exercise can be usefully applied
to target samples using another posture or
exercises.

Basal metabolic rate (BMR) also needs to
be considered in a regression model, because
it varies among individuals by body mass,
age, but also by environmental or behavioral
factors (Ulijaszek, 1995). Because BMR is
difficult to measure, we used resting meta-
bolic rate (RMR) as a proxy for BMR. We
believe that RMR is best taken when meas-
ured in the same posture used for the exercise.
In this study, sitting RMR was measured as
the subject sat still on the bicycle. For a
standing RMR, we would ask the subject to
stand still. However, additional research
using true RMR instead of sitting RMR is
warranted. Finally, we used only a single
measure of resting heart rate in this study;
additional research is needed to examine the
effect of variability within subjects in resting

Frequency

-32 -28 -24 20 -16 -12 -8 -4

0

4 8 12 16 20 24 28 32 36

Error

Fig. 1. Difference between measured 100 x AVO, and 100 x AVOj, predicted from a regression equation that did
not include the corresponding observation (cross-validated); the mean difference is ~0.129 and is not significantly

different from the expected difference of zero.
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Fig. 2. Cross-validated predicted AVOs versus meas-
ured AVOs; for high-altitude Bolivian children, based on
the prediction equation given by parameter estimates in
Table 2. Dotted lines enclose the 95% prediction interval
based on the cross-validated prediction error rate.

heart rate on estimated EE. We suspect that
some of this variability is cancelled by the
use of AHR,

The proposed method predicts AVO,
(rather than VO,) from AHR (rather than
HR) in conjunction with other individual
covariates, so that net VOs or net EE of
specific activities is being estimated. The
use of delta values and individual covariates
addresses, in part, inter-individual variabil-

I. SARTON-MILLER ETAL.

ity and removes the need for individual cali-
bration as required for the flex-HR method.
This “differential” approach is one way to
adjust for metabolic rate that seems to
work well in this application. Adjusted
values have previously been calculated as
ratios, i.e., activity VOs:(VOy max—sitting
RMR) and activity HR:(HR max—sitting
resting HR) (Bailey et al., 1995). Caution
should be employed, however, as the use of
ratios can lead to serious problems of data
interpretation. These problems stem from
the underlying assumptions that the vari-
ables involve in the ratio will demonstrate
proportionality and that the regression line
expressing the relationship between them
will pass through the origin. For many bio-
logical variables, these assumptions are not
met (Sarton-Miller et al., 1997).

The prediction equation was developed
using repeated measures on 20 children for
a total of 75 observations. With this sample
size, the prediction equation performed
quite well, with a correlation between the
predicted and measured AVO; of r = 0.917.
The present research cannot address
whether the prediction equation developed
for Bolivian children living in the Andean
highlands is applicable to other conditions
like low altitude, hot environments, or
for lower workload conditions. Additional
research will need to assess whether a single
prediction equation is required for each com-
bination of population and environment, or

120
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Fig. 3. Cross-validated predicted AVO; at different exercise levels for children in the reference sample. Each line
shows results for a single child. Symbols show values for children who skipped one exercise level (0.75 kg).
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TABLE 3. Examples of estimated energy expenditure (EE) for three subsistence labor tasks estimated from AHR
(AHR = exercise HR — resting HR) measured on one 12-year-old male child weighing 36.5 kg, living in La Paz, Bolivia

EE
Exercise HR Standing RHR AVO2
Activity (beats/min) (beats/min) (L/min) (kJ/min) (kcal/min)
Feeding animals 109.44 91.5 0.357 7.173 1.714
Shoveling manure 123.25 91.5 0.564 11.33 2.707
Washing dishes 103.75 91.5 0.262 5.272 1.260

whether one equation is universally applic-
able. Future research must also address
whether the method can be applied outside
the restricted age range (8-13 years), range
of body weights (26-39kg in girls and
30-42.5kg in boys), and maturation status
(girls prior to menarche and boys prior to
sexual maturation) that characterize our
sample. Even if separate prediction equa-
tions are required for different populations,
ages, or environments, our results suggest
that a useful prediction equation can be pro-
duced using paired net VO, and net HR
measurements on a relatively small refer-
ence sample; the resulting regression can
then be applied more broadly in the same
population and environment.
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