MÉTODOS DE ESCARIFICACIÓN MECÁNICO-FÍSICO EN FASE DE VIVERO PARA LA PRODUCCIÓN DE PLANTINES DE ASAI (*Euterpe precatoria* M.) Y MAJO (*Oenocarpus bataua* M.) EN EL MUNICIPIO DE SAN BUENAVENTURA

JUAN MARCELO LOPEZ MAMANI

LA PAZ – BOLIVIA

2016
MÉTODOS DE ESCARIFICACIÓN MECÁNICO-FÍSICO EN FASE DE VIVERO PARA LA PRODUCCIÓN DE PLANTINES DE ASAI (*Euterpe precatoria* M.) Y MAJO (*Oenocarpus bataua* M.) EN EL MUNICIPIO DE SAN BUENAVENTURA

Tesis de grado Presentado como requisito Parcial para optar al título de Ingeniero Agrónomo

JUAN MARCELO LOPEZ MAMANI

Asesor (es):

Ing. M. Sc. Jorge Guzmán Calla

Ing. Carlos Mena Herrera

Tribunal Examinador:

Ing. M. Sc. Paulino Ruiz Huanca

Ing. Johnny Ticona Aliaga

Ing. Rafael Murillo Garcia

Aprobada

Presidente Tribunal Examinador:

2016
El presente trabajo se la dedico a mis padres Modesta Mamani Vizaluque, Gregorio Mamani y hermanos por la educación y apoyo moral en mi formación profesional y brindarme su apoyo en todo momento. A ellos le devido y dedicar todos mis logros mis triunfos.
AGRADECIMIENTO

Agradezco a Dios, por estar a mi lado en cada paso que doy por ser mi fortaleza en los momentos más difíciles.

Gracias a mis padres por sacarme siempre adelante por darme los consejos acertados en los momentos más difíciles.

A mi amor Tatiana, quien me acompaña en el desarrollo de este trabajo, por sus palabras de aliento en momentos difíciles y su apoyo incondicional.

A la Universidad Mayor de San Andrés y al plantel Docente de la Facultad de Agronomía por la formación profesional que me proporcionaron.

Al Programa Bosques perteneciente al Instituto Nacional de Investigación Agropecuaria y forestal (INIAF), del Ministerio de Desarrollo Rural y Tierras, de igual modo Ph.D Oscar Llanque y Ing. Darcy Pimentel por coadyuvar y por haber hecho lo posible para el inicio del presente trabajo de investigación.

Mis agradecimientos a mis asesores Ing. M.Sc Jorge Guzmán Calla y Ing. Carlos Freddy Mena Herrera por dedicar su tiempo, esfuerzo y dedicación además del aporte de sobremanera con sus conocimientos para que este trabajo sea concluido de la mejor manera desde la primera etapa de la presente investigación hasta la etapa final del mismo.

De igual forma, mis agradecimientos a mis revisores Ing. MSc Paulino Ruiz Huanca Ing. Johnny Ticona Aliaga y Ing. Rafael Murillo García por sus aportes y observaciones acertadas al trabajo de investigación y por su apoyo y paciencia en la conclusión del mismo.

A la regional de San Buenaventura perteneciente a la UMSA, por haberme abierto sus puertas en el período de trabajo de campo.

Al Sr. Benito Cartagena por haberme colaborado en todo sentido y de manera desinteresada durante mi estadía en San Buenaventura por sus palabras y sobre todo por su amistad gracias, como a toda su familia.

A mis amigos (as) y compañeros (as) gracias por su amistad y por todos los momentos vividos en estos años.
ÍNDICE GENERAL

DEDICATORIA............................................................................................................. I
AGRADECIMIENTOS.................................................................................................... II

ÍNDICE GENERAL ......................................................................................................... III
ÍNDICE DE CUADROS .................................................................................................. VI
ÍNDICE DE GRÁFICOS .................................................................................................. VIII
RESUMEN ...................................................................................................................... IX
ABSTRACT ........................................................................................................................ XI

1  INTRODUCCIÓN ....................................................................................................... 1

2  OBJETIVOS ............................................................................................................... 3
2.1 Objetivo general ......................................................................................................... 3
2.2 Objetivo específico ...................................................................................................... 3

3  REVISIÓN BIBLIOGRÁFICA .................................................................................. 4
3.1 Estudio de la especie Asaí (Euterpe precatoria M.) ..................................................... 4
3.1.1 Clasificación taxonómica ....................................................................................... 4
3.1.2 Características botánicas y dendrologicas del Asaí (Euterpe precatoria M.) ........ 5
3.1.3 Distribución geográfica del Asaí (Euterpe precatoria M.) ....................................... 9
3.1.4 Uso de la palmera de Asaí (Euterpe precatoria M.) .............................................. 9
3.1.5 Recomendaciones de cosecha e intensidad .......................................................... 10
3.2 Estudio de la especie Majo (Oenocarpus bataua M.) .................................................. 10
3.2.1 Clasificación taxonómica ....................................................................................... 10
3.2.2 Características botánicas y dendrologicas del Majo (Oenocarpus bataua M.) ...... 11
3.2.3 Distribución geográfica del Majo (Oenocarpus bataua M.) ................................. 14
3.2.4 Uso de las palmeras de Majo (Oenocarpus bataua M.) ......................................... 15
3.3 Semilla ..................................................................................................................... 16
3.3.1 Partes de la semilla ............................................................................................... 16
3.3.2 Proceso de la germinación ................................................................................... 17
3.3.3 Propiedades internas de la semilla que afectan la germinación .............................. 19
3.3.4 Factores externos que afectan la germinación de las semillas .............................. 20
3.3.5 Humedad ........................................................................................................... 20

III
3.3.6 Temperatura..........................................................20
3.3.7 Aireación............................................................21
3.3.8 Luz .................................................................21
3.4 Tipos de germinación ..............................................22
  3.4.1 Germinación epigea ...........................................22
  3.4.2 Germinación hipogea .........................................22
3.5 Latencia o dormancia ..............................................22
  3.5.1 Dormancia fisiológica .......................................23
  3.5.2 Dormancia física ...............................................23
3.6 Romper la dormancia ..............................................23
3.7 Tratamientos pre germinativos en las semillas ..........24
  3.7.1 Escarificación ...............................................24
3.8 Sistemas en producción de viveros .........................25
4 MATERIALES Y MÉTODOS...........................................26
  4.1 Localización ......................................................26
  4.2 Características físico naturales ..............................27
    4.2.1 Clima .........................................................27
    4.2.2 Altitud y fisiografía ......................................28
    4.2.3 Geomorfología .............................................28
    4.2.4 Hidrografía ................................................28
    4.2.5 Vegetación y fauna ......................................29
  4.3 Material experimental .........................................30
    4.3.1 Material biológica .........................................30
    4.3.2 Material de laboratorio ..................................30
    4.3.3 Material de campo ........................................30
    4.3.4 Material para sustrato ...................................30
  4.4 Metodología ......................................................30
    4.4.1 Construcción del vivero ................................30
    4.4.2 Obtención de semillas ....................................31
    4.4.3 Preparación del sustrato ................................31
    4.4.4 Desinfección del sustrato ...............................31
    4.4.5 Rellenado de las bolsas ................................31
<table>
<thead>
<tr>
<th>4.4.6</th>
<th>Diseño experimental</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.7</td>
<td>Dimensión del área experimental</td>
<td>33</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Croquis experimental</td>
<td>34</td>
</tr>
<tr>
<td>4.4.9</td>
<td>Aplicación de los tratamientos pre germinativos</td>
<td>34</td>
</tr>
<tr>
<td>4.4.10</td>
<td>La siembra experimental</td>
<td>35</td>
</tr>
<tr>
<td>4.4.11</td>
<td>Labores culturales</td>
<td>35</td>
</tr>
<tr>
<td>4.4.12</td>
<td>Variables de respuesta</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>RESULTADOS Y DISCUSIÓN</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Comportamiento climático</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>Características físicas de la semilla</td>
<td>41</td>
</tr>
<tr>
<td>5.3</td>
<td>Determinación de las variables de respuesta</td>
<td>42</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Porcentaje de emergencia</td>
<td>42</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Días a la emergencia</td>
<td>56</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Altura de plantín</td>
<td>69</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Diámetro de tallo</td>
<td>83</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Longitud raíz principal</td>
<td>87</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Longitud de la raíz secundaria</td>
<td>91</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Diámetro del cuello de la raíz</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>Variables económicas</td>
<td>107</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Costos parciales de producción de Asaí (<em>Euterpe precatoria</em> M.)</td>
<td>107</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Costos de producción de majo (<em>Oenocarpus bataua</em> M.)</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>CONCLUSIONES Y RECOMENDACIONES</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Conclusiones</td>
<td>111</td>
</tr>
<tr>
<td>6.2</td>
<td>Recomendaciones</td>
<td>115</td>
</tr>
</tbody>
</table>

| 7 | BIBLIOGRAFIA | 117 |

| 8 | ANEXOS | 123 |
ÍNDICE DE CUADROS

Cuadro 1 Clasificación taxonómica de la palmera de Asaí _______________________________ 4
Cuadro 2 Clasificación taxonómica de la Palmera Majo _________________________________ 11
Cuadro 3 Descripción de los tratamientos ____________________________________________ 33
Cuadro 4 Numero de semillas por kilogramo de Asaí (Euterpe precatoria M.) __________ 41
Cuadro 5 Numero de semillas por kilogramo de Majo (Oenocarpus bataua M.) __________ 42
Cuadro 6. Análisis de varianza días a la emergencia de las semillas de Asaí _____________ 42
Cuadro 7 Prueba de Duncan porcentaje de emergencia de las semillas de asaí para escarificación mecánica ________________ 43
Cuadro 8. Prueba de Duncan porcentaje de emergencia de las semillas de Asaí para tiempos de inmersión ___________ 45
Cuadro 9 Análisis de varianza de efecto simple de la interacción de los factores en porcentaje de la emergencia de semillas de asaí _____________________________________________ 47
Cuadro 10. Análisis de varianza para el porcentaje de emergencia de las semillas de Majo _____________________________________________ 49
Cuadro 11. Prueba de Duncan el porcentaje de emergencia de las semillas de Majo para escarificación mecánica __________________________ 50
Cuadro 12. Prueba de Duncan para el porcentaje de emergencia de Majo para tiempos de inmersión ____________ 52
Cuadro 13. Análisis de varianza de efecto simple de la interacción de los factores en el porcentaje de emergencia de Majo ____________________________________________ 54
Cuadro 14 Análisis de varianza días a la emergencia de las semillas de Asaí _____________ 56
Cuadro 15 Prueba de Duncan para el factor escarificación mecánica en los días a la emergencia _____________________________ 57
Cuadro 16 Prueba de Duncan para el factor tiempos de inmersión en los días a la emergencias _____________________________________ 59
Cuadro 17 Análisis de varianza de efecto simple de la interacción de los factores en días a la emergencia ____________ 61
Cuadro 18 Análisis de varianza para días a la emergencia de las semillas de Majo __________ 63
Cuadro 19 Prueba de Duncan para el factor escarificación mecánica en días a la emergencia ________________ 64
Cuadro 20 Prueba de Duncan para el efecto tiempos de inmersión en los días a la emergencia ________________ 65
Cuadro 21 Análisis de varianza de efecto simple de la interacción de los factores en días a la emergencia ____________ 68
Cuadro 22. Análisis de varianza para la altura de planta del Asaí ________________________________________ 70

Cuadro 23. Prueba de Duncan de la altura de planta Asaí para escarificación mecánica __________ 71
Cuadro 24. Prueba de Duncan de la altura de planta Asaí para tiempo de inmersión ___________ 73
Cuadro 25. Análisis de varianza de efecto simple de la interacción de los factores en altura de planta de asaí __________ 75
Cuadro 26. Análisis de varianza para la altura de planta de Majo ________________________________________ 77
Cuadro 27. Prueba de Duncan de la altura de planta Asaí para escarificación mecánica __________ 78
Cuadro 28. Prueba de Duncan de la altura de planta de Majo para tiempos de inmersión ________________ 79
Cuadro 29. Análisis de varianza de efecto simple de la interacción de los factores en la altura de planta de Majo ____________________________________________ 81

Cuadro 30 Análisis de varianza para el diámetro de tallo de Majo ____________________________________________ 84
Cuadro 31. Prueba de Duncan, del diámetro de tallo de Majo para escarificación mecánico ________________ 85
Cuadro 32 Análisis de varianza para la longitud de raíz principal de asaí ___________________________ 87
Cuadro 33 Análisis de varianza para la longitud de raíz principal de majo ____________________________ 88
Cuadro 34. Prueba de Duncan de longitud de raíz principal de Majo para tiempos de inmersión __________ 89
Cuadro 35 Análisis de varianza para la longitud de raiz secundaria de asaí _______________________________ 92
Cuadro 36. Prueba de Duncan de la longitud de raiz secundaria para escarificación mecánico ___________ 93
Cuadro 37. Prueba de Duncan de la longitud de raíz secundaria de Asaí para tiempos de inmersión __________ 94
Cuadro 38. Análisis de varianza de efecto simple de la interacción de los factores en la longitud de raíz secundaria de asaí 96
Cuadro 39. Análisis de varianza para la longitud de raíz secundaria de Majo 98
Cuadro 40. Prueba de Duncan longitud de raíz secundaria de Majo para escarificación mecánica 99
Cuadro 41. Prueba de Duncan de longitud de raíz secundaria de Majo para tiempos de inmersión 100
Cuadro 42 Análisis de varianza de efecto simple de la interacción de los factores en la longitud de raíz secundaria de Majo 102
Cuadro 43. Análisis de varianza para diámetro de tallo de Asaí 104
Cuadro 44. Prueba de Duncan, diámetro de raíz para tiempos de inmersión 105
Cuadro 45. Análisis de varianza para el diámetro de la raíz de Majo 107
Cuadro 46 Presupuesto parcial sobre la aplicación de tratamientos pres germinativos en semillas de Asaí para la producción de plantines en Bs. 108
Cuadro 47 Presupuesto parcial sobre la aplicación de tratamientos pres germinativos en semillas de Majo para la producción de plantines en Bs 109
ÍNDICE DE GRÁFICOS

Grafico 1 Temperaturas máximas, mínimas y medias registradas durante el periodo de estudio 2014 _______ 38
Grafico 2 Humedad relativa registradas durante el periodo de estudio 2014 ___________________________ 39
Grafico 3 Precipitación pluvial registrada durante el periodo de estudio 2014 ____________________________ 40
Grafico 4. Comparacion de porcentaje de germinacion de semillas de Asai entre escarificacion mecánica _______ 44
Grafico 5. Comparación de porcentaje de la emergencia asai entre tiempos de inmersión ______________________ 46
Grafico 6 Efecto de la interacción escarificación mecánica y tiempos de inmersión en porcentaje de la emergencia de las semillas de asai ___________________________ 48
Grafico 7. Comparación de porcentaje de emergencia de semillas de Majo entre escarificacion mecánica ________ 51
Grafico 8. Comparación de porcentaje de emergencia en majo entre tiempos de inmersión ______________________ 53
Grafico 9. Efecto de la interacción escarificación mecánica y tiempos de inmersión en el porcentaje de emergencia de majo ____________________________ 54
Grafico 10 Comparación de días a la emergencia entre escarificación mecánica ____________________________ 58
Grafico 11 Comparación de días a la emergencia entre tiempos de inmersión ____________________________ 60
Grafico 12 Efecto de la interacción en días a la emergencia de semillas de asai ____________________________ 62
Grafico 13 Comparación de días a la emergencia entre escarificación mecánica ____________________________ 65
Grafico 14 Comparación de días a la emergencia entre tiempos de inmersión ____________________________ 66
Grafico 15 Efecto de la interacción en días a la emergencia de semillas de majo ____________________________ 68
Grafico 16. Comparación de altura de planta de asai entre escarificacion mecánica ____________________________ 72
Grafico 17. Comparación de altura de planta de asai entre tiempos de inmersión ____________________________ 74
Grafico 18 Efecto de la interacción escarificación mecánica y tiempos de inmersión de altura de la planta de asai __________ 76
Grafico 19. Comparación de altura de planta de majo entre escarificacion mecánica __________________________ 79
Grafico 20. Comparación de altura de planta de majo entre tiempos de inmersión __________________________ 80
Grafico 21. Efecto de la interacción escarificación mecánica y tiempos de inmersión en la altura de plantines de majo ____________________________ 81
Grafico 22. Comparación de diámetro de tallo de majo entre escarificacion mecánica ____________________________ 86
Grafico 23 Interacción de los factores en el diámetro de tallo de Majo ____________________________ 86
Grafico 24 Comparación de longitud de raíz principal de majo entre tiempos de inmersión ____________________________ 90
Grafico 25 Interacción de los factores en la longitud de raíz principal de majo ____________________________ 91
Grafico 26. Comparación de la longitud de raíz secundaria de asai entre escarificacion mecánica ________ 94
Grafico 27. Comparación de la longitud de raíz secundaria de asai entre tiempos de inmersión ____________________________ 95
Grafico 28 Efecto de la interacción escarificación mecánica y tiempos de inmersión de la longitud de raíz secundaria de asai ____________________________ 97
Grafico 29. Comparación de longitud de raíz secundaria de majo entre escarificacion mecánica ______________ 100
Grafico 30 Comparación de longitud de raíz secundaria de majo entre tiempos de inmersión ____________________________ 101
Grafico 31 Efecto de la interacción métodos de escarificación y tiempos de inmersión de la longitud de raíz secundaria de majo ________________________________________________________________ 102
Grafico 32. Comparación diámetro de la raíz de asai entre tiempos de inmersión ____________________________ 106
Grafico 33 Interacción de los factores en el diámetro de raíz de Asai ____________________________ 106
RESUMEN

La investigación se realizó en el Centro Experimental de Santa Rosita ubicada a 4 km del poblado de San Buenaventura en las coordenadas 67°46" de longitud Oeste 14°19" de latitud Sud y una altitud de 240 m.s.n.m. teniendo como objetivo evaluar el efecto de diferentes métodos de escarificación mecánica - físico en fase de vivero para la producción de plantines de asáí (Euterpe precatoria M.) y majo (Oenocarpus bataua M.) en el municipio de San Buenaventura, aplicando un Diseño de bloques al azar en parcelas divididas con 12 tratamientos y 3 repeticiones para cada especie, teniendo como variable número de semillas por kilogramo, porcentaje de emergencia, días a la emergencia, altura de plantín, diámetro de tallo, longitud de raíz principal y secundaria, diámetro de cuello dela raíz distribuidos en los siguientes tratamientos T1 (testigo), T2 (Sin escarificar Vs 24 horas de inmersión en agua natural), T3 (Sin escarificar Vs 48 horas de inmersión en agua natural) T4 (Sin escarificar Vs 0.25 horas de inmersión en agua a 50°C), T5 (Lijado Vs 0 horas de inmersión), T6 (Lijado Vs 24 horas de inmersión), T7 (Lijado Vs 48 horas de inmersión ), T8 (Lijado Vs 0.25 horas de inmersión en agua a 50°C), T9 (Ruptura de la semilla Vs 0 horas de inmersión), T10 (Ruptura de la semilla Vs 24 horas de inmersión), T11 (Ruptura de la semilla Vs 48 horas de inmersión), T12 (Ruptura de la semilla Vs 0.25 horas de inmersión en agua a 50°C).

Aplicados los tratamientos y analizados los resultados mediante la prueba de Duncan al 5% de significancia para el porcentaje de emergencia se encontró diferencias significativas en la escarificación mecánica y en los tiempos de inmersión para ambas especies. En el asáí se encontró que los tratamientos T4, T6, T7 y T3 obtuvieron 87, 83, 79 y 77.3% de emergencia respectivamente y T1 obtuvo 24%. El majo revela T5, T7, T6, obtuvieron 95.3, 95, 94.3% como los mejores respuestas en cambio T12 obtuvo 29.3%. En asáí el T6 inicio días a la emergencia a los 23 días y para majo a los 40 días en el T6.

Para el caso de la altura se observan diferencias significativas en los métodos de escarificación y tiempos de inmersión en ambas especies, para el asáí se logró una
altura de 13 cm con el T2 y la menor altura con 9.7 cm en el T1, en tanto para el majo el T6 obtuvo un valor de 22 cm por otro lado se obtuvo 15.2 cm en el T1.

Para el diámetro de tallo de asaí el análisis de varianza no detecta diferencias significativas entre las fuente de variación por lo que se acepta que no hay diferencias entre tratamientos. El análisis de majo presenta diferencias significativas en la fuente de variación para métodos de escarificación e indicamos que existen diferencias en el diámetro con el lijado de semillas (5.5 mm)

En el análisis de varianza para longitud de raíz principal en el asaí reveló en sus fuentes de variación que no existen diferencias significativas e indicamos que los tratamientos no ejercen un efecto en la variable.

En cambio se observa diferencias significativas en la fuente de variación de tiempos de inmersión para el majo e indicamos que 48 horas de inmersión se logra 20.03 cm de longitud.

En el análisis de la longitud de raíz secundaria se observó diferencias significativas en las fuentes de variación de asaí y majo, e indicamos que en el asaí el T2 revela la mejor respuesta con 13 cm y con 8 cm el T1. En tanto para el majo el T3 demuestra 17.44 cm de longitud y el T1 con 7.88 cm, siendo este el más deficiente.

El análisis de varianza para diámetro de cuellos de raíz para el asaí muestra diferencias significativas para la fuente de variación de tiempos de inmersión e indicamos que con 48 horas de inmersión se logró un diámetro de 2.35 mm. En el majo la fuente de variación no muestran diferencias significativas en las fuentes de variación.

En conclusión se recomienda aplicar el tratamiento de remojo en agua natural (ambiente) por un periodo de 24 o 48 horas, ya que no se diferencia del de escarificación con lija, pero implica menos esfuerzo y es una práctica más sencilla.

En cuanto a la comparación de costos de los tratamientos pre germinativos el que supera la relación beneficio costo en las semillas de asaí es el T4 con 2.8 bs, sin embargo en los tratamientos pre germinativos de la semilla de majo el T2 revela el más alto beneficio costo con 2.9 bs.
ABSTRACT
The research was conducted in the Experimental Center of Santa Rosita located 4 km from the town of San Buenaventura in the coordinates 67°46' west longitude 14°19' latitude Sud and an altitude of 240 m.s.n.m. having as objective to evaluate the effect of different scarification methods mechanical - physical in nursery phase for the production of seedlings of acai (Euterpe precatoria M.) and majo (Oenocarpus bataua M.) in the municipality of San Buenaventura, applying a design of blocks at random in divided plots with 12 treatments and 3 replicates for each species, taking as a variable number of seeds per kilogram, percentage of emergency, days to the emergency, height of Plantin, stalk diameter, length of primary and secondary root, Neck diameter of the root distributed in the following treatments. T1 (witness), T2 (Without scratching Vs 24 hours immersion in natural water), T3 (Without scratching Vs 48 hours immersion in natural water) T4 (Without scratching Vs 0.25 hours immersion in water to 50°C) T5 (Sand Vs 0 hours immersion), T6 (Sand Vs 24 hours immersion), T7 (Sand Vs 48 hours immersion), T8 (Sand Vs 0.25 hours immersion in water to 50°C), T9 (break the seed Vs 0 hours immersion), T10 (break the seed Vs 24 hours immersion), T11 (Break the seed Vs 48 hours immersion), T12 (Break the seed Vs 0.25 hours immersion in water to 50°C).

Applied the treatments and the results analyzed by the Duncan test at 5% significance for the percentage of emergency were found significant differences in the mechanical scarification and at the time of immersion in both species. In the acai it was found that treatments T4, T6, T7 and T3 were 87, 83, 79 and 77.3% of emergency respectively and T1 obtained 24% majo reveals T5, T7, T6, obtained 95.3, 95, 94.3% as the best responses in change T12 obtained 29.3%. In asai T6 start days to the emergency in the 23 days and for majo to 40 days in T6.

In the case of the height significant differences were observed in the scarification methods and times of immersion in both species, for the acai achieved a height of 13 cm with T2 and the lower height with 9.7 cm in T1, both for the majo T6 obtained a value of 22 cm on the other side is obtained 15.2 cm in T1
For the diameter of the stem of acai the analysis of variance does not detect significant differences between the source of variation so that it is accepted that there are no differences between treatments. The analysis of majo presents significant differences in the source of variation for scarification methods and indicates that there are differences in the diameter with the sanding of seeds (5.5 mm).

In the analysis of variance for length of main root in the acai revealed in its sources of variation that there are no significant differences and indicate that the treatments do not exert an effect in the variable.

In change is noted a significant difference in the source of variation of dive times for the majo and indicate that 48 hours immersion is achieved 20.03 cm in length.

In the analysis of the secondary root length is noted significant differences in the sources of variation of acai and nice, and we indicated that in the acai T2 reveals the best response with 13 cm and 8 cm the T1. In both for the majo T3 demonstrates 1744 cm of length and T1 with 7.88 cm, this being the most deficient.

The analysis of variance for diameter with necks of root for the acai shows significant differences for the source of variation of dive times and indicate that with 48 hours immersion was achieved a diameter of 2.35 mm. In the majo the source of variation did not show significant differences in the sources of variation.

In conclusion it is recommended to apply the treatment to soak in natural water (environment) for a period of 24 or 48 hours, since it is not difference of scarification with sandpaper, but involves less effort and is a practice more easily.

With regard to the comparison of costs of treatments pre germinativos which exceeds the cost benefit ratio in the seeds of acai is the T4 with 2.8 Bs, however in the pre germinativos treatments of the seed of majo T2 reveals the highest benefit cost with 2.9 Bs.
MÉTODOS DE ESCARIFICACIÓN MECÁNICO-FÍSICO EN FASE DE VIVERO PARA LA PRODUCCIÓN DE PLANTINES DE ASAI (*Euterpe precatoria* M.) Y MAJO (*Oenocarpus bataua* M.) EN EL MUNICIPIO DE SAN BUENAVENTURA

1 INTRODUCCIÓN

En las últimas dos décadas la conservación de los bosques tropicales se ha enfocado en el aprovechamiento sostenible de los productos y servicios que oferta el bosque. Los recursos forestales no maderables (RFNM) en especial han llamado la atención de los emprendedores de iniciativas de conservación, ya que constituye una oportunidad de desarrollar estrategias que generen beneficios económicos a las poblaciones locales sin comprometer el funcionamiento del ecosistema. (Miranda, et al. 2008)

(Rocha, 2010) señala que en la región norte amazónica del país la explotación de (*Oenocarpus bataua* M.) es un recurso extractivo en un 80% consta de la cosecha de los frutos y para ello muchas veces el árbol es derribado. La familia Arecacea, como el asaí, se ha visto amenazada por una tala indiscriminada para obtener el palmito, llegando aproximadamente al 99% de las zonas accesibles en su explotación, de la misma forma para estos últimos años esta especie se ha ido repoblando a través de la regeneración natural, encontrándose en la actualidad solo un 10% de su hábitat natural, las especies no maderables como el asaí, majo se encuentran en densidades relativamente bajas (Mamani, 2000).

Las palmas son las únicas entre las plantas ornamentales leñosas, con pocas excepciones, que solo pueden propagarse por semillas, se caracterizan las plantas por su germinación lenta y desigual de sus semillas, se ha estimado que las especies de palmas, tardan más de 100 días en germinar y tienen del 20% de germinación total. Las razones de esto permanecen oscuras, ya que un trabajo de investigación muy pequeño ha sido afectado sobre las condiciones de inactividad de las semillas de palmeras (Meerow, s/f citado por Rocha, 2010).

La importancia económica que esta palmera tiene para el agricultor radica, básicamente en los ingresos que genera la comercialización del fruto en los mercados locales, donde
la pulpa es utilizada en la industria de helados, chupetes y refrescos (jugo de asaí, leche de majo) a parte del consumo directo como fruta.

Muchas de las palmeras generalmente se caracteriza por poseer una semilla con la testa dura, por lo que la semilla requerirá de condiciones adecuadas de humedad y de un tiempo más prolongado para su germinación, en este caso es recomendable aplicar tratamientos pre germinativos que tienen la finalidad de acelerar la maduración del embrión, romperá su latencia y acelerar la germinación (Rojas, 1985, citado por León, 2011).

En la actualidad, a pesar de su gran potencial económico, se conoce poco sobre los mecanismos que permitan un adecuado aprovechamiento y manejo de este recurso, principalmente enfocados al comportamiento de las semillas, El Asáí (Euterpe precatoria M.) tiene un tiempo más prolongado para su germinación dura normalmente entre 40 a 60 días, la semilla de Majo (Oenocarpus bataua M.) la germinación se produce entre 45 y 120 días en condición natural. (Collazos & Mejía, 1988, citado por Rocha, 2010).

Por tales motivos el propósito de la presente investigación es aportar con información sobre el comportamiento de las semillas en fase de vivero y la importancia de aplicar tratamientos pre germinativo, con el fin de obtener mayores niveles de producción plantas más homogéneas en menor tiempo.

El presente trabajo es un aporte al manejo de las semillas, técnicas enfocados a la producción de plantines de Asáí y Majo el mismo ayudara al agricultor de la región a establecer el manejo adecuado de las especies en un vivero forestal familiar en su predio y constituirse fuente de ingresos, sin amenazar el ecosistema y la diversidad.
2 OBJETIVOS

2.1 Objetivo general
Evaluar el efecto de diferentes métodos de escarificación mecánico-físico en fase de vivero para la producción de plantines de asai (Euterpe precatoria M.) y majo (Oenocarpus bataua M.) en el municipio de San Buenaventura

2.2 Objetivo específico
- Comparar el efecto de métodos de escarificación mecánica en la producción de plantines de Asaí y Majo en vivero.
- Evaluar el efecto de tratamientos físico en las semillas de Asaí y Majo.
- Evaluar la interacción escarificación mecánica y físico en fase de vivero en semillas de Asaí y Majo.
- Determinar los costos parciales en la producción de plantines de Asaí y Majo.
3 REVISIÓN BIBLIOGRÁFICA

3.1 Estudio de la especie Asaí (*Euterpe precatoria* M.)

Euterpe, en honor a una de las musas, la que precedía la poesía lírica y la música que la presentaban coronada de flores y sosteniendo en la mano, una flauta doble; *precatoria*, del (L) v. preca = rezar (debido a que en tiempos de la colonia en la chiquitania boliviana se fabricaban cuentas de rosario con el endocarpo) Según Moreno, L. & Moreno, O. (2996).

3.1.1 Clasificación taxonómica

Esta palmera pertenece a la siguiente clasificación taxonómica

<table>
<thead>
<tr>
<th><strong>Cuadro 1</strong> Clasificación taxonómica de la palmera de Asaí</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ASAÍ Euterpe precatoria</strong></td>
</tr>
<tr>
<td>División: Magnoliophyta</td>
</tr>
<tr>
<td>Sub división: Angiosperma</td>
</tr>
<tr>
<td>Clase: Liliopsida</td>
</tr>
<tr>
<td>Sub clase: Aracidae</td>
</tr>
<tr>
<td>Orden: Arecales</td>
</tr>
<tr>
<td>Familia: Areaceae</td>
</tr>
<tr>
<td>Sub familia: Arecoideae</td>
</tr>
<tr>
<td>Género: Euterpe</td>
</tr>
<tr>
<td>Especie: Precatoria</td>
</tr>
<tr>
<td>Nombre Común: Asaí, acai, palmiche, huasi</td>
</tr>
</tbody>
</table>

3.1.2 Características botánicas y dendrologicas del Asaí (*Euterpe precatoria* M.)

![Asaí solitario](image)

**Figura 1** Asaí solitario (*Euterpe precatoria* M.)

### 3.1.2.1 Tronco

Nina & Rodríguez (1999) en su descripción establece que se caracteriza por tener un tronco liso, recto y cilíndrico. Moraes (2014) indica que el asaí es una de las palmeras más vistosas de la Amazonia boliviana es monoica, monocaule e inerme de hasta 26 m de altura; tiene tronco liso (altura = 22 m DAP = 25 – 30 cm), erecto y cilíndrico.

El asaí (*Euterpe precatoria* M.) tiene palma arbórea de hasta 25 m de alto con tronco liso solitario y ocasionalmente cespitoso (Moraes, *et al* 2014) de igual forma Moreno, *et al.* (2006) refiere que la palmera es alta, solitaria, pleonantica, monoica, sin espinas, crece en lugares húmedos, cerca de fuentes de agua como ríos o lagos en “Tierra firme” amazónica. **Tallo** columnar, elevado, de 10 a 20 metros de alto 15 a 23 cm de diámetro, cilíndricos, suave, de diámetro uniforme, desnudo anillado regularmente con las cicatrices circulares planas de las hojas caídas; internudos de 15 a 20 cm de largo de color gris claro; cono de 5 mm de diámetro madera dura negra con fibras claras en la parte externa.
3.1.2.2 Raíces
Según Moraes, et al. (2014) las raíces son adventicias, densamente dispuestas en la base forman una masa rojiza (Nina, & Rodríguez 1999) las raíces son poco visibles en la base del tronco.

3.1.2.3 Hojas
Moraes (2014) indica que la corona foliar presenta 8 – 15 hojas pinnadas y arqueadas con pecíolo de 67 cm y raquis de 3.1 m de longitud, en la parte inferior de la corona las hojas forman una vaina foliar; las pinas 45 – 90 por lado, lanceoladas, péndulas a horizontales, regularmente insertas de 62 – 72 cm de longitud, verde claro en ambas caras. Nina et al (2006) describe a la hoja compuesta de 70 a 90 pares de hojuelas, de 28 a 62 cm de largo, linear – lanceoladas; paralelinervados, raquis de 2, 3 a 3 m de largo formado por una costilla central en el haz y redondeado hasta aplanado en el envés.

Por su parte Moreno, et al. (2006) Refiere que las hojas 8-12, de 3-4 m de largo, las centrales arqueadas y las laterales casi horizontales, de color verde obscuro, con las pinas peinadas colgantes casi perpendiculares al raquis Vainas cilíndricas, de 1.2 m de largo; pseudocaule de hasta 1 m de alto; de color verde claro, con manchas incoloras, glabras, fibrosas acartonadas, se desprende en una línea de escisión nítida una vez que se secan al abrirse por la parte ventral. Peciolo de 20 a 70 cm de largo robusto, de color verde, aplanado dorsiventralmente, de sección oval de 4 x 2 cm; cara adaxial aplanada con refuerzo central romo; cara abaxial redonda, glabra Raquis de 2.5 – 3.5 m de largo; cara adaxial basalmente plana o ligeramente redonda, luego angulada, con dos carillas laterales de 1 – 1.5 cm de ancho para la inserción de las pinas cara abaxial redonda, de color verde claro. Lamina oval, pinnada, de 80 a 90 pinas a cada lado, solitarias opuestas, regularmente espaciadas dispuestas en un solo plano, formando ángulos de 90° con el raquis, las apicales con ángulos más agudos; las pinas cuelgan como dientes de peine a lo largo de la raquis Pinnas lineales acuminadas, de 0.95-1 mm de largo, 2.5 cm de ancho las el medio, las apicales de 45 x 1 cm; cara adaxial verde – amarillento, con una nervadura prominente de primer orden, tres de segundo orden con la marginal más gruesa como refuerzo, y muchas de tercer
orden, muy delgadas, inmersas cara abaxial de color verde opaco, con la nervadura de
primer orden más clara y tegumentosa, las de segundo orden inmersas pero visibles,
base angosta plegada reduplicada; ápice largo acuminado, simétrico.

3.1.2.4 Inflorescencia
Moraes (2014) describe que las inflorescencias constan de 3 – 4 por individuo en
diferente estado de desarrollo es infrafolio bajo la vaina foliar; el pedúnculo de 74 cm,
el raquis de 53 y la bráctea peduncular membranosa coriácea de 80 cm de longitud;
raquíllas 42 – 80 con flores blancas. De acuerdo a Moraes et al. (2014) e infrutescencia
erecta inserta bajo la corona de hojas. De la misma forma

Moreno, et al. (2006) describen la inflorescencia hipuriformes, de 0.95 a 1 m de largo,
intrafoliares, 3-4 al mismo tiempo, una en cada nudo inmediatamente debajo del
pseudocaule. **Perfil** lanceolado, de 0.8 – 1 m de largo, 12 cm de ancho, aplanado,
bicarinado con alerones anchos; cara abaxial con tegumento tomentoso fino; se inserta
en la base del pedúnculo, consistencia fibrosa, se abre por el centro de ambas caras y
se divide en dos caduco luego de la antesis. **Bráctea pendular** fusiforme, de 0.8 – 1
de largo 10 – 12 cm de diámetro antes de la antesis, de 25 cm de ancho, abierta; ápice
cónico corto, de 5 cm de largo, se inserta a 2 cm por arriba del perfil; coriáceo –
apergaminada, delgada, se abre en cara abaxial caediza luego de la antesis. A veces
constata otra bráctea triangula, plana, delgada y corta de la base del raquis. **Pedúnculo**
de 14 cm de largo, con base en forma de herradura con dos cuernos que abrazan al
tallo, luego de sección oval de 4 – 4.5 x 1.5 cm; con las cicatrices de la inserción de las
brácteas; cara adaxial plana o cóncava, con algunas brácteas vestigiales, triangulares,
planas; cara abaxial redonda, con tegumentos de color marrón claro **Raquis** de 30 a 45
cm de largo, erecto en la antesis y luego se curva con el peso de las raquillas colgantes
como cola de caballo. Termina en una raquilla simple más gruesa que las otras, cara
adaxial glabra y estéril en una extensión de 16 cm de la base sin raquillas y a su vez
brácteas vestigiales; el resto y hasta el ápice con raquillas simples sustentadas por
brácteas triangulares largas, las basales de hasta 15 cm de largo, cara abaxial y bordes
redondos con las raquillas en espiral **Raquillas** simples, de 0.5 – 1 m de largo 3 – 6 mm
de diámetro; base ancha aplanada, inserta en una protuberancia circular del raquis; los
primeros 3 cm, basales estériles sin flores, el resto aristadas, con superficie irregular con pequeñas depresiones circulares donde se alojan los tríos de flores, unos 30 en espiral a todo lo largo. **Flores estaminadas** cónicas, de 4 – 5 mm de alto, se abren totalmente con los estambres expertos, cáliz con tres sépalos ovales corto acuminados, de 3 mm de alto, de color blanquecino, carinados bordes irregulares imbricados. Corola con 3 pétalos lanceolados de 4 mm de alto, ligeramente carnosos en la base valvados. Estambres 6, de 5 mm de alto; filamentos con base ancha y ápice subulado; anteras de color morado, lanceoladas – angostas, basalmente sagitadas, con dos tecas retrofijadas en la parte media en el conectivo patente. Latrosas pistilodio de 4 mm de alto, trífido, de color rojo brillante. **Flores pistiladas** de 4 mm de alto, sésiles globosas, con punta roma, de consistencia dura, sustentadas por dos bractéolas ovales de 1.5 mm de alto con cara abaxial furfurácea y bordes fibrosos. Cáliz con 3 sépalos ovales, de 2.5 mm de alto abultados en la base, ligeramente carinados, con tegumento furfuráceo en cara abaxial, imbricados. Corola con 3 pétalos con punta roma, desiguales, papiráceos, glabros, 3.5 mm de alto, imbricados, pistilo oval, ovario globoso uniloculado, uniovulado, estilos cortos, connados; tres estigmas cortos romos obscuros.

**3.1.2.5 Frutos**

Posee frutos esféricos de 0.9 x 1.4 cm, de color morado cuando están maduros. Según Moraes et al. (2014) sin embargo Moreno, et al. (2006) describe que los **Frutos** son globosos, de 1.3 cm de diámetro. Exocarpo delgado, coriáceo, quebradizo, fácil de desprender; piel de color negro, glabra, áspera; perianto agrandado; residuos estigmáticos laterales puntiformes. Mesocarpo delgado, poco carnoso, con muchas fibras longitudinales gruesas y aplanadas formando capas, al exprimirlo resuena un líquido color purpura endocarpo duro, delgado no desprendible de la semilla, de color marrón, con ligeras estrías longitudinales marcadas por las fibras rígidas del mesocarpo, con surco que va de la base al ecuador. Semilla globosa, de 1 cm de diámetro; endosperma blanco lechoso, duro, homogéneo, poco oleoso. Embrión basal, de 3.5 mm de largo, cilíndrico, con punta cónica.
Nina & Rodríguez (1999), describe los frutos como drupas a la madurez de 8 a 12 mm de diámetro, globosas, negras brilosas, con exocarpo delgado y liso, mesocarpo delgado y fibroso, endocarpo óseo, semilla única y globosa.

### 3.1.3 Distribución geográfica del Asaí (*Euterpe precatoria M.*)

De acuerdo Moraes et al. (2014), indica que se distribuye en un gradiente altitudinal que va desde 150 hasta 2000 m, encontrándola en varios tipos de bosques amazónicos, ribereños, en planos encharcados e inundados (de varzea), secundarios montanos húmedos siempre verde (W Beni, W Santa Cruz, Cochabamba y La Paz).

Ampliamente distribuido en la llanura amazónica y en algunos valles de los andes; en el Norte del departamento del Beni; en el chapare de Cochabamba; en Iturralde y Nor Yungas de La Paz, En el departamento de pando; en Santa Cruz al E. en cercanías y áreas de influencia de los ríos itenez. Paraguay en el parque nacional “Noel Kempff” M” también en la provincia Ichilo, a orillas del río Ichilo y Yapacani según Moreno, et al. (2006).

Nina & Rodríguez (1999), considera la distribución en la zona tropical de los departamentos de Santa Cruz, Beni, Pando y Cochabamba. En bosques siempre verdes montano hasta la región amazónica. Crece en las áreas inundadas de zonas tropicales.

### 3.1.4 Uso de la palmera de Asaí (*Euterpe precatoria M.*)

Generalmente el fruto es utilizado por varias poblaciones y se destina para la elaboración de jugos, postres y helados. También se utiliza las hojas para la construcción de techos; las raíces para fines medicinales y el palmito para la alimentación. Moraes et al. (2014), el Asaí es fuente múltiple de usos para las comunidades humanas y ofrece diferentes estructuras que son aprovechadas: las hojas maduras son superpuestas para techado y usadas para bordes de techos, las hojas son usadas para artesanías y extraer tintes naturales, la porción terminal del brote foliar se cosecha para palmito, el tronco sirve cercos y paredes de las viviendas así como timón en los trapiches, Los frutos son comestibles tanto crudos como maduros; el mesocarpo cocido se utiliza para preparar bebidas y refrescos de sabor dulce y vino muy apreciado.
en Pando y que también tiene una aplicación medicinal (contra la anemia). Según Moraes (2014).

En efecto para Nina & Rodríguez (1999) los frutos son comestibles, el fuste es utilizado en la construcción de casas, muy vistosas como ornamental, actualmente es la especie más aprovechada en la industria palmitera en la región, en forma destructiva, ya que esta especie no macolla.

3.1.5 Recomendaciones de cosecha e intensidad
La cosecha del fruto se da extrayendo toda la infrutescencia madura, para lo cual se tumba la palmera, se trepa o se le coloca trampas para frutos. Estas dos últimas técnicas son las más recomendables, ya que causan menor daño a la planta y así se da una cosecha sostenible de frutos de asaí y para largo plazo. (Moraes et al. 2014).

El mismo autor refiere que para la cosecha de frutos se pueden recolectar 2 – 3 racimos de frutos por adulto dentro de los lugares de aprovechamiento, se deben dejar algunos individuos que sirvan de semilleros (sin cosechar), con el fin de mantener la producción de semillas para la siguiente generación de asaí.

Moraes (2014), considera el proceso de la cosecha de palmito significa la eliminación de individuos adultos y esto ha ejercido presiones muy altas en desmedro de su conservación especialmente en los bosques de Riberalta (Beni) y más recientemente en varias localidades de Pando.

3.2 Estudio de la especie Majo (*Oenocarpus bataua* M.)
El majo, antes incluido en el género *Jessenia* (Balick, 1986) citado por Miranda et al. (2008) pertenece ahora la genero *Oenocarpus*, que significa “fruta de vino” *oenocarpus* es considerado uno de los géneros de más amplia distribución en el continente, con el límite sur en los bosques montanos bolivianos.

3.2.1 Clasificación taxonómica
(Moraes 2004), señala que el género *Oenocarpus* está ampliamente distribuido en la amazonia de Sud América
Cuadro 2 Clasificación taxonómica de la Palmera Majo

<table>
<thead>
<tr>
<th>Rango Taxonómico</th>
<th>Identidad taxonómica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase:</td>
<td>Liliopsida</td>
</tr>
<tr>
<td>Orden:</td>
<td>Arecales</td>
</tr>
<tr>
<td>Familia:</td>
<td>Arecaeeae o Palme</td>
</tr>
<tr>
<td>Tribu:</td>
<td>Areceae</td>
</tr>
<tr>
<td>Subtribu:</td>
<td>Euterpeinae</td>
</tr>
<tr>
<td>Genero:</td>
<td>Oenocarpus</td>
</tr>
<tr>
<td>Especie:</td>
<td>Oenocarpus bataua Mart</td>
</tr>
</tbody>
</table>

Fuente: sistema de clasificación de Uhl & Dransfield cit. Miranda et al. (2008)

3.2.2 Características botánicas y dendrologicas del Majo (*Oenocarpus bataua* M.)

3.2.2.1 Tronco
Palmera alta, solitaria, que a veces forma colonias grandes, pleonánticas, monoica, sin espinas. **Tallo** 10 – 20 m de alto, 20 – 30 cm diámetro erecto, columnar, elevado, desnudo, en individuos jóvenes cubierto por las vainas de las hojas con bordes muy

Figura 2 Majo (*Oenocarpus bataua* Mart)
fibrosos que forman una masa de fibra; base con cono de raíces de 50 cm de alto, anillado regularmente con las cicatrices de las hojas caídas circulares anchas; internudos cilíndricos suaves de color gris obscuro; madera dura y fibrosa en la parte externa. (Moreno, et al. 2006) por su parte Moraes (2014), señala que es monoica, monocaule e inerme de hasta 25 m de altura con tronco anillado (anillo muy estrechos) de 30 cm de diametro, aunque en individuos preadultos lo cubre una capa densa de fibras negras – café oscuro procedente de las bases foliares y el diámetro llega hasta 45 cm.

3.2.2.2 Raíces
Según la FAO – REDBIO (2005) citado por Miranda et al. (2008), las raíces están generalmente bien desarrolladas, pudiendo desplazarse hasta 6 o 7 metros a los lados

3.2.2.3 Hojas
Según Moreno, et al. (2006), las hojas 10 – 15 nítidas, rígidas, erectas, oblicuas hacia arriba con la punta ligeramente arqueada, de 5 – 7 m de largo, 1.5 – 2 m de ancho, en plantas jóvenes llegan a medir 10 m de largo. Vainas triangulares, anchas, envolventes, forman una especie de pseudocaule de más de 1 m de largo, glabro de color verde, se abren parcialmente en la parte ventral alta, bordes con fibras delgadas como cabellos que se entrelazan con las de las vainas vecinas y otras fibras gruesas como agujas lignosas sobre todo en plantas jóvenes Peciolo de 40 cm de largo, robusto; cara adaxial fuertemente acanalada; cara abaxial redonda, de color, verde, con tegumento piloso, pino blanquecino Raquis robusto; cara adaxial con reborde aplanado central de dos carillas laterales oblicuas donde se insertan las pinnas; cara abaxial redonda. Lamina oblongo – lanceolada, pinnada, con 100 – 130 pinnas a cada lado, opuestas o subalternas, en un solo plano, espaciadas regularmente cada 10 – 12 cm, Pinnas lineales anchas, largo acuminadas, de 80 – 90 cm de largo, 4 cm de ancho; cara adaxial de color verde, brillante con una nervadura de primer orden, lignosa prominente; cara abaxial de color verde claro, blanquecino, con escamas plateadas con escamas plateadas, la nervadura central prominente y más de 4 nervaduras de segundo orden a cada lado, también prominentes que corresponden a surcos en la cara adaxial y que dan aspecto rayado a la pinna, base plegada, reduplicada; ápice corto – acuminado. Por su parte Moraes (2014) Las hojas se componen de 8 – 20 hojas pinnadas, erectas y
la última porción péndula miden 13 m de longitud, peciolo de 3 m y raquis de 10 m pinnas (70 – 100 por lado) de 90 cm hasta 2 m de longitud, lanceoladas, regularmente dispuestas e insertas en un plano, verdes en el haz y glaucas en el envés.

3.2.2.4 Inflorescencia

Moreno, et al. (2006), describe la inflorescencia intrafoliares, debajo del pseudocaule, 3 – 4 por estación, una en cada nudo, hipuriformes, ascendentes en la base para lego curvarse hacia abajo distalmente y quedar las raquillas colgantes. **Profilo** de 53 – 76 cm de largo, 20 cm de ancho, robusto, lignoso, lanceolado, bica rínado, con bordes aserrados, lignoso; se inserta cerca de la base del pedúnculo, se abre longitudinalmente en cara abaxial, caduco. **Bráctea peduncular** de 2 – 1.2 m de largo, 20 cm de diámetro, fusiforme ante de la antesis, de color verde obscuro, con tegumento tomentoso de color marrón; ápice largamente rostrado y acuminado, cónico, lignoso, de hasta 50 cm de largo; se abre en car abaxial; estructura lignosa – fibrosa, de 1 cm de espesor, caduca después de la antesis **Pedúnculo** de 50 – 55 cm de largo de sección oval de 15 x 10 – 11 cm, con la parte basal triangular que abraza al tallo, luego con las cicatrices de las inserción de las brácteas. **Raquis** cónico, de 35 cm de largo, 10 cm de diámetro; cara adaxial con 200 – 250 raquillas simples sustentadas por brácteas planas. **Raquillas** simples, de 75 – 95 cm de largo, rectas u onduladas casi en zigzag, base có nica; los dos tercios basales con 50 – 60 tríos de flores sentadas en depresiones circulares de las raquillas; el tercio distal con flores estaminadas en pares, dispuestas en espiral. **Flores estaminadas** de 9 mm de alto, 6 mm de diámetro, cónicas trifacetadas, con punta roma, sentadas o ligeramente pediceladas. Cáliz con tres sépalos triangulares, corto – acuminados, de 2 mm de largo, carinados en la base, duros. Corola con 3 pétalos, de 9mm de largo, triangulares largos connados y ligeramente abultados en la base, valvados apicalmente, con ápice romo, estriados longitudinalmente en ambas caras. Estambres 14 – 16 – 18; filamentos teretes, cortos connados basalmente formando un tallito, recurvados en la punta; anteras lineales, con dos tecas sagitadas en la base, retro fijadas en el tercio inferior, pistilodio corto, trífido. **Flores pistiladas globosas** de 7 – 8 mm de diámetro sé siles, glabras, brillantes, con aristas romas. Cáliz con 3 sépalos fuertemente imbricados, semi envolventes, carinados, de consistencia dura, de ancho desigual. Corola con 3 petalospapiraceos
semitransparentes, imbricados, envolventes, desiguales. Cúpula de estaminodios no aparente, pistilo oval, de 4 mm de largo, con ovario, estilos y estigmas concrecentes; ovario, uniovulado, con el ovulo hendido a un lado.

3.2.2.5 Fruto
Al respecto Moreno, et al. (2006), indica que los frutos ovales, de 2,7 x 2 cm, exocarpo delgado de 1 2 mm de espesor, coriáceo, piel negra, suave, perianto agrandado; residuos estigmáticos puntiformes. Mesocarpo carnoso, lechoso, fibroso, endocarpo delgado, quebradizo, con un rafe longitudinal formado por fibras longitudinales gruesas, muy pegadas a la semilla, que van de un extremo al otro, agrupadas en la base donde ocultan la base del embrión, semilla única oval elipsoidal, de 2.5 x 1.5 cm, sarcotesca marrón que se introduce en el endospermo y lo vuelve ruminado; endospermo, duro, blanquecino, excavado longitudinalmente en el eje mayor donde se encuentra el embrión. Embrión basal, cilíndrico, acuminado de 2 cm de largo, 5 mm de diámetro, ocupa casi todo el largo de la semilla. De igual forma Miranda, et al. (2008), informa que los frutos son drupas ovoides o elipsoides, de color verde pálido cuando son inmaduros, hasta un color negro violáceo en la madurez, cada fruto maduro alcanza los 4 cm de largo y entre 1.7 a 2.2 cm de ancho. Por su parte Moraes (2004), citado por Miranda et al. (2008), describe que la parte carnosa del fruto es oleaginosa, de color blanco, rojizo o violeta claro.

3.2.3 Distribución geográfica del Majo (Oenocarpus bataua M.)
(Balick, 1986, Henderson, 1994, citado por Miranda et al. 2008) el majo es una planta originaria de la zona neo tropical, se distribuye en toda la cuenca amazónica y en el bosque montano húmedo, desde el norte de Sudamérica, incluyendo Ecuador, Colombia, Brasil, Guayanas, Panamá y Trinidad hasta Bolivia se encuentra en bosques tropicales de tierras bajas, bosques húmedos montanos bajos y bosques de galería, siendo común en áreas inundadas, pantanosas y con drenajes pobres.

El mismo autor refiere que en Bolivia se encuentra en los departamentos de La Paz, Cochabamba, Santa Cruz, Beni y Pando, es frecuente en los bosques de llanura amazónica y en el bosque montano húmedo inferior, distribuyéndose entre los 170 y 1300 msnm.
Crece en la selva amazónica y en los valles de las estribaciones del Norte de los andes, en el interior de las selvas húmedas, no alteradas, con mucha precipitación pluvial y humedad ambiente, en suelos sujetos a inundaciones periódicas, en cercanías de ríos y laderas de montañas en cañadones profundos, desde los 150 a los 900 m de altitud. Ampliamente diseminada por los departamentos de Beni, Cochabamba, La Paz, Pando y Santa Cruz. Según Moreno, et al (2006) a su vez Moraes (2014) se encuentra en bosques amazónicos y en las laderas orientales andinas, donde presenta mayor densidad poblacional, desde 140 – 1.200 m altitud. Esta representa en los departamentos de Beni, Cochabamba, La Paz, Pando y Santa Cruz.

3.2.4 Uso de las palmeras de Majo (*Oenocarpus bataua* M.)

En lo que respecta Moreno, et al. (2006), sus hojas se usan para techar viviendas rurales, dé sus frutos se extrae un aceite muy fino para usos en cosméticos y de cocina, también se prepara helados, además de un refresco rico en grasas llamado leche de majo. De acuerdo con Moraes (2014) esta palmera es muy apreciada por sus diferentes propiedades y cualidades pues es un especie de uso múltiple. Las hojas maduras dobladas por la mitad y superpuestas para techado; del nervio central de la hoja sacan los nervios centrales y los juntan para usarlos como escoba, para el mismo fin también usan racimo de la infrutescencia. Las hojas tiernas se utilizan para tejido de artesanías y utensilios domésticos (esferas, abanicos, etc.); ocasionalmente se cosecha el palmito que es comestible (crudo o cocido). El tronco para las viviendas. Los frutos maduros son comestibles y solo se aprovechan hervidos, del mesocarpo se prepara una bebida (llamada localmente “leche de majo”) con sabor a chocolate y con efecto somnífero. De las semillas se extrae aceite con fines cosméticos (para prevenir la caída del cabello y para fortalecerlo) y medicinales (antirreumático, antitusivo, antifebril, analgésico y contra el arrebato de los niños) también se extrae aceite para cocinar. Para fines rituales, las semillas se recolectan como amuleto de buena suerte. La raíz hervida sirve para aliviar el dolor de cuerpo en baños de cuerpo.

FAO – RRDBIO (2005) Citado por Miranda, et al. (2008), los frutos tienen dos usos principales, como fuente alimenticia y como recurso medicinal, la pulpa del fruto maduro es comestible, diluida en agua se utiliza tradicionalmente en la preparación de bebidas
no alcohólicas, jugos, helados y dulces con alto contenido nutritivo, en Bolivia, la pulpa del majo es utilizada y se comercializa a nivel local y para exportación. De la pulpa se extrae leche producto derivado del majo de importancia comercial que se oferta en mercados locales, de las comunidades productoras de majo este producto mantiene los beneficios del aceite, pero además, contiene una cantidad de aminoácidos que la convierten en un sustituto ideal de otras fuentes proteicas.

3.3 Semilla

Según Rodríguez (1985), se llama semilla “al embrión en estado de vida latente, acompañada o no de tejido nutricio y protegido por el episperma”. En otros términos se le llama también semilla “al ovulo, fecundado y maduro”.

Por otra parte Tarima (1996), señala que la semilla es el medio principal por el que las plantas se perpetúan de generación en generación. La vida de la semilla es una serie de eventos biológicos. Comienza con la floración de los árboles y termina con la germinación de la semilla madura.

3.3.1 Partes de la semilla

Las partes que conforma la semilla son el embrión, endospermo, tegumento o testa.

3.3.1.1 Cubierta

De acuerdo a Rodríguez (1985), la testa o cubierta de la semilla se desarrolla a partir del tegumento o tegumentos y consta de células más o menos vacuoladas de paredes delgadas. Durante la maduración de la semilla, la testa experimenta un en grado variable alteraciones estructurales de la propia pared celular, contenido de la pared, así como la destrucción de alguna o de todas las capas tegumentarias iniciales.

La testa puede tener distintas texturas y apariencias, generalmente es dura y está formada por una capa interna y una externa de cutícula y, una o más capas de tejido grueso que sirven de protección. Estas características le confieren a la testa cierto grado de impermeabilidad al agua y a los gases. Ello le permite ejercer una influencia reguladora sobre el metabolismo y crecimiento de la semilla. Frecuentemente en la testa se puede observar el micrópilo en muchas ocasiones está asociado con una
cicatriz llamada hilio, que marca el punto donde la semilla se separó del talluelo (funículo) por medio de la cual estaba adherido al fruto en lo que respecta a Luca (s/f).

3.3.1.2 El endospermo
Es un tejido reservante de las semillas, formado en el saco embrional como consecuencia de la unión del núcleo secundario del mismo con un núcleo espermático procedente del tubo polínico. Es un tejido triploide, que puede ser debido totalmente por el embrión o solo parcialmente y en este caso sus reservas las utiliza el mismo embrión al germinar la semilla (Rodríguez, 1985).

A propósito Luca (s/f), describe que el endospermo es el tejido cuya función es almacenar las reservas alimenticias de las semillas, que va aportar la energía para la germinación, aunque no siempre están presentes.

3.3.1.3 El embrión
Rodríguez (1985), define que el embrión consta de un eje, el eje de la raíz hipocotilo, que lleva en su extremo el meristema radical y en el otro, el cotiledón o cotiledones y el meristema del primer brote. A veces, el epicotilo y un primordio radicular, o radícula, se encuentran en el embrión. Usualmente se desarrolla una calíptera sobre el extremo de la raíz embrionaria.

Por su parte Luca (s/f) refiere que el embrión puede desarrollarse una nuevo plantín bajo condiciones apropiadas, está formado por los cotiledones (hojitas embrionarias), la plúmula (a partir de la cual se origina la parte aérea) y la radícula (que da origen a la raíz).

3.3.2 Proceso de la germinación
3.3.2.1 Imbibición
A respecto a la imbibición Rodríguez (1985) indica que al ponerse en contacto con la tierra húmeda los tegumentos de la semilla, se inicia una intensa absorción de agua, que penetra primero por la micrópilo cuyos tejidos circundantes, por efecto de la imbibición, aumenta de volumen y agradan la abertura; luego penetra por el tejido esponjoso del hilio y se difunde por toda la superficie del embrión, almacenándose en el tejido interno de la testa, que es ávida de agua. Por su parte el embrión también
absorbe el agua que empapa la testa por toda la superficie de los cotiledones, los cuales aumentan considerablemente de volumen rasgando la testa que las encierra, no debemos olvidar que el agua que ingresa a la semilla lleva consigo oxígeno en disolución.

Toole (1998), señala que la germinación comienza con la entrada de agua a las semilla, que le permiten reasumir la actividad metabólica (respiración, síntesis de proteínas y otros) y termina con el crecimiento de la radícula que emerge al exterior, para esto utiliza parte de los nutrimentos de reserva y desarrolla gradualmente sistemas enzimáticos que le permitirán asumir luego su existencia autotrófica.

Hartmann & Kester (1997), menciona que la semilla seca absorbe agua y el contenido de humedad al principio se incrementa con rapidez, luego se estabiliza. La absorción inicial implica la imbibición de agua por coloideas de la semilla seca, que suaviza las cubiertas de la misma e hidrata el protoplasma. La semilla se hincha y es posible que se rompan las cubiertas. La imbibición es un fenómeno físico y puede efectuarse aun en semillas muertas.

### 3.3.2.2 Digestión y crecimiento

Al respecto Rodríguez (1985), presenta un análisis en el cual las células elaboran enzimas para digerir las substancias que almacenan: el alimento así digerido pasa de una célula a otra, luego se encamina a los conos vegetativos de la plúmula y radícula donde la savia esta difusión tiene lugar por osmosis, desde los cotiledones donde la savia está muy diluida hacia las células de la plúmula y radícula donde la savia está muy concentrada.

El mismo autor señala que por la llegada de los alimentos agua y oxígeno las células de los conos vegetativos inician su actividad reproductiva aumentando un infinito número de elementos celulares a las yemas de la plúmula y de la radícula; el alimento se convierte en los componentes de la célula, tales como citoplasma, núcleo y pared celular, como consecuencia crece el embrión en forma rápida.

Hartmann & Kester (1997), indican que los patrones metabólicos de semillas de diferentes especies difieren con el tipo de reservas químicas de la semilla. Las grasas y
los aceites, los principales constituyentes alimenticios de la mayoría de las plantas superiores, son convertidos enzimáticamente a ácidos grasos y al final de azúcares. As proteínas almacenadas, presentes en la mayoría de las semillas, son una fuente de aminoácidos y de nitrógeno esencial para la plántula en crecimiento.

3.3.2.3 Movilización y transporte de alimentos
Según Delouche, (2001), a medida que el nivel de hidratación aumenta se inicia ciertas reacciones enzimáticas, esas reacciones involucran la transformación de reservas alimenticias complejas (carbohidratos, lípidos y proteínas), insolubles que son sustancias no movilizables.

3.3.3 Propiedades internas de la semilla que afectan la germinación

3.3.3.1 Viabilidad

La viabilidad es la capacidad que poseen algunas semillas de permanecer vivas durante un tiempo estando en dormancia y germinan cuando se aplican métodos de pregerminación, informa Lohse (1997).

3.3.3.2 Germinación
Según Rodríguez (1985), se llama germinación “al proceso por el cual el embrión de la semilla recobra su actividad vital y empieza el desarrollo, que provoca la ruptura de los tegumentos seminales y el brote de la nueva planta”

Justice (1972) citado por William (1991a), define como el surgimiento y desarrollo de las estructuras esenciales a partir del embrión de la semilla, que indican la capacidad de la semilla para producir una planta normal en condiciones favorables.

3.3.3.3 Energía germinativa
Justice (1972) citado por William (1991a), define a la energía germinativa como el porcentaje del número de semillas de una muestra que germinan dentro un determinado periodo de tiempo y en diferentes condiciones hasta llegar al momento de
máxima germinación, que generalmente significa el número máximo de germinación de 24 horas.

3.3.4 Factores externos que afectan la germinación de las semillas

3.3.5 Humedad
Según Rodríguez (1985), en su análisis indica que la humedad del suelo es el factor primordial para la germinación por las siguientes razones.

- Disuelve el citoplasma de la células y despierta su actividad vegetativa y reproductora
- Reblandece los tegumentos de las semillas, facilitando el crecimiento y el brote del embrión.
- Como es disolvente de los gases, sirve de vehículo para la penetración del oxígeno en las células y para la salida del anhídrido carbónico
- Al disolver las materias almacenadas en las células del endospermo o de los cotiledones, facilita su digestión y conduce el alimento hacia los conos vegetativos de la plántula.
- Cada especie de semilla necesita un grado de humedad de acuerdo a sus necesidades, si ella es excesiva disminuye el aire respirable, provoca la descomposición de las paredes celulares la muerte de las células y aun del embrión.

3.3.6 Temperatura
Es un factor de influencia decisiva para la distribución de los vegetales sobre la tierra. En primer lugar, las semillas requieren un periodo de enfriamiento para la sobre maduración de la plántula con objeto de habilitarla con un brote normal. Según Rodríguez (1985).

Jara (1996) Citado por Jiménez (2014), establece la temperatura es un factor decisivo en el proceso de la germinación, ya que influye sobre las enzimas que regulan la velocidad de las reacciones bioquímicas que ocurren en la semilla después de la rehidratación.
Por ello las semillas solo germinan dentro de un cierto margen de temperatura. Si la temperatura es muy alta o muy baja, la germinación no tiene lugar aunque las demás condiciones sean favorables (Wilson & Loomis, 1992).

### 3.3.7 Aireación

Como todo ser vivo, la semilla el oxígeno del aire aun estando en el periodo de descanso vegetativo; al iniciarse la germinación se acrecienta la necesidad del oxígeno. He ahí, la razón para guardarlas en sitios aireados y sembrarlas en terreno removido, suelto y profundo (Rodríguez, 1985).

Hartmann & Kester (1995), informa que el intercambio de gases entre el medio de germinación y el embrión es básico para una germinación rápida y uniforme. La mayor parte de las semillas requieren para su germinación un medio suficientemente aireado que permita una adecuada disponibilidad de O<sub>2</sub> y CO<sub>2</sub> (Wilson & Loomis, 1992).

### 3.3.8 Luz

Fernández & Jhonson (1998), indican que para muchas especies la luz es un factor que influye directamente sobre la germinación, acelerándola o inhibiéndola; en cambio para otras no tiene ningún efecto directo. Su acción puede estimular la germinación de las semillas.

Hartmann & Kester (1997), la sensibilidad de las semillas a la luz es bastante variable de acuerdo a la especie. Algunas semillas se estimulan positivamente por la luz y otras negativamente. La respuesta de las semillas a la luz, está ligada a una cromoproteína denominada “fitocromo” pigmento responsable censor de señales del medio ambiente y fotorregulador, ya que capta, traduce y amplifica la información, actuando solo en semillas hidratadas aunque está presente en semillas secas.

El efecto de luz en la germinación difiere en las distintas especies, algunas lo requieren otras no. El efecto de luz pude variar de acuerdo con las condiciones ambientales y se dice que la cantidad exigida puede variar entre 20.000 luz y 100.000 luz (Vásquez, 2001).
3.4 Tipos de germinación

3.4.1 Germinación epigea
Rodríguez (1985), define la germinación epigea, porque el único cotiledón de la planta, sale fuera de la tierra llevando, en su extremo apical, al resto de la semilla.

Para Goitia (2000), indica que los cotiledones se observan por encima de la superficie del suelo, frecuentemente con la testa o cubierta todavía prendida a ellos, después de pocos días los cotiledones aumentan de tamaño y se independizan de la testa, dejándola caer al suelo.

3.4.2 Germinación hipogea
Según Rodríguez (1985), indica que se denomina hipogea con que se conoce esta forma de germinación, se refiere al hecho de que los cotiledóneas no salen del suelo, la radícula emerge del de la semilla rasgando los tegumentos en la zona de la macropila, penetra en las capas profundas del suelo y se ramifica; simultáneamente, el epicotilo crece con mayor vigor, arranca a la plúmula del centro de los cotiledones y toma una dirección contraria a la raíz (geotropismo negativo), empuja hacia arriba y aparece fuera de la tierra todavía con la plúmula encorvada.

Al respecto Goitia (2000), indica que los cotiledones quedan debajo de la superficie del suelo, existe un crecimiento rápido de la plúmula o tallito inicial y la formación de las hojas primarias que indican el proceso fotosintético, los cotiledones que quedan debajo de la superficie del son fuentes de alimento de la planta, mientras esta fotosintetiza los diferentes compuestos necesarios para su desarrollo.

Por otro lado las semillas de Asaí presentan una germinación de tipo hipogea, por la ausencia de cotiledones en la superficie de la tierra y con crecimiento rápido del tallito inicial (Goitia, 2003).

3.5 Latencia o dormancia
Existen semillas que teniendo la capacidad para germinar y siendo colocada bajo condiciones adecuadas, no germinan a este fenómeno se llama dormancia o latencia, la
dormancia es consecuencia de la combinación de los factores ambientales y genéticos; la importancia de cada factor y la intensidad requerida dependen básicamente de la especie. En ciertas especies deben ocurrir algunos cambios en la estructura física o bioquímica de la semilla, antes del inicio de la germinación y en otros, el embrión necesita someterse a cambios fisiológicos para facilitar el proceso según Tarima, (1996).

3.5.1 Dormancia fisiológica

A propósito Tarima (1996), señala que la dormancia fisiológica se conoce también como latencia o dormancia endógena o interna. Se caracteriza porque las semillas, aunque maduras anatómicamente, no pueden germinar hasta que ocurran complejos cambios fisiológicos en el embrión, los cotiledones o el endospermo (que son un tejido de reserva de la semilla) en este caso la dormancia se asocia con la incapacidad del embrión.

3.5.2 Dormancia física

En cuanto a la dormancia Tarima (1996), establece que también se llama dormancia forzada o morfológica. Generalmente ocurre por una condición morfológica que impide la germinación de la semilla o algunos tipos de cubiertas pueden ser tan duros que no permiten el desarrollo del embrión impidiendo el paso de la humedad y los gases, indispensables para el inicio de la germinación

3.6 Romper la dormancia

Bajo las condiciones naturales según Tarima (1996), ocurren cambios según los factores ambientales como aireación, humedad, temperatura, luz y la acción de los microorganismos. En el vivero se dar las condiciones adecuadas para romper la dormancia y de esta manera acelerar la germinación de las semillas que se encuentren latentes, el cual se obtiene por medio de tratamientos pre germinativos.
3.7 Tratamientos pre germinativos en las semillas

Para superar el bloque natural que impide la germinación o para uniformizar y mejorar la velocidad de la misma, es posible utilizar los llamados tratamientos pre germinativo, estos no se pueden recomendar para un uso generalizado, su acción de pende de las características propias de cada especie. De modo que la indicación de su uso es particular para cada caso (Tarima, 1996).

Con los tratamientos pre germinativos, de la semilla se pretende ablandar la testa permitiendo de esta manera la penetración del agua y el intercambio de gases son responsables de la germinación, por ello los tratamientos tienen por objeto romper la latencia externa e interna, acelerar la germinación, homogenizar la germinación y elevar el porcentaje de germinación (Villanueva, 1995).

3.7.1 Escarificación

3.7.1.1 Escarificación mecánica o lijado

Según Tarima (1996), describe que ese tratamiento se realiza con la ayuda de una lija u otra material de raspado. Se coloca las semillas entre dos hojas de lijas y se frotan hasta que pierdan el brillo natural y su aspecto sea poroso. Cuando la semilla es bastante grande se puede raspar manualmente una por una ya sea en lijas, piedras o superficies ásperas.

De la misma forma para Luca (s/f), la escarificación mecánica consiste en raspar la cubierta de las semillas con lijas, limas, o quebrarlas con un martillo, si es a gran escala se utilizan maquinas especiales como tambores giratorios recubiertos en su interior con papel lija o combinados con arena gruesa.

3.7.1.2 Escarificación en agua caliente

Sobre el tema Tarima (1996), indica que consiste en colocar la semilla en un pedazo de tela fina, atarla a un palo y sumergirla en agua hirviendo a 80° por el tiempo de uno a dos minutos o dependiendo de las características de cada especie. Luego se procede al
secado como en el tratamiento anterior debe tenerse especial cuidado en el tiempo de
inmersión si se excede en el tiempo se podrían dañar las semillas e inutilizarlas.

Se colocan las semillas en un recipiente en una proporción de 4 a 5 veces su volumen
de agua caliente a temperatura entre 77°C y 100°C. De inmediato se retira la fuente de
calor, las semillas se deben sembrar inmediatamente después del tratamiento.

3.8 Sistemas en producción de viveros

Tarima (1996), indica que en el vivero se asegura a las plantas jóvenes las mejores
condiciones para un desarrollo inicial óptimo; esto quiere decir que las plantas que
salen del vivero deben tener la suficiente energía para sobrevivir en el terreno definitivo:
buenas raíces, tallo recto y fuerte, ramas y hojas desarrolladas y sobre todo debe ser
una planta sana.

El mismo autor señala que la ventaja de este método es que se pueden producir las
plantas que se deseen aun en épocas no apropiadas. Se siembran semillas en bolsitas
o en camellones, ahí germinan, crecen hasta un tamaño adecuado y luego se
trasplantan al terreno definitivo.
4 MATERIALES Y MÉTODOS

4.1 Localización
Según el PDM de San Buenaventura (2015 – 2019), el municipio de San Buenaventura colinda al norte (Arroyo Tarene) y oeste con el Municipio de Ixiamas, que también es parte de Provincia Abel Iturralde del departamento de La Paz; al Sur (Rio Tuichi) y Oeste con el municipio de Apolo de la provincia Franz Tamayo del Departamento de La Paz; al Este con el Municipio de Rurrenabaque y al Noreste con el Municipio de Reyes (Rio Beni), ambos de la Provincia Ballivian del Departamento del Beni.

![Ubicación Geográfica del Municipio de San Buenaventura](image)

**Figura 3** Mapa base del Municipio de San Buenaventura
Fuente: PMOT San Buenaventura (2009)

El estudio se realizó en la comunidad de Santa Rosita ubicada a 4 km del poblado de San buenaventura provincia Abel Iturralde, región amazónica del departamento de La Paz; Geográficamente está en las coordenadas 67°46” de longitud Oeste, 14°19” de latitud Sud y una altitud de 240 m.s.n.m. Guillermo (2001).
4.2 Características físico naturales

4.2.1 Clima

El municipio presenta un clima cálido que se comporta con relativa homogeneidad en el espacio y cierta estacionalidad en el tiempo. La temperatura media anual es de 25.7°C, con las máximas temperaturas en octubre y las mínimas en julio. Respecto a la precipitación, se distingue también una estacionalidad temporal que define la “época de lluvias” (noviembre a marzo), y la “época seca” (abril a octubre) donde las precipitaciones se reducen hasta 80 mm en agosto. La humedad relativa se mantiene alta durante los meses de diciembre a junio (85%), mientras que de julio a noviembre se reduce hasta 73%. (Plan de desarrollo municipal municipio de san buenaventura 2015 – 2019).
4.2.2 Altitud y fisiografía

Se distinguen dos provincias fisiográficas: el Subandino está conformada por paisajes de colinas de piedemonte, llanuras de piedemonte y llanuras aluviales provenientes de sedimentos paleozoicos como areniscas, cuarcitas, lutitas, limonitas pizarras y conglomerados terciarios plegados, deformados y la Llanura Chaco – Beniana. Esta provincia fisiográfica se extiende desde el límite con Subandino, hacia el Este del Municipio, hasta llegar al rio Beni. El paisaje modelado ha conformado una amplia llanura de piedemonte, llanuras aluviales amplias e inundables con depósitos predominantemente cuaternarios. La llanura se caracteriza por tener una morfología homogénea, casi plana con algunas ondulaciones, donde se tienen formas tanto de posicionales como erosionales, notándose la presencia de amplias llanuras aluviales con depósitos superficiales de sedimentos cuaternarios. Según PMOT (2009).

4.2.3 Geomorfología

Es imprescindible entender inicialmente las características geológicas que imperan en el territorio para comprender e identificar la geomorfología existente. Las formaciones geológicas responden a los plegamientos de la faja sub andina y los proceso de deposición de la Llanura Chaco – Beniana. Según PMOT San Buenaventura (2015 – 2019).

En el subandino, al norte de la provincia Iturralde, departamento La Paz, se determinaron cuarcitas con intercalación de esquistos micáceos. Montes de Oca (1997) el mismo autor sostiene que la llanura beniana, corresponde el extremo noroccidental del país que influye el norte del departamento de la Paz, constituye una amplia planicie donde se reconocen tres regiones geológicas: la cuenca de la Madre de Dios, la Llanura Beniana y la plataforma Beniana.

4.2.4 Hidrografía

El municipio presenta tres unidades hidrológicas principales: Tuichi Bajo, Idiria, Beni – San Buenaventura (desde Angosto del Bala hasta la confluencia con Laguna Moa)
El área del drenaje de esta subcuenca abarca principalmente los municipios de San Buenaventura e Ixiamas en el departamento de La Paz y Rurrenabaque y Reyes, en el departamento del Beni. Según PMOT San Buenaventura (2009).

4.2.5 Vegetación y fauna

Según PMOT San Buenaventura (2009), debido a su ubicación entre el Subandino y llanura Chaco – Beniana, el municipio cuenta con una elevada diversidad en vegetación. Los bosques se caracterizan por la riqueza de especies maderables y por su alto valor de diversidad biológica. Se estiman más de 6.000 especies de plantas superiores que, además, albergan a una alta diversidad de fauna.

Bosque del piedemonte del suroeste de la amazonia esta unidad se encuentra entre el bosque de Llanura Chaco – Beniana y el subandino, donde el sotobosque por lo general es abierto y predomina la presencia de jatata (Geonoma deversa), hierbas del género Helioconia y algunos arbustos de la familia Rubiaceae. El estrato inferior corresponde a arboles pequeños y arbustos de cacao (Theobroma cacao) tranquillo (Rinorea viridifolia) y hueruro entre las más abundantes. En el estrato dominante (entre 10 y 30 m), las especies más frecuentes son: la copa (Iriartea deltoidea), la ajipa o zapallo (Pterygota amazonica).

Los bosques de llanura de piedemonte del suroeste de la amazonia, es la unidad más intervenida por los asentamientos humanos existentes. Las actividades de extracción de madera provocan el desplazamiento de animales a zonas no intervenidas. Los ambientes disturbados, son visitados por el taitetú (Pecari tajacu), jochi pintado (Cuniculus paca), jochi colorado (Dasyprocta variegata) que, en ocasiones, son atraídos por los cultivos de yuca y maíz. Es posible observar capibaras (Hydrochaeris fuscicollis) a pocos kilómetros de San Buenaventura. Según algunos pobladores, en el bosque secundario se puede observar al mono leoncito (Saguinus fuscicollis) y ardillas (Sciurus spadiceus).
4.3 Material experimental

4.3.1 Material biológica

Los materiales empleados en la investigación fueron 1260 frutos de Majo (*Oenocarpus bataua* M.) drupa ovoide u elipsoide, con un promedio de 3.20 cm de largo y 2.21 cm de ancho de color violáceo obscuro a negro.

1260 frutos de asaí (*Euterpe precatoria* M.) presenta un endocarpio duro, delgado no desprendible de la semilla, de color marrón, con ligeras estrías longitudinales marcadas por fibras rígidas del mesocarpio de 1 cm de diámetro).

4.3.2 Material de laboratorio

Para el desarrollo del estudio se utilizó los siguientes materiales:

Balanza analítica, vernier, termómetro, hipoclorito de sodio, guantes.

4.3.3 Material de campo

Otros materiales que se usaron machete, costales, pala, pico, cernidor, cinta métrica, baldes de 20 litros, olla, cocinilla, manguera de 50 m.

4.3.4 Material para sustrato

Los materiales utilizados para combinar el sustrato fueron:

a) Tierra negra: este material se obtuvo de los lugares aledaños del área de estudio

b) Cascarilla descompuesta de arroz: este material proviene de la peladora de arroz que se encuentra en el lugar conocido como takuare.

4.4 Metodología

4.4.1 Construcción del vivero

En la parcela de investigación una vez designado el área para la construcción del vivero se realizó la delimitación, nivelación y deshierbe del terreno se utilizó postes de madera y malla semi sombra cubriendo una área total de 640 m² con el fin de producir plantines de especies maderables y no maderables.
4.4.2 Obtención de semillas

Las semillas de Asaí (*Euterpe precatoria* M.) fueron recolectadas del municipio de San Buenaventura, de la señora que comercializa jugo de asaí y el Majo (*Oenocarpus bataua* M.) de la misma forma se obtuvo en la misma región con ayuda de las personas que comercializan leche de majo.

4.4.3 Preparación del sustrato

Una vez obtenida todos los materiales se procedió al tamizado o cernido para separar las impurezas como hojas, raíces, terrones y otros residuos, en seguida se elaboró la medición de los materiales con carretillas, el sustrato que se mezcló fue de 60% cascarilla de arroz descompuesto con 40% de tierra negra, la cual se apilo.

4.4.4 Desinfección del sustrato

La desinfección del sustrato se realizó con hipoclorito de sodio al 2% en 20 litros de agua, la solución se la distribuyo con una regadera por todo el sustrato, repitiendo esta operación hasta terminar toda la solución, al culminar se cubrió con una carpa con el fin de evitar que los gases producidos se evaporen. Permaneció cubierto durante 48 horas, posterior a este tiempo se realizó la remoción del sustrato la misma que permaneció al aire libre por 2 días, se concluyó con el llenado de bolsas de repique con el sustrato.

4.4.5 Rellenado de las bolsas

Una vez preparada la mezcla adecuada del sustrato se procede al llenado de bolsas con las siguientes precauciones, en el rellenado se tuvo mucho cuidado con dejar bolsas de aireo espacios libres en el interior de las bolsas, estos espacios de aire tienen efectos negativos en el desarrollo de las raíces y por lo tanto en las futuras plántulas.

4.4.6 Diseño experimental

En el presente experimento se utilizó un diseño bloques al azar en parcelas divididas con 12 tratamientos y 3 repeticiones, parcela grande (método de escarificación
mecánica), parcela pequeña tiempo de inmersión en agua el mismo para cada especie indistintamente (Calzada, 1982).

4.4.6.1 **Modelo lineal aditivo**

El modelo lineal aditivo que se manejó en la investigación fue el Diseño bloques al azar en parcelas divididas

\[ Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \rho_k + (\alpha\rho)_{ik} + \varepsilon_{ijk} \]

Siendo:

- \( Y_{ijk} \) = Variable de respuesta medida en la \( ijk \) - esimo unidad experimental
- \( \mu \) = Media general
- \( \beta_j \) = Efecto del \( j \) - esimo bloque
- \( \alpha_i \) = Efecto de la \( i \) - esimo nivel del factor A
- \( (\alpha\beta)_{ij} \) = Efecto de la interacción del \( i \) - esimo nivel del factor A con el \( j \) - esimo bloque representado por error de (a)
- \( \rho_k \) = Efecto del \( k \) - esimo nivel del factor B
- \( (\alpha\rho)_{ik} \) = Efecto debido a la interacción del \( i \) - esimo nivel factor A con el \( k \) - esimo nivel del factor B
- \( \varepsilon_{ijk} \) = Error experimental asociado a \( Y_{ijk} \) es definido como error (b)

4.4.6.2 **Factores de estudio**

**Factor A (Métodos de escarificación mecánico)**

- \( a_1 \) = Sin escarificación (testigo)
- \( a_2 \) = Escarificación con lija
- \( a_3 \) = Escarificación ruptura de la cubierta de la semilla

**Factor B (Tiempo de inmersión en agua)**

- \( b_1 \) = 0 horas de inmersión en agua natural (testigo)
- \( b_2 \) = 24 horas de inmersión en agua natural
- \( b_3 \) = 48 horas de inmersión en agua natural
- \( b_4 \) = 15 minutos de inmersión en agua a 50°C
4.4.6.3 Tratamientos en estudio

En el trabajo de investigación se obtuvieron 12 tratamientos los cuales se muestran a continuación en el cuadro 3.

Cuadro 3 Descripción de los tratamientos

<table>
<thead>
<tr>
<th>TRAT</th>
<th>CODIGO</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>a1b1</td>
<td>sin escarificar + 0 horas de inmersion</td>
</tr>
<tr>
<td>T2</td>
<td>a1b2</td>
<td>Sin escarificar + 24 hrs de inmersion en agua natural</td>
</tr>
<tr>
<td>T3</td>
<td>a1b3</td>
<td>Sin escarificar + 48 hrs de inmersion en agua natural</td>
</tr>
<tr>
<td>T4</td>
<td>a1b4</td>
<td>Sin escarificar + 15 min. inmersion en agua a 50°C</td>
</tr>
<tr>
<td>T5</td>
<td>a1b1</td>
<td>Lijado + 0 horas de inmersion</td>
</tr>
<tr>
<td>T6</td>
<td>a1b2</td>
<td>Lijado + 24 hrs de inmersion en agua natural</td>
</tr>
<tr>
<td>T7</td>
<td>a1b3</td>
<td>Lijado + 48 hrs de inmersion en agua natural</td>
</tr>
<tr>
<td>T8</td>
<td>a1b4</td>
<td>Lijado + 15 min. inmersion en agua a 50°C</td>
</tr>
<tr>
<td>T9</td>
<td>a1b1</td>
<td>Ruptura de la semilla + 0 horas de inmersion</td>
</tr>
<tr>
<td>T10</td>
<td>a1b2</td>
<td>Ruptura de la semilla + 24 hrs de inmersion en agua natural</td>
</tr>
<tr>
<td>T11</td>
<td>a1b3</td>
<td>Ruptura de la semilla + 48 hrs de inmersion en agua natural</td>
</tr>
<tr>
<td>T12</td>
<td>a1b4</td>
<td>Ruptura de la semilla + 15 min. inmersion en agua a 50°C</td>
</tr>
</tbody>
</table>

4.4.7 Dimensión del área experimental

Área total del experimento: 43.2 m²
Área neta del experimento: 25.2 m²
Área de la parcela grande: 1.4 m²
Área de la parcela grande: 0.35 m²
Numero de bolsas por tratamiento: 35
Numero de repeticiones por tratamiento: 3
Separación entre bloques: 0.5 m
Cantidad de semillas por tratamiento: 35
4.4.8 Croquis experimental

Las dimensiones en el área de estudio se visualizan en la figura 5.

![Croquis experimental](image)

**Figura 5** Croquis experimental

4.4.9 Aplicación de los tratamientos pre germinativos

Para el tratamiento uno \( (T_1) \) testigo las semillas fueron sembradas de forma directa sin ser sometidas a ningún tratamiento.

Para el tratamiento dos \( (T_2) \) las semillas estuvieron expuestas en agua natural por un tiempo de 24 horas y ninguna escarificación mecánica.

En el tratamiento tres \( (T_3) \) se sumergió las semillas en agua natural por el lapso de 48 horas las mismas sin escarificación mecánica.

El tratamiento cuatro \( (T_4) \) se procedió a calentar agua a 50 °C en una olla una vez que el agua alcanzo la temperatura en estudio, se sumergió las semillas durante un tiempo de 15 minutos sin escarificación mecánica.
En cuanto al tratamiento cinco (T₅) se utilizó una lija con el objetivo de realizar un lijado de la testa de la semilla sin ser expuesta a inmersión en agua.

En cambio el tratamiento seis (T₆) se efectuó el lijado de la testa de la semilla e inmersión en agua por el tiempo de 24 horas.

Tratamiento siete (T₇) las semillas fueron sometidos al lijado de la testa y sumergidos en agua natural por un tiempo de 48 horas.

Para el tratamiento ocho (T₈) se realizó el lijado de la semilla seguido de remojo en agua a una temperatura de 50°C durante 15 minutos.

En el tratamiento nueve (T₉) se realizó otro método de escarificación mecánica el cual consiste en realizar una ruptura en la testa de la semilla para ello se usó un martillo y con golpes suaves se hizo el quiebre de la semilla.

Se realizó el mismo procedimiento en los tratamiento diez (T₁₀) once (T₁₁) con inmersión en agua natural a temperatura ambiente por un tiempo de 24 horas 48 horas respectivamente, en cambio el tratamiento doce (T₁₂) fue sumergido en agua a temperatura de 50°C por un lapso de 15 minutos.

4.4.10 La siembra experimental

Una vez culminado con los diferentes tratamientos pre germinativo se procedió con el riego al sustrato día antes, seguido de la siembra de las semillas de asaí y majo se sembró a una profundidad tal que se encuentre lo suficientemente profunda, como para que el agua de riego no la destape y que para facilitar el proceso de emergencia hacia la superficie no gaste demasiada energía, una vez culminada con la siembra inmediatamente se realizó un riego ligero para que esta manera la semillas encuentren las condiciones adecuadas para la germinación.

4.4.11 Labores culturales
   a) Riego

Es una de las actividades importantes en la producciones de plantines, el riego a las unidades experimentales se adaptó a las condiciones climáticas de la zona, es decir en
época de lluvia se consideró la intensidad de la lluvia para determinar la necesidad de riego, en cuanto al tiempo seco y caluroso se aumentó la frecuencia de riego incluso a 2 veces por día.

b) Deshierbe

Por las condiciones de la zona existe una mayor proliferación de malezas fuertemente agresivas para las plántulas, se realizó la eliminación desde el momento de la siembra de semillas de Asaí y Majo, también se realizó la eliminación de malezas en los pasillos de esta manera evitar las condiciones favorables para las plagas, esta labor se efectuó de forma manual 1 vez por semana.

c) Plagas y enfermedades

En el ensayo no hubo presencia de enfermedades y plagas de importancia económica, se considera que fue debido a la previa desinfección de sustratos antes de la siembra y los oportunos deshierbes del área

4.4.12 Variables de respuesta

4.4.12.1 Análisis del número de semillas por kilogramo

Una vez obtenidas las semillas se tomaron al azar 100 semillas que se pesaron en una balanza analítica de precisión se toma en cuenta 6 repeticiones, del mismo se deduce el promedio del número de semillas por kg por medio de la siguiente fórmula.

\[
\text{NºSemillas} = \frac{1000 \cdot \text{g} \times \text{100 semillas}}{\text{Peso de 100 semillas}}
\]

4.4.12.2 Porcentaje de emergencia

Para el análisis de esta variable se hizo un seguimiento, desde el primer día de siembra hasta la aparición de la plúmula en las dos especies, considerándose la cantidad de semilla empleada y la cantidad de semillas emergidas haciendo un registro para su posterior análisis.
4.4.12.3  **Días a la emergencia**
Es el tiempo que transcurre cada semilla, desde el momento de la siembra hasta el día de emergencia. Se ha medido esta variable, hasta el momento en que más de 50% de las plantas hayan emergido, los datos obtenidos en las diferentes unidades experimentales fueron procesados para su respectivo análisis.

4.4.12.4  **Altura de plantín**
Para la variable altura de plantín de las dos especies Asaí y Majo se realizó un muestreo de 5 plántulas por cada tratamiento se estableció un lapso de 7 días para cada evaluación la medición se realizó desde la base del cuello hasta la parte más alta de la planta (Hoja) con la ayuda de una cinta métrica.

4.4.12.5  **Diámetro de tallo de plantines**
Esta variable se registró con la ayuda de un vernier calibrado, midiendo el tallo a la mitad de la longitud del tallo y esta variable se midió cada 15 días en ambas especies Asaí y Majo.

4.4.12.6  **Longitud de raíz principal y secundaria**
Respecto a la variable longitud de raíz principal se realizó desde el cuello hasta el ápice de la raíz principal, de igual modo la longitud de la raíz secundaria se consideró desde el cuello hasta el ápice de la misma, se realizó con la ayuda de una cinta métrica en centímetros se midió un intervalos de 15 días tanto para el asaí y majo.

4.4.12.7  **Diámetro de la raíz**
Con relación al diámetro de la raíz se cuantificó la variable con la ayuda de un vernier y la misma se realizó cada 15 días, se tomaron datos desde la aparición del cotiledón hasta el final de la investigación.
5 RESULTADOS Y DISCUSIÓN

El trabajo de investigación se inició en el mes de junio del 2014, concluido en el mes de noviembre del 2014, tiempo en el cual se obtuvieron los resultados que se presentan a continuación: análisis del comportamiento agroclimático de la zona, los resultados de campo de las 5 variables del trabajo de investigación.

5.1 Comportamiento climático

Debido a las características de estudio se ha visto por conveniente presentar los datos climáticos, obtenidos de la estación meteorológica ubicada en Rurrenabaque perteneciente al Servicio Nacional de Meteorología e Hidrología (SENAHMHI) periodo 2014.

![Gráfico 1 Temperaturas máximas, mínimas y medias registradas durante el periodo de estudio 2014](image)

Fuente: Elaboración propia, con base a datos del SISMET/SENAHMHI, de la Estación Rurrenabaque Aeropuerto. (2014)

En el gráfico 1 se observa que la temperatura promedio máximo alcanzo 28.5 °C en el mes de abril durante el día ocurrieron temperaturas máximas de 34.8 °C y temperaturas mínimas de 22.2°C seguido del mes de septiembre con un promedio de 27.3°C y las variaciones diarias se registró una máxima de 34.2°C y una mínima de 20.5 °C, estas
variaciones de temperatura no ejercieron un efecto negativo en el desarrollo del experimento

Según Plan de desarrollo municipal de san buenaventura 2015 – 2019 indica que por esta dinámica el municipio de San Buenaventura ha estado presentando temperaturas superiores a los 20°C durante casi todo el año, en los últimos 8 años (2007 – 2014). La temperatura media anual es de 25.7°C, con las máximas temperatura de octubre 34.2°C en 2009 y las mínimas en julio 6.2°C

Fuente: Elaboración propia, con base a datos del SISMET/SENMH, de la Estación Rurrenabaque Aeropuerto. (2014)

Grafico 2 Humedad relativa registradas durante el periodo de estudio 2014

Podemos analizar del grafico 2 que los mayores porcentajes de humedad relativa fueron reportados en los meses de junio y julio con 88.23%, 85.93% respectivamente ya que en la región de San buenaventura el ambiente es húmedo.

La humedad relativa se mantiene alta durante los meses de diciembre a junio (85%), mientras que de julio a noviembre se reduce hasta el 73%. Según el Plan de desarrollo municipal de san buenaventura 2015 – 2019
En el gráfico 3 establece que la mayor precipitación pluvial fue en el mes de junio con 193 mm, sin embargo en el mes de agosto demuestra 28.4 mm siendo este el registro más bajo en el periodo de estudio.

La precipitación pluvial total durante el periodo de estudio fue de 724 mm, el mes de junio de mayor precipitación no fue muy favorable a razón de que coincidía con la siembra, causando pudrición de semillas debido a la excesiva humedad.

Respecto a la precipitación, se distingue también una estacionalidad temporal que define la época de lluvias (noviembre a marzo con una precipitación promedio que llega 1300 mm), y la época seca (abril y octubre) donde las precipitaciones se reducen entre 60 a 80 mm, principalmente en el mes de agosto según el análisis realizado en el Plan de desarrollo municipal de San Buenaventura 2015 – 2019.

Los factores inciden significativamente en la productividad óptima de las especies forestales y fundamentalmente permite alcanzar altos rendimientos en la producción de plantines. Estos factores climáticos contribuyen sistemáticamente a su germinación, crecimiento y establecimiento final según Delgado et al. (2005).
5.2 Características físicas de la semilla

a) Asaí (*Euterpe precatoria* M.)

Para una mayor exactitud de esta variable se evaluó seis repeticiones que se observan en el cuadro 4

<table>
<thead>
<tr>
<th>REPETICION</th>
<th>PESO EN g</th>
<th>NUMERO DE SEMILLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000 g</td>
<td>1049</td>
</tr>
<tr>
<td>2</td>
<td>1000 g</td>
<td>1037</td>
</tr>
<tr>
<td>3</td>
<td>1000 g</td>
<td>1131</td>
</tr>
<tr>
<td>4</td>
<td>1000 g</td>
<td>1039</td>
</tr>
<tr>
<td>5</td>
<td>1000 g</td>
<td>979</td>
</tr>
<tr>
<td>6</td>
<td>1000 g</td>
<td>1018</td>
</tr>
<tr>
<td><strong>Promedio</strong></td>
<td><strong>1000 g</strong></td>
<td><strong>1042</strong></td>
</tr>
</tbody>
</table>

Según el análisis se observó un máximo de 1049 semillas y un mínimo de 979 semillas de asaí se obtuvo un promedio de 1042 semillas por kilogramo. La información de esta variable es muy importante para la calidad de la semilla y la densidad de siembra según el ISTA (1976). De igual manera Mamani (s/f) en la caracterización del asaí demuestra que el peso de 100 semillas es 100 g equivalente a 1000 semillas por kg. Por otro lado Mamani (2000) revela en su análisis un promedio de 1773 semillas de asaí por Kilogramo

b) Majo (*Oenocarpus bataua* M.)

De acuerdo con el cuadro 5 se plantea para el Majo una máxima de 209 semillas por kilogramo y una mínima de 199 semillas por kilogramo existiendo una diferencia de 10 semillas, el promedio obtenido fue de 203 semillas de majo por kilogramo.
Cuadro 5 Numero de semillas por kilogramo de Majo (*Oenocarpus bataua* M.)

<table>
<thead>
<tr>
<th>REPETICION</th>
<th>PESO EN g</th>
<th>NUMERO DE SEMILLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000 g</td>
<td>205</td>
</tr>
<tr>
<td>2</td>
<td>1000 g</td>
<td>201</td>
</tr>
<tr>
<td>3</td>
<td>1000 g</td>
<td>209</td>
</tr>
<tr>
<td>4</td>
<td>1000 g</td>
<td>199</td>
</tr>
<tr>
<td>5</td>
<td>1000 g</td>
<td>203</td>
</tr>
<tr>
<td>6</td>
<td>1000 g</td>
<td>205</td>
</tr>
</tbody>
</table>

Promedio 1000 g 203

Según Rocha, (2010) establece en su estudio que el peso de 100 semillas es 487 g este valor es equivalente 205 semillas por kilogramo

5.3 Determinación de las variables de respuesta

5.3.1 Porcentaje de emergencia

Para la determinación de la emergencia en campo, se consideró un conteo de número de semillas emergidas para cada tratamiento, seguidamente para poder distinguir los efectos de los tratamientos se realizó el respectivo análisis

a) *Asaí* (*Euterpe precatoria* M.)

Para la variable se contabilizo las semillas en las cuales se distingue la plúmula y se consideró el porcentaje de emergencia desde el momento de la siembra.

Cuadro 6. Análisis de varianza días a la emergencia de las semillas de Asaí

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>60.17</td>
<td>30.08</td>
<td>0.81</td>
<td>0.4602 NS</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>10048.00</td>
<td>7024</td>
<td>189.27</td>
<td>&lt;.0001**</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>701.38</td>
<td>175.46</td>
<td>4.73</td>
<td>0.008</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>3066.11</td>
<td>1022.04</td>
<td>27.54</td>
<td>&lt;.0001 **</td>
</tr>
<tr>
<td>E. mec. Vs T. inmersión</td>
<td>6</td>
<td>4618.89</td>
<td>769.81</td>
<td>20.74</td>
<td>&lt;.0001**</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>668.00</td>
<td>37.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>23136.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 10.59%
NS = No significativo
** = Significativo al nivel de 5%
El coeficiente de variación es igual 10.59% entonces se infiere que se realizó un manejo adecuado de las unidades experimentales o el experimento se realizó en condiciones homogéneas.

El cuadro 6 se observa el análisis de varianza en el cual refleja que la fuente de variación para bloques no existen diferencias significativas entre las repeticiones en el experimento. En cambio el análisis señala para el factor A (escarificación mecánica) que es altamente significativo por tanto rechazamos la hipótesis de igualdad e indicamos a que al menos uno de los promedios difiere de los demás, del mismo modo inferimos que los la escarificación mecánica influyen en la emergencia de la semilla. De modo similar el análisis es altamente significativo para el factor B (tiempos de inmersión) al respecto indicamos que los tiempos de inmersión influyen en los días a la emergencia en cuanto a la interacción entre factores existe un comportamiento significativo estos factores actúan dependientemente en la germinación.

- **Efecto de la escarificación mecánica en porcentaje de emergencia**

Ahora bien el análisis de varianza del cuadro 6 establece que existen diferencias significativas para el factor A (escarificación mecánica) cuyas medias se analizan en el cuadro 7 y grafico 4 mediante la prueba de Duncan a un nivel de significancia del 5%

**Cuadro 7** Prueba de Duncan porcentaje de emergencia de las semillas de asaí para escarificación mecánica.

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>% EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₂ = Lijado</td>
<td>76.16</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificar</td>
<td>66.16</td>
<td>B</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>30.16</td>
<td>C</td>
</tr>
</tbody>
</table>

En el cuadro 7 y grafico 4 se puede observar que la prueba de Duncan expresa que estadísticamente existen diferencias significativas entre los niveles del factor A (escarificación mecánica) en el cual el método con lijado de la semilla expresa un valor de 76.16% de emergencia desde la siembra, entonces podemos indicar que es
importante realizar el raspado a la semilla hasta la aparición del endospermo sin dañar el embrión por donde emerge el botón y la radícula posteriormente.

Al respecto Lasso y Melendez (1980), mencionan que la presencia de la cubierta impermeable prolonga la vida de la semilla, reduce la rapidez con que se verifican los cambios físicos y químicos dentro de la semilla. Así mismo, señalan que, las semillas de la mayoría de la especies germinan al ser expuestas a condiciones favorables (humedad y temperatura); no llegan a germinar porque no han sufrido un cambio físico, fisiológico, químico, por algún daño mecánico sufrido durante su recolección o a causa del mismo sustrato.

Continuado la escarificación mecánica con un promedio de 66.16 % de emergencia, en cambio el promedio 30.16 % de emergencia desde la siembra este refleja el menor promedio de las semillas emergidas correspondiente a la ruptura de la semilla hay que hacer notar que al lograr una fisura en la semilla este con el exceso de humedad produce un pudrimiento en la semilla en efecto las semillas no logran germinar y por ende no se produce la emergencia.

**Grafico 4.** Comparacion de porcentaje de germinacion de semillas de Asaí entre escarificacion mecanica

![Diagrama de barras mostrando porcentajes de germinación](image)
Según Dulfus y Slaugther (1980), indica que es la absorción de agua (imbibición) a un rango de temperatura adecuada, en la mayoría de los casos hay oxidación de sustancias orgánicas en el sistema celular con liberación gradual de energía.

- **Efecto de los tiempos de inmersión en porcentaje de la emergencia**

A continuación se realiza el análisis de medias con la prueba de Duncan a un nivel de significancia del 5% a razón de que en el análisis de varianza del cuadro 6 para el factor B tiempos de inmersión refleja diferencias significativas

**Cuadro 8. Prueba de Duncan porcentaje de emergencia de las semillas de Asaí para tiempos de inmersión**

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>% EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>63.55</td>
<td>A</td>
</tr>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>63.11</td>
<td>A</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>61.77</td>
<td>A</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>41.55</td>
<td>B</td>
</tr>
</tbody>
</table>

El análisis del cuadro 8 y grafico 5 expresa diferencias estadísticas en los promedios para los tiempos de inmersión en el cual se visualiza que con 24 horas de inmersión en agua natural expresa un promedio de germinación igual a 63.55 % valor que se obtuvo en menor tiempo no existe diferencias estadísticas con b₃ (48 horas de inmersión) y b₄ (25 horas de inmersión en agua a 50°C) con valores de 63.11% y 61.77% respectivamente, según Mamani (2000) menciona el efecto del tratamiento (b₁) inmersión en aguas a 59°C y durante 8 min, dio como resultado un menor porcentaje de emergencia con solo 68%.

Se considera que es indispensable que las semillas sean sumergidas por un periodo de tiempo para que ocurra la absorción de agua por la imbibición causando el hinchamiento de la semilla y dar paso al crecimiento del embrión

William (1991b), considera que el proceso de remojo en agua fría y limpia permite la hidratación de las semillas presentando una superficie lisa, brillosa y de mayor tamaño,
con esta técnica se obtiene la hidratación e hinchamiento aproximadamente del 100% de las semillas.

Según Mamani (2000), es necesario destacar que existe otro tratamiento pregerminativo de fácil manejo en campo, que se refiere a la aplicación de remojo de semillas durante 24 horas a temperatura ambiente, germinando 20 semillas de 35 semillas evaluadas por cada tratamiento que corresponde al 79%.

Para Bonifacio (2001), menciona que las pruebas preliminares de tratamiento de la semilla es el remojo de las semillas en agua, es también influyente la estructura del suelo y la humedad que esta puede retener.

Por lo contrario las semillas que no fueron sumergidos en agua refleja el menor valor del porcentaje de emergencia con 41.55% motivo por el cual recalcarmos la importancia de sumergir las semillas en agua.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{Grafico 5. Comparación de porcentaje de la emergencia asáí entre tiempos de inmersión}
\end{figure}

Sobre el tema Villena (2003), señala que con la aplicación de tratamientos pregerminativo a las semillas de las plantas se eliminan inhibidores químicos del
crecimiento, estimulando a la producción de sustancias promotoras del crecimiento como las gibberelinas y citoquininas.

- **Prueba de efectos simples para la interacción de factores**

Se realiza la prueba de efectos a razón que en el análisis de varianza en el cuadro 6 para la interacción dio significativo.

**Cuadro 9** Análisis de varianza de efecto simple de la interacción de los factores en porcentaje de la emergencia de semillas de asaí

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b1)</td>
<td>2</td>
<td>4044.22</td>
<td>2022.11</td>
<td>54.488</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b2)</td>
<td>2</td>
<td>4738.89</td>
<td>2369.44</td>
<td>63.8473</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b3)</td>
<td>2</td>
<td>3996.22</td>
<td>1998.11</td>
<td>53.8413</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b4)</td>
<td>2</td>
<td>5830.22</td>
<td>2915.11</td>
<td>78.5509</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a1)</td>
<td>3</td>
<td>7340.92</td>
<td>2446.97</td>
<td>65.9364</td>
<td>3.16**</td>
<td></td>
</tr>
<tr>
<td>Factor B (a2)</td>
<td>3</td>
<td>304.333</td>
<td>101.444</td>
<td>2.73353</td>
<td>3.16 NS</td>
<td></td>
</tr>
<tr>
<td>Factor B (a3)</td>
<td>3</td>
<td>71.5833</td>
<td>23.8611</td>
<td>0.64296</td>
<td>3.16 NS</td>
<td></td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>668</td>
<td>37.1111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>23163</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En el cuadro 9 se muestran los resultados obtenidos del análisis de varianza para efectos simples, este análisis mostró estadísticamente que existen diferencias significativas en el porcentaje de emergencia en el factor A (escarificación mecánica) dentro de todos los tiempos de inmersión (0 horas de inmersión, 24 horas de inmersión en agua natural, 48 horas de inmersión en agua natural y 0.25 horas de inmersión en agua a 50 °C) además del factor B (tiempos de inmersión) dentro del a₁ (Sin escarificación) sin embargo no existe diferencias significativas en factor B (tiempos de inmersión) dentro de a₂ (Lijado) y a₃ (Ruptura de la testa).
Con respecto a la variable días a la emergencia, en la gráfica 6 se observa que existe diferencias significativas en los niveles del factor A (escarificación mecánica) en cada uno de los niveles de los factores B en el nivel b₁ el mayor porcentaje de emergencia en el nivel a₂ (Lijado de las semillas) con 71% de emergencia, sin embargo no se encontraron diferencias significativas en los tratamientos sin escarificar y ruptura de la testa con porcentajes de emergencia de 24% y 30% respectivamente. Para el factor A en el nivel b₂ no se encontraron diferencias significativas entre los tratamientos lijado de las semillas y sin escarificación mecánica con 76% y 83% de emergencia respectivamente además que el tratamiento ruptura de la testa muestra el menor porcentaje de emergencia con 31% de emergencia. Para el factor A en el nivel b₃ no se encontraron diferencias significativas entre el lijado y sin escarificar con porcentajes de emergencia 79% y 77% respectivamente, a diferencia de ruptura de la testa que obtuvo el menor porcentaje de emergencia con 33%. En cuanto el factor A en el nivel b₄ existe diferencias significativas entre sin escarificación y lijado de las semillas con 87% y 71% de emergencia, a su vez el tratamiento ruptura de la testa obtuvo el menor porcentaje de emergencia con 27%. Esto se debe a que los tratamientos modificaron a las semillas permitiendo una mayor y más fácil imbibición y por lo tanto un mayor porcentaje de semillas emergidas.
En resumen, se puede aseverar que el mayor porcentaje de semillas emergidas se encontró en el tratamiento sin escarificar para el nivel b_4 con un porcentaje de 887%. Asimismo, se encontraron los tratamientos sin escarificar y lijado de las semillas en b_2 y b_3 mostraron porcentajes de semillas emergidas entre 76 y 83%, considerándose tratamientos de importancia para el tratamiento de las semillas de asaí. Esto se debe a que el proceso de remojo en agua por 24 y 48 horas permite la hidratación e hinchamiento de las semillas y el inicio del desarrollo de la misma.

El tratamiento ruptura de la testa mostró los porcentajes de semillas emergidas más bajos en todos los niveles de B, esto se debe a que el método genera una fisura en la cubierta de la semilla provocando pudrimientos por el exceso de humedad y los procesos fisiológicos lidian con esta situación y existe una alta mortalidad de semillas.

**b) Majo (Oenocarpus bataua M.)**

De acuerdo al experimento el análisis del porcentaje de emergencia se realizó en campo mediante el conteo de semillas emergidas, se observaron las primeras semillas en la cual se distingue la plúmula.

De acuerdo con cuadro 10 se observa el análisis de varianza de porcentaje de emergencia de Majo (Oenocarpus bataua M.).

**Cuadro 10. Análisis de varianza para el porcentaje de emergencia de las semillas de Majo**

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>325.167</td>
<td>162.58</td>
<td>10.5</td>
<td>0.0009 **</td>
<td></td>
</tr>
<tr>
<td>Factor A</td>
<td>2</td>
<td>16322.67</td>
<td>8161.33</td>
<td>527.17</td>
<td>&lt; .0001 **</td>
<td></td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>126.16</td>
<td>31.54</td>
<td>2.04</td>
<td>0.132</td>
<td></td>
</tr>
<tr>
<td>Factor B</td>
<td>3</td>
<td>1627.78</td>
<td>542.59</td>
<td>35.05</td>
<td>&lt;.0001 **</td>
<td></td>
</tr>
<tr>
<td>E. mec. Vs T. inmersión</td>
<td>6</td>
<td>6991.55</td>
<td>1165.26</td>
<td>75.27</td>
<td>&lt;.0001 **</td>
<td></td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>278.66</td>
<td>15.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>25672.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 5.674 %

** = Significativo al nivel de 5%
Por el valor del coeficiente de variación es de 5.674% el mismo que se encuentra por debajo del 30% por lo cual podemos determinar que las unidades experimentales tienen un comportamiento homogéneo.

Según el análisis de varianza la significancia de bloques es altamente significativa motivo por el cual rechazamos la igualdad entre repeticiones e indicamos que el diseño fue utilizado adecuado y se ganó eficiencia al bloquear las unidades experimentales.

Por otra parte el análisis refleja un comportamiento altamente significativo para el factor A (escarificación mecánica), podemos atribuir que ejercen una reacción en la semilla, el mismo comportamiento refleja el factor B (tiempos de inmersión) en este sentido se infiere que los tiempos de inmersión influye en el porcentaje de emergencia las semilla acerca de la interacción de los factores refleja un comportamiento significativo es decir que los factores actúan de manera dependiente.

- **Efecto de la escarificación mecánica en el porcentaje de emergencia**

Volviendo la mirada al cuadro 10 se observa que existen diferencias significativas en el factor A (escarificación mecánica) a fin de analizar las medias con la prueba de Duncan a un nivel de significancia del 5% las cuales se observan en el cuadro 11 y grafico 8

**Cuadro 11.** Prueba de Duncan el porcentaje de emergencia de las semillas de Majo para escarificación mecánica

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>% EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₂ = Lijado</td>
<td>92.33</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificar</td>
<td>74.66</td>
<td>B</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>41</td>
<td>C</td>
</tr>
</tbody>
</table>

Acorde al análisis de comparación de medias del cuadro 11 y grafico 7 para escarificación mecánica se puede apreciar que el lijado de las semillas expresan la mejor respuesta con 92.33% de emergencia este resultado revela que el desgaste de la
semilla mediante el proceso de lijado facilita la absorción de agua dando paso al crecimiento del embrión.

Respecto a la germinación Lasso (1988), plantea que la presencia de la cubierta impermeable prolonga la vida de las semillas, reduce la rapidez con que se verifican los cambios físicos y químicos.

El mismo autor señala que las semillas de la mayoría de las especies germinan al ser expuestas a condiciones favorables (humedad y temperatura); no llegan a germinar porque no han sufrido un cambio físico, fisiológico, químico, por algún daño mecánico.

En comparación con los otros tratamientos reflejan valores de 74.66%, 41% de emergencia que corresponden a sin escarificar y ruptura de la cubierta respectivamente. A las semillas que se les realizo ruptura en la cubierta sufrieron pudrición a causa del exceso de humedad razón por la cual las semillas no lograron emerger.

Tal como informa Fernández y Jhohnston (1986) refieren a que la germinación en general es más rápida, cuando el contenido del agua en el suelo está cerca de la capacidad de campo. El excesivo humedecimiento del sustrato o de las semillas debe ser evitado por cuanto interfiere a la adecuada aireación y disponibilidad de oxígeno.

\[ \begin{array}{|c|c|c|}
\hline
\text{Factor A Escarificación mecánica} & \% \text{ Germinación} \\
\hline
\text{a1} & 92.33 \\
\text{a2} & 74.66 \\
\text{a3} & 41 \\
\hline
\end{array} \]

\textbf{Grafico 7.} Comparación de porcentaje de emergencia de semillas de Majo entre escarificación mecánica

a1 = Sin escarificación
a2 = Lijado
a3 = Ruptura de la testa
- **Efecto de los tiempos de inmersión en el porcentaje de la emergencia**

Con respecto al factor B (tiempos de inmersión) cuyas medias se realizan con la prueba de Duncan a un nivel de significancia del 5% visto que en análisis de varianza del cuadro 10 el factor refleja diferencias significativas.

**Cuadro 12.** Prueba de Duncan para el porcentaje de emergencia de Majo para tiempos de inmersión

<table>
<thead>
<tr>
<th>TIEMPOS DE INERSION</th>
<th>% EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>77.22</td>
<td>A</td>
</tr>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>72.88</td>
<td>B</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>68.11</td>
<td>C</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>59.11</td>
<td>D</td>
</tr>
</tbody>
</table>

Cuadro 12 y grafico 8 se observa la comparación de media, donde la inmersión de semillas por 24 horas en agua natural logran un promedio de 77.22% de emergencia siendo este el valor más alto del análisis, seguido de la inmersión en agua natural por 48 horas con 72.88% de emergencia continuado las semillas sumergidas en agua a 50°C por un lapso de 0.15 horas equivalente a 15 minutos con un promedio de 68.11% de emergencia según Rocha, (2010) Los tratamientos que fueron sometidos a la máxima temperatura del escarificador, no presentaron germinación, pudiendo deducir que la alta mortalidad fue producto del mismo tratamiento por ser expuestas a altas temperaturas (60°C)

Por otro lado se registró el menor valor con 59.11% a las semillas que no fueron sometidas a inmersión. Mediante el análisis podemos considerar el remojo de las semillas en agua las semillas son estimuladas para el desarrollo de la semilla.

Altuve (2003) señala que para que se dé inicio al proceso de germinación y cuando las semillas llegan al suelo, el recurso clave para iniciar los cambios fisiológicos que conducen a la germinación es el agua, que resulta indispensable para activar el metabolismo y el crecimiento de las células vivas de los tejidos de las semillas.
Ticona (2012), en una experiencia similar el tratamiento pre germinativo (remojo en agua a temperatura ambiente por un periodo de 48 h), fue el que obtuvo los mejores resultados en cuanto a la germinación de semillas de Eucalipto con un promedio de 19 días.

Grafico 8. Comparación de porcentaje de emergencia en majo entre tiempos de inmersión

Para Varela y Arana (2011) mencionan que, los tratamientos pre germinativos son de gran relevancia para mejorar la producción de plantines a partir de un lote de semillas; por lo tanto mediante la aplicación de protocolos pre germinativos en vivero es posible disminuir la latencia a un grado mínimo, promoviendo la germinación de la semilla. Estos protocolos varían según la especie.
- Prueba de efecto simple de la interacción de los factores

**Cuadro 13.** Análisis de varianza de efecto simple de la interacción de los factores en el porcentaje de emergencia de Majo

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b1)</td>
<td>2</td>
<td>6482</td>
<td>3241</td>
<td>209.35</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b2)</td>
<td>2</td>
<td>4194.88889</td>
<td>2097.44444</td>
<td>135.48</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b3)</td>
<td>2</td>
<td>5944.66667</td>
<td>2972.33333</td>
<td>192.00</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b4)</td>
<td>2</td>
<td>6737.55556</td>
<td>3368.77778</td>
<td>217.61</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a1)</td>
<td>3</td>
<td>7538</td>
<td>2512.66667</td>
<td>162.31</td>
<td>3.16 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a2)</td>
<td>3</td>
<td>242.25</td>
<td>80.75</td>
<td>5.22</td>
<td>3.16 *</td>
<td></td>
</tr>
<tr>
<td>Factor B (a3)</td>
<td>3</td>
<td>790.916667</td>
<td>263.638889</td>
<td>17.03</td>
<td>3.16 *</td>
<td></td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>278.66</td>
<td>15.4811111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>25672</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El análisis de efecto simple cuadro 13 indica que existe diferencias significativas en todos los niveles del factor A (escarificación mecánica) dentro de los niveles de inmersión (sin remojo, 24 horas de inmersión en agua natural, 48 horas de inmersión en agua natural, 0.25 horas de inmersión en agua a 50°C) y en el factor B (tiempos de inmersión) dentro los niveles de escarificación mecánica (Sin escarificación, lijado, ruptura de la testa) para observar la significancia se graficaron medias de la interacción de los niveles de los factores en estudio grafico 9

**Grafico 9.** Efecto de la interacción escarificación mecánica y tiempos de inmersión en el porcentaje de emergencia de majo
Con respecto al porcentaje de emergencia en el gráfico 9 se observa que existe diferencias significativas en los niveles del factor A en cada uno de los niveles del factor B. de acuerdo al nivel b₁ el mayor porcentaje de emergencia se encontró en el nivel a₂ para el lijado de la semilla con 95% de emergencia, así mismo se encontraron diferencias significativas en los tratamientos ruptura de la cubierta y sin escarificar con porcentajes de 50 y 31% de emergencia respectivamente. Para el factor A en el nivel b₂ no se encontraron diferencias significativas entre los tratamientos sin escarificar y lijado de las semillas obtuvieron porcentajes de 90 y 94% de emergencia respectivamente, en el nivel b₂ el menor porcentaje de emergencia se encontró en el nivel a₃ ruptura de la semilla con 47% de emergencia. Por otro lado para el factor A en el nivel b₃ no se encontraron diferencias significativas entre los tratamientos sin escarificación y lijado de las semillas con valores de 87% y 95% de emergencia respectivamente. Sin embargo el nivel a₃ ruptura de la testa obtuvo un porcentaje de 37% de semillas emergidas. Para el factor A en el nivel b₄ no presenta diferencias significativas entre la escarificación lijado de la semilla y sin escarificar con valores de 95% y 87% de semillas emergidas, en cambio la escarificación con ruptura de la testa se obtuvieron 30% de semillas emergidas. Esto se debe a que los tratamientos influyen en los cambios fisiológicos que conducen al desarrollo de la semilla.

En otras palabras podemos indicar que el mayor porcentaje de emergencia se encontró en el tratamiento lijado de las semillas en los niveles de b₁ y b₃ con un porcentaje de 95% de emergencia en ambos niveles de B. se debe mencionar también que se encontraron los tratamientos sin escarificar y lijado en b₂ y b₄ se puede observar que los porcentajes de emergencia entre los valores de 85 a 94%, de ahí que se consideran tratamientos de importancia para el tratamiento de las semillas de majo, sin duda el desgaste parcial de las semilla juntamente con periodos de inmersión en agua favorecen a la absorción de agua por imbibición provocando la emergencia de la radícula posteriormente de la plúmula.

Observamos también que el tratamiento ruptura de la testa mostró los porcentajes más bajos en todos los niveles de B se sugiere que la escarificación ruptura de la testa provoca una fisura y con el exceso de humedad se produce pudrimientos de la semilla.
esta situación afecta los procesos fisiológicos en la germinación y emergencia de las semillas.

5.3.2 Días a la emergencia

Para el análisis de días a la emergencia se realizó un conteo de número de semillas emergidas, se consideró el tiempo que transcurrió hasta el momento en que el 50% o más de las semillas hayan emergido, a continuación se evaluaron los efectos de los tratamientos.

a) Asaí (Euterpe precatoria M.)

Los días a la emergencia fueron obtenidos desde la siembra hasta la aparición de la plúmula de las primeras semillas por cada tratamiento por un periodo de 60 días.

Cuadro 14 Análisis de varianza para días a la emergencia de las semillas de Asaí

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>21.5</td>
<td>10.75</td>
<td>0.63</td>
<td>0.543 NS</td>
<td></td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>2523.50</td>
<td>1261.75</td>
<td>74.1</td>
<td>&lt;.0001 **</td>
<td></td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>44</td>
<td>11</td>
<td>0.65</td>
<td>0.636</td>
<td></td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>305.86</td>
<td>101.953</td>
<td>5.99</td>
<td>0.0051 **</td>
<td></td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>899.388</td>
<td>149.89</td>
<td>8.8</td>
<td>0.0001 **</td>
<td></td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>306.50</td>
<td>17.027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>4100.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V = 11.27%

NS = No significativo

** = Significativo al nivel del 5%

El coeficiente de variación es igual 11.27% podemos inferir que se realizó un manejo adecuado las unidades experimentales o bien que el experimento se realizó en condiciones homogéneas.

En el cuadro 14 demuestra que el análisis de varianza para los días a la emergencia de semilla de asaí (Euterpe precatoria M.) indica que el efecto de los bloques no muestra significancia al 5% de significancia entonces indicamos que no se ganó eficiencia al bloquear las unidades experimentales, a diferencia del factor A (escarificación mecánica) demuestra que el efecto por la escarificación son diferentes. Del mismo modo el factor B (tiempos de inmersión) presenta diferencias significativas e indicamos
que los promedios difieren uno de otro. El efecto de la interacción entre factor A por B muestran diferencias significativas.

- **Efecto de la escarificación mecánica en los días a la emergencia**
Se realizó la correspondiente prueba de Duncan al 5% de probabilidad con el fin de identificar estadísticamente la escarificación mecánica que mayor influencia tuvo en los días a la emergencia.

**Cuadro 15** Prueba de Duncan para el factor escarificación mecánica en los días a la emergencia

<table>
<thead>
<tr>
<th>ESC. MECANICA</th>
<th>DÍAS A LA EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₃ = Ruptura de la testa</td>
<td>48.2</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificación</td>
<td>32.9</td>
<td>B</td>
</tr>
<tr>
<td>a₂ = Lijado</td>
<td>28.6</td>
<td>C</td>
</tr>
</tbody>
</table>

La prueba de Duncan 5% del cuadro 15 y grafico 10 clasifico a las muestras en tres grupos donde se observa que el periodo más corto fue en el lijado de las semillas con 28.6 días, por lo tanto es importante que la semilla pasen por un proceso de abrasión y en contacto con la humedad del sustrato se genera la estimulación temprana de los procesos fisiológicos de la semilla. En cuanto a sin escarificación tuvo un periodo de 32.9 días a la emergencia, el periodo más largo de días a la emergencia se ha obtenido con la ruptura de la testa con 48.2 días probablemente el exceso de humedad ocasiono que las semillas tuvieron un atraso en la emergencia y en algunos casos no emergieron.
Grafico 10 Comparación de días a la emergencia entre escarificación mecánica

En el gráfico 10 las barras muestran que la escarificación mecánica han influido a los días a la emergencia, especialmente la escarificación con lija (a2) ha superado a los demás métodos con una diferencia de 4.9 días con respecto a sin escarificar, asimismo mostro 9.8 días en comparación con ruptura de la testa.

Al respecto Varela et al. (2011), mencionan que, los tratamientos pre germinativos son de gran relevancia para mejorar la producción de plantines a partir de un lote de semillas; por lo tanto mediante la aplicación de protocolos pre germinativos en vivero es posible disminuir la latencia a un grado mínimo, promoviendo la germinación de la semilla.

Los mismos autores señalan que los tratamientos pre germinativos ofrecen una buena opción y solución para el manejo de semillas sobre todo con semillas de especies de importancia forestal. Mediante estos se homogenizan y se aumentan los porcentajes de germinación. Esto facilita la manipulación de las semillas, tanto en condición fresca como después de almacenamiento. Contribuyen a su vez a la simplificación y planificación de las labores de producción de plántulas en vivero.
- Efecto de los tiempos de inmersión en los días a la emergencia

Considerando el análisis de varianza del cuadro 14 reportó significancia en el factor B (tiempos de inmersión) por lo tanto se realizó la prueba de Duncan al 5% de significancia.

Cuadro 16 Prueba de Duncan para el factor tiempos de inmersión en los días a la emergencias

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>DÍAS A LA EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₁ = 0 horas</td>
<td>39.8</td>
<td>A</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>38.8</td>
<td>A</td>
</tr>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>34.7</td>
<td>B</td>
</tr>
<tr>
<td>b₂ = 24 horas en agua natural</td>
<td>32.7</td>
<td>C</td>
</tr>
</tbody>
</table>

Según el cuadro 16 refleja que el periodo más corto en días a la emergencia corresponde (b₂) 24 horas de inmersión en agua natural con 32.7 días, seguido de 34.7 días a la emergencia en el nivel (b₃) 48 horas de inmersión en agua natural, en comparación con el periodo más largo con 39.8 días a la emergencia que corresponde a 0.25 horas de inmersión en agua a 50°C. De acuerdo a lo expuesto se puede inferir que es importante la absorción de agua por parte de la semilla por un periodo de tiempo para activar a la brevedad posible los procesos fisiológicos que sufre la semilla para dar paso a la germinación y por consiguiente la emergencia.
b1 = 0 horas de inmersión
b2 = 24 horas de inmersión en agua natural
b3 = 48 horas de inmersión en agua natural
b4 = 15 minutos de inmersión en agua a 50°C

Grafico 11 Comparación de días a la emergencia entre tiempos de inmersión

En el grafico 11 podemos observar que los tiempos de inmersión influyen en cuanto a los días de emergencia, se considera que (b2) 24 horas de inmersión en agua natural ha superado a los demás tiempos de inmersión respecto (b3) con 2 días de diferencia y finalmente una diferencia de 7.1 días con (b4) 0.25 horas de inmersión en agua a 50°C.

Según Mamani (2000), en una experiencia similar con asaí indica que existe otro tratamiento pre germinativo de fácil manejo en campo, que se refiere a la aplicación de remojo de semillas durante 24 horas a temperatura ambiente, germinando 20 semillas de 35 semillas evaluadas por cada tratamiento que corresponde al 79%. El mismo autor dice que los días a la emergencia se iniciaron a los 50 días.

(Villanueva, 1995) con los tratamientos pre germinativos, de la semilla se pretende ablandar la testa permitiendo de esta manera la penetración del agua y el intercambio de gases son responsables de la germinación, por ello los tratamientos tienen por objeto: romper la latencia externa e interna, acelerar la germinación, homogenizar la germinación y elevar el porcentaje de germinación.
- **Prueba de efectos simples para la interacción de factores**

Por último en el análisis de varianza del cuadro 14 la interacción de los factores dio significativo por ello se hace necesario realizar la prueba de efectos simples

**Cuadro 17** Análisis de varianza de efecto simple de la interacción de los factores en días a la emergencia

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>F 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b1)</td>
<td>2</td>
<td>713.556</td>
<td>356.778</td>
<td>20.9527</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b2)</td>
<td>2</td>
<td>1342.89</td>
<td>671.444</td>
<td>39.4323</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b3)</td>
<td>2</td>
<td>832.889</td>
<td>416.444</td>
<td>24.4568</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b4)</td>
<td>2</td>
<td>533.556</td>
<td>266.778</td>
<td>15.6672</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor B (a1)</td>
<td>3</td>
<td>739.583</td>
<td>246.528</td>
<td>14.478</td>
<td>3.16**</td>
</tr>
<tr>
<td>Factor B (a2)</td>
<td>3</td>
<td>401.333</td>
<td>133.778</td>
<td>7.85644</td>
<td>3.16**</td>
</tr>
<tr>
<td>Factor B (a3)</td>
<td>3</td>
<td>64.3333</td>
<td>21.4444</td>
<td>1.25938</td>
<td>3.16 NS</td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>306.5</td>
<td>17.0278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>23163</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En el cuadro 17 se muestran los resultados obtenidos del análisis de varianza para los efectos simples de la interacción del factor A (escarificación mecánica) y el factor B (Tiempos de inmersión) que corresponde a la variable días a la emergencia de las semillas de asaí.

El análisis mostró estadísticamente que existen diferencias significativas en días a la emergencia en el factor A (escarificación mecánica) dentro de todos los tiempos de inmersión (0 horas de inmersión, 24 horas de inmersión en agua natural, 48 horas de inmersión en agua natural, 0.25 horas de inmersión en agua a 50°C). Por su parte el factor B (tiempos de inmersión) dentro de los niveles de la escarificación mecánica indica que existe diferencias significativas en (Sin escarificación, Lijado de las semillas), sin embargo no existe diferencias significativas en (ruptura de la semilla).
Con respecto a los días a la emergencia en la gráfica 12 establece que existen diferencias significativas en los niveles del factor A en cada uno de los niveles del factor B. En el nivel b₁ se encontró el periodo más corto en días a la emergencia para el lijado de las semillas con 26 días, por otro lado no se encontraron diferencias significativas en los tratamientos sin escarificar y ruptura de la testa con 46 y 44 días a la emergencia respectivamente. Para el factor A en el nivel b₂ no se encontraron diferencias significativas entre el lijado y sin escarificación con 23 y 25 días a la emergencia sin embargo la ruptura de la testa mostró el periodo más largo en la emergencia con 50 días. Para el factor A en el nivel b₃ de la misma forma no se encontraron diferencias significativas entre el tratamiento lijado y sin escarificación con 27 y 29 días a la emergencia respectivamente, sin embargo el periodo más largo se muestra en la ruptura de la testa con 48 días a la emergencia. Para el factor A en el nivel b₄ presentan diferencias significativas entre los tratamientos sin escarificar, lijado de las semillas y ruptura de la testa con valores de 29 días, 27 días y 48 días a la emergencia respectivamente. En otras palabras cuando las semillas sufren un cambio en su estructura influyen en el crecimiento y la división celular que provoca la emergencia de la radícula y posteriormente de la plúmula.

En resumen podemos inferir que el periodo más corto en la emergencia de las semillas se encontró en el tratamiento lijado de las semillas en el nivel b₂ con 23 días a la
emergencia. Asimismo, se encontraron que los tratamientos sin escarificar y lijado en los niveles $b_2$ y $b_3$ mostraron valores entre 25 a 29 días a la emergencia, considerándose a los tratamientos de importancia para el desarrollo temprano de las semillas de asaí. Se deduce que es indispensable el desgaste parcial y la inmersión coadyuvan al crecimiento temprano de la radícula y posteriormente de la plúmula.

El tratamiento ruptura de la testa mostro el periodo más largo en días a la emergencia en todos los niveles de B. esto se debe que dicha escarificación provoca una fisura, por el cual el exceso de humedad activa una serie de reacción como el pudrimiento en dicha fisura, por consiguiente existe un retraso en la emergencia de la plúmula.

b) Majo (*Oenocarpus bataua* M.)

De acuerdo al experimento se realizó el análisis de días a la emergencia por un periodo de 60 días desde la siembra desde las primeras semillas emergidas hasta la última semilla en emerger.

| Cuadro 18 Análisis de varianza para días a la emergencia de las semillas de Majo |
|----------------------------------|----------------------------------|----------------|----------------|----------------|----------------|
| F.V.                             | G.L.                             | S.C.              | C.M.           | F - Valor     | Pr > F         |
| Bloque                           | 2                                | 22.38             | 11.194         | 1.22          | 0.317 NS       |
| Escar. Mecánica                  | 2                                | 560.72            | 20.36          | 30.68         | <.0001 **      |
| Error A                          | 4                                | 35.111            | 8.777          | 0.96          | 0.4529         |
| Tiempos de inmersión             | 3                                | 326.97            | 108.99         | 11.93         | 0.0002 **      |
| E. mec. Vs T. Inmersión          | 6                                | 461.277           | 60.212         | 6.59          | 0.0008**       |
| Error B                          | 18                               | 164.50            | 9.138          |               |                |
| Total corregido                  | 35                               | 1470.97           |                |               |                |

C.V = 6.166%
NS = No Significativo
** = Significativo al nivel de 5%

De acuerdo con el cuadro 18 el coeficiente de variación es de 6.16 % valor que se encuentra por debajo del 30% entonces podemos indicar que las unidades experimentales tienen un comportamiento homogéneo.

El cuadro 18 establece que no existe significancia entre los bloques en días a la emergencia no se ganó eficiencia en bloquear las repeticiones. Con respecto al Factor A (Escarificación mecánica) refleja un comportamiento altamente significativo entonces
se considera que la escarificación mecánica ejerce una reacción en la semilla. Similar comportamiento refleja el factor B (tiempos de inmersión) e indicamos que existe una influencia del factor B en las semillas, con respecto a la interacción de factores revela un comportamiento altamente significativo es decir que los factores actúan de manera dependiente.

- **Efecto de la escarificación mecánica en los días a la emergencia**

En el cuadro 18 se observa que existen diferencias significativas para el factor A (escarificación mecánica) a fin de analizar las medias con la prueba de Duncan a un nivel del 5%

**Cuadro 19 Prueba de Duncan para el factor escarificación mecánica en días a la emergencia**

<table>
<thead>
<tr>
<th>ESC. MECANICA</th>
<th>DÍAS A LA EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₃ = Ruptura de la testa</td>
<td>53.8</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificación</td>
<td>49.8</td>
<td>B</td>
</tr>
<tr>
<td>a₂ = Lijado</td>
<td>44.16</td>
<td>C</td>
</tr>
</tbody>
</table>

Según el cuadro 19 y grafico 13 se detalla de los promedios de días a la emergencia entre los niveles de la escarificación mecánica, en el cual se puede apreciar que el lijado de las semillas posee el periodo de días más corto con 44.16 días, no muy distante de los 49.08 días de sin escarificación y por último la ruptura de la testa con un promedio de 53.8 días a la emergencia, por lo cual se puede suponer que la escarificación mecánica influyen en la emergencia de las semillas.

Rocha (2010) Con respecto al inicio de la germinación, se pudo evidenciar que las semillas que fueron sometidos a escarificación natural con agua caliente iniciaron más rápido la germinación como es el caso de los tratamientos T₄ (43 días) y T₃ (46 días) en comparación al tratamiento testigo (53 días).
Grafico 13 Comparación de días a la emergencia entre escarificación mecánica

A continuación en el grafico 13 se muestran la variabilidad de días a la emergencia de las semillas de majo en respuesta a la escarificación mecánica aplicados, se deduce que el lijado de las semillas inicio su desarrollo a los 4.9 días antes que el método sin escarificación, con respecto al método ruptura de la semilla inicio su desarrollo después de 9.6 días en comparación con el método lijado de la semilla.

- Efectos de los tiempos de inmersión en los días a la emergencia

Para la comparación de medias por el factor B (Tiempos de inmersión) se realizó por el método de Duncan a un nivel de significancia del 5%

Cuadro 20 Prueba de Duncan para el efecto tiempos de inmersión en los días a la emergencia

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>DÍAS A LA EMERGENCIA</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b4 = 0.25 horas en agua a 50°C</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>b1 = 0 horas</td>
<td>41.2</td>
<td>A</td>
</tr>
<tr>
<td>b3 = 48 horas en agua natural</td>
<td>39.3</td>
<td>B</td>
</tr>
<tr>
<td>b2 = 24 horas agua natural</td>
<td>37.4</td>
<td>B</td>
</tr>
</tbody>
</table>
De acuerdo al cuadro 20 demuestra dos grupos en los cuales se observa que existe diferencias en días a la emergencia, en $b_2$ con 24 horas de inmersión en agua natural obtuvo el periodo más corto con 45.11 días a la emergencia, y no muestra diferencias con $b_3$ 48 horas de inmersión en agua natural. En cambio $b_4$ 0.25 horas de inmersión en agua a 50°C demuestra el periodo más largo con 52.3 días a la emergencia.

Según Rocha (2010) comprobó que la inmersión en agua por un tiempo prolongado (30 a 60 minutos) y a la temperatura (60°C) ocasiona un alto porcentaje de mortalidad en las semillas de *Oenocarpus bataua* Mart. Como en los casos de los tratamientos $T_7$ y $T_8$ con 60% y 80% de mortalidad respectivamente.

León & Saldaña (2011), se observó que la testa sea afectada aumentando la permeabilidad, como se observó en el $T_5$ (desgaste parcial de la testa) lo que incrementa la entrada de agua y la hidratación de los colides ectoplasmaticos, seguido de la hidrolisis de reserva de las semillas que se ponen a disposición del embrión, suministrándole energía para su crecimiento y desarrollo.

**Gráfico 14** Comparación de días a la emergencia entre tiempos de inmersión

\[
\begin{array}{cccc}
\text{b1} & \text{b2} & \text{b3} & \text{b4} \\
0 \text{ horas de inmersión} & \text{24 horas de inmersión en agua natural} & \text{48 horas de inmersión en agua natural} & \text{15 minutos de inmersión en agua a 50°C}
\end{array}
\]
El factor B (tiempos de inmersión) realmente ha influido en cuanto a los días a la emergencia en las semillas de majo, en el grafico 14 se observa una diferencia de 7.19 días entre b₂ 24 horas de inmersión en agua y b₄ 0.25 horas de inmersión en agua a 50°C cabe recalcar la importancia de sumergir las semillas en agua por periodo determinado con el fin de que las semillas embeban y poder activar el desarrollo de la semilla y así lograr la emergencia en un periodo más corto.

Rocha (2010), refiere que los tratamientos de escarificación natural con agua a diferentes temperatura y tiempos de inmersión que tuvieron mejores resultados respecto a los días a la germinación de semillas de *Oenocarpus bataua* Mart. Fue el tratamiento T₄ (remojo de los frutos durante 24 horas + inmersión de las semillas en agua a 40°C durante 60 minutos) con 57% de germinación e inicio la germinación a los 43 días desde la siembra

(Villanueva, 1995) con los tratamientos pre germinativos, de la semilla se pretende ablandar la testa permitiendo de esta manera la penetración del agua y el intercambio de gases son responsables de la germinación, por ello los tratamientos tienen por objeto: romper la latencia externa e interna, acelerar la germinación, homogenizar la germinación y elevar el porcentaje de germinación.

Altuve (2003) señala que para que se dé inicio al proceso de germinación y cuando las semillas llegan al suelo, el recurso clave para iniciar los cambios fisiológicos que conducen a la germinación es el agua, que resulta indispensable para activar el metabolismo y el crecimiento de las células vivas de los tejidos de las semillas.
- **Prueba de efecto simple para la interacción de factores**

**Cuadro 21** Análisis de varianza de efecto simple de la interacción de los factores en días a la emergencia

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b1)</td>
<td>2</td>
<td>2</td>
<td>468.22</td>
<td>234.11</td>
<td>25.62</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b2)</td>
<td>2</td>
<td>2</td>
<td>219.6</td>
<td>109.8</td>
<td>12.01</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b3)</td>
<td>2</td>
<td>2</td>
<td>193.56</td>
<td>96.78</td>
<td>10.59</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b4)</td>
<td>2</td>
<td>2</td>
<td>40.7</td>
<td>20.3</td>
<td>2.22</td>
<td>3.55 NS</td>
</tr>
<tr>
<td>Factor B (a1)</td>
<td>3</td>
<td>3</td>
<td>487.58</td>
<td>162.53</td>
<td>17.78</td>
<td>3.16 **</td>
</tr>
<tr>
<td>Factor B (a2)</td>
<td>3</td>
<td>3</td>
<td>183</td>
<td>61</td>
<td>6.67</td>
<td>3.16 *</td>
</tr>
<tr>
<td>Factor B (a3)</td>
<td>3</td>
<td>3</td>
<td>17.7</td>
<td>5.9</td>
<td>0.64</td>
<td>3.16 NS</td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>18</td>
<td>164.5</td>
<td>9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>35</td>
<td>25672</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El análisis de efecto simple del cuadro 21 indica que existen diferencias significativas en días a la emergencia en el Factor A (escarificación mecánica) dentro de los cuatro niveles de tiempos de inmersión (0 horas de inmersión, 24 horas de inmersión en agua natural, 48 horas de inmersión en agua natural, 0.25 horas de inmersión en agua a 50°C) con respecto al factor B (tiempos de inmersión) dentro de los métodos de escarificación a1 (Sin escarificación), a2 (Lijado de las semillas) indica que existe diferencias significativas, por último no existe significancia dentro del nivel a3 (Ruptura de la testa).

**Grafico 15** Efecto de la interacción en días a la emergencia de semillas de majo
Con respecto a día a la emergencia, en la gráfica 15 se observa que para el factor A en el nivel b₁ el periodo más corto a los días de la emergencia se encontró en el nivel lijado de las semillas con 42 días a la emergencia, también podemos observar que la ruptura de la testa y sin escarificar muestran días a la emergencias entre 54 y 59 días respectivamente. Para el factor A en el nivel b₂ no se encontraron diferencias significativas entre el lijado y sin escarificar con días a la emergencia de 41 y 43 días respectivamente, asimismo la ruptura de la testa muestra el periodo más largo con 52 días a la emergencia. Para el factor A en el nivel b₃ demuestra que no existe diferencias significativas entre los tratamientos sin escarificar y lijado de las semillas igual a 44 días en ambos tratamientos, por otro lado se encontró 54 días a la emergencia con ruptura de la testa. Para el factor A en el nivel b₄ definitivamente no expresa diferencias significativas entre el tratamiento sin escarificar y lijado con 51 días a la emergencia. Sin embargo la ruptura de la testa registro 55 días a la emergencia. Al respecto los diferentes tratamientos sobre las semillas influyen en el desarrollo y crecimiento temprano del embrión y el inicio del proceso germinativo seguido de la emergencia de la plúmula.

En resumen podemos afirmar que el periodo más corto para días a la emergencia se encontró en el tratamiento lijado en el nivel b₂ con 41 días, además que sin escarificar y lijado de las semillas en los niveles b₁, b₂ y b₃ mostraron días a la emergencia entre 42 a 44 días, dicho de otra manera son tratamientos de importancia para el desarrollo precoz de las semillas de majo, esto se debe que el desgaste y la inmersión en agua ocurre la absorción de agua lo cual provoca cambios fisiológicos que conducen al desarrollo prematuro de la radícula posteriormente de la plúmula.

Según el análisis el tratamiento ruptura de la testa mostró los periodos de emergencia más largos en todos los niveles del factor B, esto se debe que el método ruptura provoca daños internos en la semilla por lo cual existe un desarrollo tardío del embrión.

5.3.3 Altura de plantín
Para la determinación de esta variable se consideró 5 muestras al azar por cada tratamiento e indicó así mismo que se estableció un parámetro evaluativo de 7 días
desde la emergencia para tal efecto la medición fue desde el cuello hasta la parte más alta de la planta (hoja) por cada especie.

a) Asaí (*Euterpe precatoria* M.)

**Cuadro 22. Análisis de varianza para la altura de planta del Asaí**

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>2.104</td>
<td>1.052</td>
<td>3.45</td>
<td>0.0538</td>
<td>*</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>11.70</td>
<td>5.852</td>
<td>32.88</td>
<td>0.0033</td>
<td>**</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>0.712</td>
<td>0.178</td>
<td>0.58</td>
<td>0.6783</td>
<td></td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>5.524</td>
<td>1.841</td>
<td>6.04</td>
<td>0.0050</td>
<td>**</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>5.49</td>
<td>0.305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>47.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 4.72%
** = Significativo al nivel de 5%

El coeficiente de variación es igual 4.72% se deduce que realizó un manejo adecuado las unidades experimentales o el experimento se realizó en condiciones homogéneas.

El cuadro 22 se observa el análisis de varianza de la variable el cual presenta diferencias estadísticamente significativas al nivel del 5% para la fuente de variación de bloque. La diferencia significativa entre bloques indica que el diseño fue utilizado adecuadamente y se ganó eficiencia al bloquear las unidades experimentales. Con respecto al factor A (escarificación mecánica) muestra estadísticamente que existen diferencias altamente significativas, es decir que al menos uno de los promedios del factor A es diferente. Indicamos que con la escarificación mecánica se minimiza los días a la emergencia de las semillas lo cual provoca una reacción diferenciado en la variable altura. En cuanto al factor B (tiempo de inmersión) revela que hay diferencias altamente significativas entonces se establece que promedios difieren uno de otro, identifica que los tiempos de inmersión en agua influyen en el inicio de desarrollo de la semilla lo mencionado afecta la altura de plantín. En la interacción a medida que el tiempo de inmersión varía los métodos de escarificación tendrán un comportamiento diferente respecto a la altura de planta.
- **Efecto de la escarificación mecánica en la altura de plantines**

Se efectuó la correspondiente prueba de Duncan al 5% de probabilidad, con el objeto identificar estadísticamente el factor A (escarificación mecánica) que mayor incidencia tuvo en la variable altura de planta.

**Cuadro 23.** Prueba de Duncan de la altura de planta Asáí para escarificación mecánica

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>ALTURA (cm)</th>
<th>DUNCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₂ = Lijado</td>
<td>12.1533</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificar</td>
<td>12.056</td>
<td>A</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>10.898</td>
<td>B</td>
</tr>
</tbody>
</table>

*Cm = Centímetro*

En la prueba de Duncan del cuadro 23 y grafico 16 estadísticamente revela, que la escarificación mecánica realizado con lija y sin escarificar muestra mayor altura con respecto a la ruptura de la testa, esto debido a que existe una diferencia de días a la emergencia razón por la cual las plantas que fueron sometidos al lijado comenzaron su crecimiento anticipado en comparación con la escarificación ruptura de la testa podemos inferir que es necesario que las semillas pasen por un proceso de lijado con el fin de que la semilla entre en contacto con la humedad del sustrato y que las mismas se hagan más permeables y permitan el hinchamiento provocando con ello el crecimiento y desarrollo temprano de las semillas.

Asimismo, posiblemente el sustrato tuvo un papel importante en la retención de humedad adecuada aireación para que el plantin no se vea afectado por patógenos y pueda tener un crecimiento optimo y tener la capacidad para aprovechar mejor los factores del ambiente (agua, energía solar, sustancias nutritivas).

León & Saldaña (2011), se observó que la testa sea afectada aumentando la permeabilidad, como se observó en el T5 (desgaste parcial de la testa) lo que incrementa la entrada de agua y la hidratación de los colides ectoplasmaticos, seguido de la hidrolisis de reserva de las semillas que se ponen a disposición del embrión, suministrándole energía para su crecimiento y desarrollo.
El mismo autor menciona que el crecimiento del epicotilo tuvo una relación directa con el tiempo de germinación de las semillas, demostrando que los tratamientos que germinaron primero, denotaron mayor incremento de altura de la plántula T5 (desgaste parcial de la testa) con 9.64 cm de altura.

En tanto que la escarificación ruptura de la semilla registra el menor promedio para esta variable con un valor de 10.89 se debe a que el método emergió a los 48.2 días. Por efecto de la ruptura en la semilla se genera una fisura, por el cual el exceso de humedad provoca un pudrimiento en dicha fisura, entonces los procesos fisiológicos de la semilla lidian con esta situación por consiguiente existe un retardo en el crecimiento de la plántula

Grafico 16. Comparación de altura de planta de asaí entre escarificación mecánica

- **Efecto de tiempos de inmersión en la altura de plantines**

En cuanto al factor B (tiempos de inmersión) se realizó la prueba de Duncan a un nivel del 5% de significancia, considerando que el análisis de varianza del cuadro 22 expresa diferencias altamente significativas para este factor.
Cuadro 24. Prueba de Duncan de la altura de planta Asaí para tiempo de inmersión

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>ALTURA (cm)</th>
<th>DUNCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>12.16</td>
<td>A</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50 °C</td>
<td>11.7911</td>
<td>A</td>
</tr>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>11.7822</td>
<td>A</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>11.0778</td>
<td>B</td>
</tr>
</tbody>
</table>

Cm = Centímetro

La mayor altura registrada es 12.16 cm que corresponde a 24 horas de inmersión en agua, se atribuye que (b₂) inicio su desarrollo a los 34.3 días seguido de 11.79 cm y 11.78 cm de los tiempos de inmersión de 0.25 horas en agua a 50 °C y 48 horas en agua natural respectivamente e iniciando su desarrollo a los 42 y 38 días desde la siembra en este sentido se establece la importancia de la absorción de agua, durante este proceso ocurre el hinchamiento de la semilla por efecto de la imbibición dicho incremento va acompañado del aumento e inicio temprano del desarrollo de la semilla es así que se obtienen resultados significativos en la variable altura.

Mamani, P. (2000) en cuanto a la altura de plantines de asaí, se presentó diferencias significativas en la aplicación de tratamientos pre germinativos, influyendo en un mayor crecimiento en altura (5.35 cm/plantín) uniforme del estípite de los plantines de Asaí, el tratamiento pre germinativo (b₂) que corresponde al remojo de las semillas en agua durante 24 horas.

El mismo autor señala con la aplicación de este método de tratamiento pre germinativo (remojo en agua durante 24 horas) el crecimiento de los plantines de asaí se hace uniforme por la siembra directa de las semillas en las bolsas de polietileno y el medio (sustrato) en que se encuentran las mismas, propicia una adecuada humedad y temperatura constante.

La cantidad de agua ingerida durante la imbibición depende de la naturaleza de la semilla, esta es relativamente poca y puede que no exceda 2 a 3 veces el peso de la semilla. Muchos tipos de semillas aumentan en tamaño, algunas veces duplicándolo según Jara (1996) citado por Jiménez (2014).
Según Riveros (2015), en su experiencia con plantines de pino indica que para todas las variables de respuesta el factor más determinante para obtener plantines es el tratamiento pre germinativo con 48 horas en agua a temperatura ambiente.

Se puede distinguir en el cuadro que el tratamiento sin inmersión (0 horas) refleja un promedio menor equivalente a 11.07 cm de altura. Motivo por el cual recalzamos la importancia de sumergir las semillas en agua por un determinado tiempo.

**Grafico 17. Comparación de altura de planta de asaí entre tiempos de inmersión**

- **b1** = 0 horas de inmersión
- **b2** = 24 horas de inmersión en agua natural
- **b3** = 48 horas de inmersión en agua natural
- **b4** = 15 minutos de inmersión en agua a 50°C
- **Prueba de efectos simples para la interacción de factores**

**Cuadro 25.** Análisis de varianza de efecto simple de la interacción de los factores en altura de planta de asaí

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b1)</td>
<td>2</td>
<td>14.620</td>
<td>7.310</td>
<td>23.977</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b2)</td>
<td>2</td>
<td>8.552</td>
<td>4.276</td>
<td>14.026</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b3)</td>
<td>2</td>
<td>6.594</td>
<td>3.297</td>
<td>10.814</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b4)</td>
<td>2</td>
<td>4.136</td>
<td>2.068</td>
<td>6.782</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a1)</td>
<td>3</td>
<td>22.084</td>
<td>7.361</td>
<td>24.145</td>
<td>3.16 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a2)</td>
<td>3</td>
<td>4.690</td>
<td>1.563</td>
<td>5.128</td>
<td>3.16 *</td>
<td></td>
</tr>
<tr>
<td>Factor B (a3)</td>
<td>3</td>
<td>0.947</td>
<td>0.316</td>
<td>1.036</td>
<td>3.16 NS</td>
<td></td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>5.488</td>
<td>0.305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>47.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = No significativo  
** = significativo al 5%

El análisis de varianza de efectos simples, del cuadro 25 demuestra que hay diferencias estadísticas del Factor A (escarificación mecánica) con los tiempos de inmersión en agua en todos los niveles de B en los cuales establece un comportamiento significativo, se debe entender que estadísticamente ya sea la escarificación mecánica (sin escarificación, lijado, ruptura de la testa) tuvieron desarrollo de altura de la planta significativos dentro de todos los tiempos de inmersión en agua.

También los efectos simples del Factor B son ampliamente significativos con los escarificación mecánica (sin escarificación, lijado de las semillas) en los cuales se produce diferencias significativas, en comparación con el método ruptura de la testa lo cual estadísticamente no muestra diferencias significativas.
Con respecto a la altura de plantín en la gráfica 18 se observa que existen diferencias significativas en los niveles del factor A dentro de cada uno de los niveles del factor B, en el nivel b1 la mayor altura se encontró en el nivel a2 lijado de semillas con 12.78 cm de altura por otro lado no se encontraron diferencias significativas en los niveles de a1 sin escarificar y a3 ruptura de la testa con alturas de 9.71 cm y 10.7 cm respectivamente. En cuanto el factor A en el nivel b2 establece que no existe diferencias significativas entre a1 sin escarificar y a2 lijado de las semillas con valores de 13 cm y 12.69 cm, sin embargo con la escarificación ruptura de la testa se encontró una altura de 10.79 cm Para el factor A en el nivel b3 existe diferencias entre los niveles de sin escarificar con 12.77 cm lijado con 11.9 cm y con 10.68 cm en ruptura de la testa. Por otra parte el factor A en el nivel b4 la mayor altura se encontró en el nivel a1 sin escarificar con 12.75 cm de altura, en cambio no se encontraron diferencias significativas en los tratamientos lijado y ruptura de la testa con alturas de 11.25 cm y 11.38 cm respectivamente. Esto se debe que los tratamientos pre germinativos median para el desarrollo temprano del embrión por consiguiente influyen en el crecimiento de los plantines.

En resumen es necesario resaltar que la mayor altura se obtuvo en el tratamiento sin escarificar para el nivel b2 con 13 cm además se encontraron valores significativos en
los tratamientos de sin escarificar en b₃ y b₄ de igual manera lijado de las semillas en los niveles b₁ y b₂ son los que mostraron valores entre 12.69 cm a 12.78 cm en este sentido se considera tratamientos de importancia para la aplicación de tratamientos pregerminativos en semillas de asáí.

Se evidencia en el grafico 21 que el tratamiento ruptura de la testa revela las alturas más bajos en todos sus niveles de B esto se debe a que el tratamiento inicio su desarrollo más tarde respecto a los tratamientos sin escarificar y lijado de las semillas.

b) Majo (Oenocarpus bataua M.)

Cuadro 26. Análisis de varianza para la altura de planta de Majo

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>91.487</td>
<td>45.743</td>
<td>21.95</td>
<td>&lt;.0001 **</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>156.61</td>
<td>78.3</td>
<td>71.58</td>
<td>0.0007 **</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>4.375</td>
<td>1.09</td>
<td>0.52</td>
<td>0.7188</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>22.408</td>
<td>7.46</td>
<td>3.58</td>
<td>0.0343 *</td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>79.981</td>
<td>13.33</td>
<td>6.4</td>
<td>0.0010 **</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>37.51</td>
<td>2.083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>392.38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 7.73%

** = Significativo al nivel de 5%

El coeficiente de variación 7.73% se determina que el manejo de las unidades experimentales en las diferentes parcelas fue homogéneo.

El análisis de varianza del cuadro 26 reporta que la fuente de variación para bloques es altamente significativo por tanto se rechaza la hipótesis de igualdad entre bloques o bien se dice que existen diferencias significativas entre las repeticiones e indicamos que el diseño fue utilizado adecuadamente y se ganó eficiencia al bloquear las unidades experimentales. En tanto el efecto del factor A (Escarificación mecánica) influye significativamente en la altura de plantín, en el análisis revela que hay diferencias significativas para el efecto del factor B (tiempos de inmersión) de igual manera la interacción entre el factor A por B (Escarificación mecánica vs tiempos de inmersión) muestran diferencias significativas.
- **Efecto de la escarificación mecánica en la altura de los plantines**

Del mismo modo se realizó la prueba de Duncan al 5% de probabilidad, a fin de identificar estadísticamente la escarificación mecánica que mayor incidencia tuvo en la variable altura de planta.

**Cuadro 27. Prueba de Duncan de la altura de planta Asaí para escarificación mecánica**

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>ALTURA (cm)</th>
<th>DUNCAN 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₂ = Lijado</td>
<td>20.64</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificar</td>
<td>19.59</td>
<td>A</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>15.78</td>
<td>B</td>
</tr>
</tbody>
</table>

cm = centímetros

Acorde al análisis del cuadro 27 la comparaciones de medias entre la escarificación mecánica a la semilla de majo se puede apreciar que la escarificación con lija tuvo un dato de 20.64 cm, esto se debe a que inicio su desarrollo a los 44.16 días desde la siembra, además que la cubierta de la semilla con lijado logra la permeabilidad del agua y los gases esenciales para el crecimiento vegetativo. Por otro lado la escarificación con ruptura refleja el menor promedio respecto a la altura podemos indicar también que el desarrollo del embrión fue tardío.

Además, se presume que el sustrato tuvo un papel importante en la retención de humedad adecuada aireación para que el plantin no se ve afectado por patógenos y pueda tener un crecimiento optimo, la temperatura, humedad estuvieron en los rangos aceptables podemos concluir que estos factores podrían haber influido en el crecimiento y desarrollo de los plantines. Al respecto Bonner y Galston (1967), manifestaron que el rendimiento y desarrollo de la planta son el resultado de la interacción entre el genotipo y el ambiente, lo cual está determinado por su naturaleza individual y, al mismo tiempo, por la forma como reacciona frente a las condiciones ambientales.

En comparación a la escarificación mecánica sin escarificar, ruptura de la cubierta con valores de 19.5 y 15.78 cm respectivamente, como se observa en la grafico 19.
Según Ruiz, (s/f.) citado por Jiménez (2014) indica que la aplicación de tratamientos pregerminativos a las semillas que serán sembradas, garantiza que su germinación no se vea afectada por agentes inherentes a ellas y que, por el contrario, se logreen cultivos más homogéneos, con plántulas de excelente calidad y tamaño.

**Gráfico 19.** Comparación de altura de planta de majo entre escarificación mecánica

- **Efecto de los tiempos de inmersión en la altura de plantines**

Con referencia al efecto del factor B (tiempos de inmersión) se realizó la prueba de Duncan al 5% de probabilidad con el objetivo de identificar la diferencia estadística de los tiempos de inmersión (factor B) que mayor incidencia tuvo en la variable altura de planta.

**Cuadro 28.** Prueba de Duncan de la altura de planta de Majo para tiempos de inmersión

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>ALTURA (cm)</th>
<th>DUNCAN 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>19.648</td>
<td>A</td>
</tr>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>19.13</td>
<td>A</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>18.35</td>
<td>A  B</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>17.56</td>
<td>B</td>
</tr>
</tbody>
</table>

cm = centímetros
Según el cuadro 28 se identifica que el tratamiento con 24 horas de inmersión en agua natural muestra una mayor altura de planta logrando un valor de 19.64 cm, continuado el tiempo de inmersión de 48 Horas con un dato de 19.13 cm. esto se debe que la plúmula comenzó su desarrollo a los 45 días en comparación con 0 horas de inmersión.

Según Rocha (2010) se pudo comprobar que la inmersión en agua por un tiempo prolongado (30 a 60 minutos) y a alta temperatura (60°C) ocasiona un alto porcentaje de mortalidad en las semillas de *Oenocarpus bataua* Mart. Como en los casos de los tratamientos T7 y 78 con 60% y 80% de Mortalidad respectivamente.

Por otro lado el valor menor pertenece al tratamiento que no fue expuesto a ningún tratamiento con un valor de 17.5 cm de altura, esto se debe que inicio su crecimiento a los 51.5 días desde la siembra. En cuanto indicamos la importancia del proceso de imbibición para el desarrollo prematuro del embrión por consiguiente el crecimiento de la plantin.

![Grafico 20. Comparación de altura de planta de majo entre tiempos de inmersión](image)

b1 = 0 horas de inmersión  
b2 = 24 horas de inmersión en agua natural  
b3 = 48 horas de inmersión en agua natural  
b4 = 15 minutos de inmersión en agua a 50°C
- Prueba de efectos simples para la interacción de factores (método de escarificación Vs tiempos de inmersión)

**Cuadro 29.** Análisis de varianza de efecto simple de la interacción de los factores en la altura de planta de Majo

<table>
<thead>
<tr>
<th></th>
<th>F. V.</th>
<th>G. L.</th>
<th>S. C.</th>
<th>C. M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b₁)</td>
<td>2</td>
<td>73.174</td>
<td>36.587</td>
<td>17.56</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b₂)</td>
<td>2</td>
<td>59.956</td>
<td>29.978</td>
<td>14.38</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b₃)</td>
<td>2</td>
<td>72.198</td>
<td>36.099</td>
<td>17.32</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b₄)</td>
<td>2</td>
<td>31.265</td>
<td>15.633</td>
<td>7.50</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a₁)</td>
<td>3</td>
<td>78.483</td>
<td>26.161</td>
<td>12.55</td>
<td>3.16 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a₂)</td>
<td>3</td>
<td>22.419</td>
<td>7.473</td>
<td>3.59</td>
<td>3.16 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a₃)</td>
<td>3</td>
<td>1.488</td>
<td>0.496</td>
<td>0.24</td>
<td>3.16 NS</td>
<td></td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>37.512</td>
<td>2.084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>392.376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = No significativo  
** = significativo al 5%

En el Cuadro 29 es importante resaltar que hay diferencias estadísticas del Factor A (escarificación mecánica) con los tiempos de inmersión en agua 0, 24 y 48 horas y 0.25 horas de inmersión en agua a 50°C, en los mismos se contempla un comportamiento significativo, sin embargo para el factor B (tiempos de inmersión) el efecto es ampliamente significativos solo en la escarificación mecánica a₁ y a₂ por otra parte la escarificación a₃ no muestra diferencias significativas en la variable altura de plantin

**Grafico 21.** Efecto de la interacción de escarificación mecánica y tiempos de inmersión en la altura de plantines de majo
Con respecto a la altura de plantines en el grafico 21 establece que existe diferencias significativas en los niveles del factor A en cada uno de los niveles de los factores de B, en el nivel b$_1$ registro la mayor altura en el nivel lijado de las semillas con 21.6 cm, en lo que respecta a ruptura de la testa y sin inmersión no se encontraron diferencias significativas con valores de 15.2 cm y 15.9 cm respectivamente. Para el factor A en el nivel b$_2$ no se encontraron diferencias significativas entre el lijado de las semillas y sin escarificar con 22 cm y 20.9 cm respectivamente, sin embargo en el nivel b$_2$ la menor altura se encontró en el nivel ruptura de la testa con 16.1 cm Para el factor A en el nivel b$_3$ indica que no existe diferencias significativas entre el lijado de las semillas y sin escarificar con alturas de 18.5 cm y 21.7 cm respectivamente, en cuanto a la menor altura se encontró en el nivel ruptura de la testa con 15.2 cm En cuanto al factor A en el nivel b$_4$ se encontraron diferencias significativas entre los tratamientos sin escarificar, lijado de las semillas, ruptura de la testa con alturas de 20.6, 18.5, 16 cm respectivamente. En este sentido se deduce que los tratamientos pre germinativos generan un desarrollo prematuro de la semilla por tanto influyen en el crecimiento del plantin, además de los factores ambientales que fueron adecuadas para el crecimiento.

En definitiva podemos indicar que el mayor crecimiento del plantin se encontró en el tratamiento lijado de las semillas en el nivel b$_2$ con un valor de 22 cm de altura, de las misma forma se encontraron los tratamientos sin escarificar y lijado en b$_2$ y b$_3$ mostraron valores de entre 20.5 cm a 21.7 cm por consiguiente se considera tratamientos de importancia para el tratamiento de semillas de majo. Se plantea que el lijado y el agua facilitan la permeabilidad y ejercen un desarrollo temprano del embrión por consiguiente el crecimiento precoz del plantin.

El tratamiento ruptura mostro valores más bajos en todos los niveles del factor B. esto se debe que el inicio del desarrollo de la semilla fue tardío y esto genero promedios bajos en la altura de plantines. Esto se debe que tuvo un desarrollo tardío en la emergencia de la semillas también podemos indicar que el exceso de humedad provocó un estrés, el cual restringe la germinación y el crecimiento inicial de las plantas.
5.3.4 Diámetro de tallo

Con referencia al análisis de varianza para el diámetro de tallo se realizó un muestreo de 5 plantines por cada tratamiento de la especie Asaí (Euterpe precatoria M.) y (Oenocarpus bataua M.) por un intervalo de 15 días de un registro a otro, se procedió con la ayuda de un vernier.

a) Asaí (Euterpe precatoria M.)

En el cuadro 22 se observa que el análisis de varianza del diámetro para el asaí (Euterpe precatoria M.) presenta diferencias estadísticamente significativas 5% entre los distintos tratamientos.

En el análisis de la varianza se obtuvo un coeficiente de variación 4.9% cuyo valor se encuentra muy debajo del límite de confiabilidad de 30%

| Cuadro 22. Análisis de varianza para el diámetro de tallo de Asaí |
|------------------------|-----------------|------------|-------------|---------------|----------------|
|                        | F.V.            | G.L.       | S.C.       | C.M.         | F - Valor     | Pr > F        |
| Bloque                 | 2               | 0.0422     | 0.021      | 0.62         | 0.547 NS      |
| Escar. Mecánica        | 2               | 0.55       | 0.275      | 2.5          | 0.198 NS      |
| Error A                | 4               | 0.441      | 0.11       | 3.25         | 0.0357        |
| Tiempos de inmersión   | 3               | 0.072      | 0.024      | 0.71         | 0.558 NS      |
| E. mec. Vs T. Inmersión| 6               | 0.222      | 0.037      | 1.1          | 0.402 NS      |
| Error B                | 18              | 0.61       | 0.034      |              |                |
| Total corregido        | 35              | 1.94       |            |              |                |

C.V. = 4.982%

NS = No significativo

La significancia del bloque indica que se acepta la hipótesis de igualdad entre bloques, es decir que no existen diferencias significativas entre bloques para la variable diámetro de tallo. Entonces se establece que la luz no influye en el proceso de engrosamiento del tallo en el estudio.

En tanto para el factor A (escarificación mecánica), factor B (tiempos inmersión en agua) no existen diferencias significativas en el análisis, de igual manera no hay diferencias significativas en la interacción de los factores.
b) Majo (*Oenocarpus bataua* M.)

Acorde al análisis de varianza ANVA para el variable diámetro del tallo registra que existen diferencias significativas al 5% de probabilidad.

El coeficiente de variación refleja un valor de 4.13 % mismo que se encuentra por debajo del 30% con lo cual se puede afirmar que el manejo de las unidades experimentales en las distintas parcelas fue homogénea.

**Cuadro 30** Análisis de varianza para el diámetro de tallo de Majo

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>0.283</td>
<td>0.142</td>
<td>2.9</td>
<td>0.078</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>1.15</td>
<td>0.575</td>
<td>8.93</td>
<td>0.033 **</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>0.257</td>
<td>0.064</td>
<td>1.34</td>
<td>0.2932</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>0.26</td>
<td>0.086</td>
<td>1.8</td>
<td>0.183  NS</td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>0.185</td>
<td>0.03</td>
<td>0.64</td>
<td>0.696  NS</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>0.87</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 4.118%

NS = No significativo.

** = Significativo al nivel de 5%

El análisis del cuadro 30 muestra la significancia de los bloques en el cual se acepta la hipótesis de igualdad entre bloques o bien se dice que no hay diferencias significativas entre bloques e inferimos que la incidencia de luz no influye en el desarrollo del engrosamiento del tallo.

La significancia del factor A (escarificación mecánica) es altamente significativo por consiguiente se rechaza la hipótesis de igualdad entre la escarificación mecánica, lo que indica que al menos uno de los tratamientos tiene un promedio que difiere. Entonces consideramos que la escarificación mecánica realiza un desgaste de la testa para lograr eficiencia en la imbibición reflejan diferencias en el variable diámetro del tallo.

Se puede contemplar que el efecto del factor B (tiempos de inmersión) y el efecto de los factores en la interacción no presenta diferencias significativas.
- Efecto de la escarificación mecánica en el diámetro de tallo

Según los resultados obtenidos del análisis de varianza del cuadro 30 entre la escarificación mecánica existen diferencias significativas entre los mismos, lo que amerita realizar la prueba de Duncan con una significancia del 5 %

**Cuadro 31.** Prueba de Duncan, del diámetro de tallo de Majo para escarificación mecánico

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>DIAMETRO (mm)</th>
<th>DUNCAN 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₂ = Lijado</td>
<td>5.49</td>
<td>A</td>
</tr>
<tr>
<td>a₁ = Sin escarificar</td>
<td>5.4</td>
<td>A</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>5.07</td>
<td>B</td>
</tr>
</tbody>
</table>

mm = milímetros

En el cuadro 31 y gráfico 22 las medias presentan diferencias significativas entre diámetro de tallo con la escarificación mecánica con lija de 5.49 mm el valor mayor con respecto a los otros métodos de escarificación entonces se puede inferir que las semillas que sufren un lijado en la cubierta tienen una reacción diferenciada respecto al engrosamiento del diámetro, esta diferencia podría atribuirse al tipo de tratamiento empleado previo a la siembra y que ejerce un estímulo temprano en el engrosamiento del tallo.

Cabe destacar que la escarificación ruptura de la testa refleja el valor más bajo con 5 mm con respecto a la variable diámetro del tallo se infiere que durante la ruptura de la semilla se provoca una fisura en la testa, la semilla absorbe agua lo que desencadena a una serie de reacciones como la pudrición y este regula el desarrollo tardío del embrión.

Asimismo, al comportamiento propio de la especie en vivero, determinada por sus características genéticas y su respuesta a las condiciones medio ambientales en las que se desarrollaron debemos considerar que la temperatura, humedad, disponibilidad de agua y el sustrato adecuado, sin duda ayudaron a lograr un mayor desarrollo en los órganos aéreos de los plantines. De la misma forma Gallegos (1997), indica que los rendimientos máximos que se pueden obtener de un cultivo, es gracias a la riqueza
nutritiva del suelo, donde los elementos minerales y el agua podrán penetrar en la planta.

**Grafico 22.** Comparación de diámetro de tallo de majo entre escarificación mecánica

- **Diámetro de tallo de majo por efecto de la interacción de factores**

**Grafico 23** Interacción de los factores en el diámetro de tallo de Majo

Observando el grafico 23 se puede ver que el T₂ (Sin escarificación vs 24 horas de inmersión en agua natural) es la que obtuvo el mayor promedio de diámetro de tallo con
5.6 mm mientras que el T9 (Ruptura de la testa vs 0 horas de inmersión) fue el que obtuvo el menor promedio de diámetro de tallo.

5.3.5 Longitud raíz principal

Para observar el comportamiento de la variable longitud de la raíz principal se consideró un muestreo aleatorio de 3 plantines por cada tratamiento por el lapso de 43 días en Asaí (*Euterpe precatoria* M.) y 64 días en Majo (*Oenocarpus bataua* M.) Con un periodo evaluativo de 15 días de un registro a otro, en cuanto a la medición se realizó con la ayuda de un flexo.

a) Asaí (*Euterpe precatoria* M.)

El análisis de varianza para longitud de raíz principal de Asaí (*Euterpe precatoria* M.) muestra diferencias significativas (α=0.05)

En el cuadro 32 exhibe el análisis de varianza correspondiente a longitud de raíz principal en el cual indica que el coeficiente de variación 10.49 % que se encuentran por debajo de 30% por lo que los datos son confiables.

**Cuadro 32** Análisis de varianza para la longitud de raíz principal de asaí

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>14.89</td>
<td>7.445</td>
<td>3.19</td>
<td>0.0652  NS</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>38.14</td>
<td>19.071</td>
<td>2.72</td>
<td>0.1796 NS</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>28.056</td>
<td>7.014</td>
<td>3.01</td>
<td>0.0461</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>15.458</td>
<td>5.152</td>
<td>2.21</td>
<td>0.1224  NS</td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>16.022</td>
<td>2.67</td>
<td>1.14</td>
<td>0.3776  NS</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>42.01</td>
<td>2.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>154.59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. V. = 10.49%

NS = No significativo

El cuadro 32 describe que para la significancia de bloques se acepta la hipótesis de igualdad entre repeticiones e indicamos que no existen diferencias significativas entre bloques en el experimento. Dicho de otra manera la incidencia de luz no ejerce diferencias en la longitud de raíz principal.
Por otro lado el análisis de varianza refleja que no se encontró diferencias significativas en la longitud de raíz primaria por efecto de los factor A (escarificación mecánica) realizados a la semilla de asaí, respecto al efecto de los factor B (tiempos de inmersión) se establece que no existen diferencias significativas, de la misma forma en la interacción de factores no expresa diferencias e indicamos que a medida que el tiempo de inmersión varía la escarificación mecánica no influyen en el comportamiento de la variable longitud de raíz principal.

b) Majo (*Oenocarpus bataua M.*)

De acuerdo al análisis de varianza ANVA para longitud de raíz principal establece que existen diferencias significativas al 5% de probabilidad.

Según el coeficiente de variación muestra un valor de 15.32%, resultado que se halla por debajo del 30% con lo cual se concluye que el experimento tuvo un manejo homogéneo.

**Cuadro 33 Análisis de varianza para la longitud de raíz principal de majo**

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>5.85</td>
<td>2.925</td>
<td>0.39</td>
<td>0.6848 NS</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>118.42</td>
<td>59.21</td>
<td>3.61</td>
<td>0.1269 NS</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>65.542</td>
<td>16.385</td>
<td>2.17</td>
<td>0.1143</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>76.377</td>
<td>25.45</td>
<td>3.37</td>
<td>0.0416 *</td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>52.783</td>
<td>8.797</td>
<td>1.16</td>
<td>0.3683 NS</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>136.17</td>
<td>7.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>455.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. V. = 15.32%
NS = No significativo
** = Significativo al nivel de 5%

El cuadro 33 permite apreciar que la significancia de bloques no es significativo por tanto se acepta la hipótesis de igualdad entre bloques o bien se dice que no hay diferencias significativas entre las repeticiones. En otras palabras que no se ganó eficiencia al bloquear las unidades experimentales.
Por otra parte no se encontraron diferencias significativas en el factor A por lo cual se acepta la hipótesis de igualdad entre la escarificación mecánica e indicamos que los métodos de escarificación no influyen en la variable longitud de raíz principal.

El análisis de varianza para el efecto del factor B (tiempos de inmersión) mostró significancia en esta situación se rechaza la hipótesis de igualdad entre tiempos de inmersión e indicamos que al menos uno de los tratamientos tiene un promedio diferente en este sentido se comprende que la absorción de agua por la semilla genera actividad del embrión asociado con el desarrollo temprano de la radícula.

- **Efecto de los tiempos de inmersión en la longitud de la raíz principal**

A continuación se describe el análisis de medias mediante la prueba de Duncan al 5% de probabilidad para el efecto del factor B (tiempos de inmersión) puesto que en cuadro 33 análisis de varianza dicho factor presenta diferencias significativas.

**Cuadro 34. Prueba de Duncan de longitud de raíz principal de Majo para tiempos de inmersión**

<table>
<thead>
<tr>
<th>TIEMPO DE INMERSION</th>
<th>LONGITUD (cm)</th>
<th>DUNCAN 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>20.03</td>
<td>A</td>
</tr>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>18.61</td>
<td>A B</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>16.63</td>
<td>B</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>16.54</td>
<td>B</td>
</tr>
</tbody>
</table>

*cm = centímetros*

El cuadro 34 muestra información donde se observa que con 48 horas de inmersión en agua natural muestra un mayor promedio con un valor de 20.033 cm. Estos resultados revelan que la absorción de agua ejerce una actividad temprana en el embrión, hay que destacar que la manifestación de la germinación exitosa es la emergencia de la radícula a los 47 días.

Asimismo podemos atribuir que el desarrollo del sistema radicular podría deberse a factores como un sustrato ligero con buena aireación, riego adecuado y oportuno la
temperatura ideal, un ambiente protegido y las labores de desmalezado con el fin de evitar la competencia de nutrientes con malezas.

Rodríguez (1991), considera que el proceso de extensión de las raíces, no depende únicamente de la especie vegetal sino de la textura del suelo, aire y presencia de nutrimentos, en las especies perennes la raíz principal y sus laterales experimentan crecimiento secundario, para conducir sustancias alimenticias y agua, la absorción se realiza principalmente por las últimas ramificaciones que se hallan en estado de crecimiento primario.

Jiménez (2014), llevo a cabo un estudio en cual establece que el tratamiento pre germinativo con el menor rendimiento fue escarificación en agua caliente a 85°C por 3 minutos; puesto que por la alta temperatura se corre el riesgo de cocer las semillas.

El tratamiento pre germinativo escarificación en agua caliente a 85°C por 3 minutos es que obtuvo un menor crecimiento en longitud de raíz Villachica (1996) citado por Jiménez (2014), menciona que, existe una pérdida del poder germinativo, por lo que no se recomienda. Por lo contrario el menor valor en la variable longitud de raíz corresponde a la inmersión en agua a 50°C con 16.54 cm.

**Grafico 24** Comparación de longitud de raíz principal de majo entre tiempos de inmersión

<table>
<thead>
<tr>
<th>Factor B = Tiempos de inmersión</th>
<th>Longitud (Cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1 = 0 horas de inmersión</td>
<td>20.03</td>
</tr>
<tr>
<td>b2 = 24 horas de inmersión en agua natural</td>
<td>18.61</td>
</tr>
<tr>
<td>b3 = 48 horas de inmersión en agua natural</td>
<td>16.63</td>
</tr>
<tr>
<td>b4 = 15 minutos de inmersión en agua a 50°C</td>
<td>16.54</td>
</tr>
</tbody>
</table>
- Longitud de raíz principal de majo por efecto de la interacción de los factores

![Grafico 25](image)

Grafico 25 Interacción de los factores en la longitud de raíz principal de majo

Visto desde la perspectiva del grafico 25 el T₇ (Lijado vs 48 horas de inmersión en agua natural) es quien tiene un comportamiento óptimo con un valor de 22.07 cm de longitud, por otro lado el T₁₂ (Ruptura de la testa vs inmersión en agua a 50°C por 15 min.) obtuvo el promedio más bajo con 11.9 cm en la variable longitud de raíz principal.

5.3.6 Longitud de la raíz secundaria

Por lo que se refiere a la variable longitud de raíz secundaria, al respecto se realizó un muestreo al azar de 3 plantines por tratamiento, el registro de los datos se realizó durante 43.64 días para asaí y majo respectivamente, ambos con un intervalo de 15 días de un registro al otro, en lo que respecta la medición se realizó con la ayuda de un flexómetro en cm.

a) Asáí (*Euterpe precatoria* M.)

Mediante el análisis de varianza de la longitud de raíz secundaria Asáí (*Euterpe precatoria* M.) muestra diferencias significativas ($\alpha = 0.05$).

En el análisis de varianza se aprecia un coeficiente de variación de 11.78% lo cual indica que el manejo del experimento fue realizado en forma adecuada.
**Cuadro 35** Análisis de varianza para la longitud de raíz secundaria de asaí

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>35.945</td>
<td>17.97</td>
<td>14.55</td>
<td>0.0002 **</td>
<td></td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>32.50</td>
<td>16.25</td>
<td>23.89</td>
<td>0.0060 **</td>
<td></td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>2.72</td>
<td>0.68</td>
<td>0.55</td>
<td>0.701</td>
<td></td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>5.682</td>
<td>5.227</td>
<td>4.23</td>
<td>0.0198 **</td>
<td></td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>3.649</td>
<td>3.94</td>
<td>3.19</td>
<td>0.0259 **</td>
<td></td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>22.23</td>
<td>1.234</td>
<td>&lt;0.0001</td>
<td>0.701</td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>132.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. V. = 11.78%

** = Significativo al nivel de 5%

En el cuadro 35 para la fuente de variación bloque se rechaza la hipótesis de igualdad entre bloques, se dice que hay diferencias significativas entre bloques. Entonces indicamos que el diseño fue utilizado adecuadamente y se ganó eficiencia al bloquear las unidades experimentales.

La significancia del factor A (escarificación mecánica) donde se rechaza la hipótesis de igualdad, entonces al menos uno de los promedios difiere de los demás en la variable longitud de raíz secundaria. Se infiere que los métodos mecánicos incluyen en el desarrollo de la raíz secundaria de la plántula de igual manera existe diferencias. De igual manera existe diferencias significativas para el efecto del factor B (tiempos de inmersión) por lo que se puede afirmar que cada tiempo de inmersión genera un efecto diferente en la variable longitud de raíz secundaria. La interacción expresa diferencias significativas entonces indicamos que a medida que los tiempos de inmersión varíen los métodos de escarificación tendrán un comportamiento diferente respecto a la variable longitud de raíz secundaria.

**Efecto de la escarificación mecánica en la longitud de raíz secundaria**

En este sentido es conveniente realizar la prueba de Duncan a un nivel de significancia del 5% para el efecto de las medias del factor A (escarificación mecánica).
Cuadro 36. Prueba de Duncan de la longitud de raíz secundaria para escarificación mecánico

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>LONGITUD (cm)</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁ = Sin escarificar</td>
<td>10.62</td>
<td>A</td>
</tr>
<tr>
<td>a₂ = Lijado</td>
<td>9.37</td>
<td>B</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>8.3</td>
<td>C</td>
</tr>
</tbody>
</table>

Cm = centímetros

En el cuadro 36 y gráfico 26 se puede apreciar que la prueba de Duncan infiere que sin escarificar expone un promedio alto de 10.62 cm, la semilla no sufrió ninguna abrasión mecánica se atribuye que el desarrollo del embrión se dio a los 32.9 días desde la siembra.

Asimismo podemos indicar que las semillas requieren de un sustrato adecuado donde la cascarilla de arroz es un componente que mejora las características físicas de la semilla y facilita la aireación, además de un riego adecuado para poder crecer y realizar eficientemente los procesos fisiológicos como transporte de nutrientes por parte de las raíces.

Cronquist (1997) citado por Lucero (2007), indica que el desarrollo radicular de las plantas está influída por la naturaleza del suelo. El mejor desarrollo y la ramificación más extensa de las raíces se presenta en suelos húmedos pero no saturados. Al contrario ocurre donde presenta una deformación notoria en el desarrollo radicular y casi total ausencia de raicillas secundarias, lo que perjudica el posterior desarrollo de la planta.

Las raíces de las plantas se extienden explorando el terreno en busca de los principales nutrientes que este contiene. Como el suelo es una mezcla de partículas de distintos tamaños variando la proporción de unas y otras, el despliegue de las raíces es muy irregular de acuerdo Medina (1988) citado por Poblete, (2007).

La escarificación con lija muestra un valor de 9.37 cm, en cambio el menor valor registrado corresponde la escarificación ruptura de la testa con un promedio de 8.3 cm. se explica que al realizar la ruptura en la testa de la semilla el agua ingresa...
inmediatamente causando un daño como la pudrición en la membrana de la semilla, esto afecta el crecimiento y desarrollo de la plántula.

![Bar chart showing root length comparison](image)

**Factor A = Esparcimiento mecánico**

- **Grafitco 26.** Comparación de la longitud de raíz secundaria de asá entre esparcimiento mecánica

- **Efecto de los tiempos de inmersión en la longitud de raíz secundaria**

En la información del cuadro 35 se identifica que existen diferencias significativas por el efecto del Factor B (tiempos de inmersión) por lo cual amerita realizar la prueba de Duncan con una significancia del 5%

**Cuadro 37.** Prueba de Duncan de la longitud de raíz secundaria de Asá para tiempos de inmersión

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>LONGITUD (cm)</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>10.38</td>
<td>A</td>
</tr>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>9.5</td>
<td>A B</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>9.31</td>
<td>A B</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>8.53</td>
<td>B</td>
</tr>
</tbody>
</table>

*cm = centímetros*

En el cuadro 37 y gráfico 27 evidentemente el tiempo de inmersión en agua por 24 horas expone un promedio de 10.38 cm, siendo la misma superior al de inmersión por
48 horas, 0.25 horas de inmersión en agua a 50°C, y 0 horas siendo este último el más bajo de los promedios con 8.53 cm. Bajo esta perspectiva indicamos que el proceso de imbibición es indispensable para el desarrollo temprano del embrión y consiguientemente el proceso de crecimiento y desarrollo de los órganos de la planta como la raíz. El tratamiento pre germinativo escarificación en agua caliente a 85 °C por 3 minutos es que obtuvo un menor crecimiento en longitud de raíz Villachica (1996) citado por Jiménez (2014), menciona que, existe una pérdida del poder germinativo, por lo que no se recomienda.

**Grafico 27.** Comparación de la longitud de raíz secundaria de asaí entre tiempos de inmersión

Por último es conveniente realizar el análisis de varianza de efectos simple de la interacción de los factores visto que el análisis del cuadro 35 para la interacción expresa diferencias significativas.
Cuadro 38. Análisis de varianza de efecto simple de la interacción de los factores en la longitud de raíz secundaria de asáí

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b₁)</td>
<td>2</td>
<td>5.029</td>
<td>2.514</td>
<td>2.036</td>
<td>3.55 NS</td>
</tr>
<tr>
<td>Factor A (b₂)</td>
<td>2</td>
<td>32.069</td>
<td>16.034</td>
<td>12.985</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b₃)</td>
<td>2</td>
<td>11.227</td>
<td>5.613</td>
<td>4.546</td>
<td>3.55 **</td>
</tr>
<tr>
<td>Factor A (b₄)</td>
<td>2</td>
<td>8.240</td>
<td>4.120</td>
<td>3.336</td>
<td>3.55 NS</td>
</tr>
<tr>
<td>Factor B (a₁)</td>
<td>3</td>
<td>36.687</td>
<td>12.229</td>
<td>9.903</td>
<td>3.16 **</td>
</tr>
<tr>
<td>Factor B (a₂)</td>
<td>3</td>
<td>1.189</td>
<td>0.396</td>
<td>0.321</td>
<td>3.16 NS</td>
</tr>
<tr>
<td>Factor B (a₃)</td>
<td>3</td>
<td>0.837</td>
<td>0.279</td>
<td>0.226</td>
<td>3.16 NS</td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>22.228</td>
<td>1.235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>132.72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = No significativo
** = Significativo al 5%

El cuadro 38 refleja el análisis de varianza para efectos simples, propone que hay diferencias estadísticas del Factor A (escarificación mecánica) concretamente con los tiempos b₂ y b₃ en los cuales establece un comportamiento significativo, entonces indicamos estadísticamente que la escarificación mecánica tienen un desarrollo de longitud de raíz secundaria con tiempos de inmersión de 24, 48 horas para observar estas diferencias se graficaron las medias de la interacción.

Conforme a los efectos simples del Factor B es ampliamente significativo con los métodos sin escarificar en el cual se produce diferencias significativas, en comparación con la escarificación con lija y ruptura de la cubierta la cual estadísticamente no muestra diferencias significativas.
Con respecto a la longitud de raíz secundaria, en el gráfico 28 se observa que para el factor A en el nivel b₁ no existen diferencias significativas entre los tratamientos sin escarificar y ruptura de la testa con longitudes de 8.1 cm y 8 respectivamente, sin embargo se encontró diferencias en el lijado de la semillas con 9.6 cm Para el factor A en el nivel b₂ la mayor longitud se encontró en el nivel sin escarificar con 13 cm, en cambio no se encontraron diferencias significativas en los tratamientos lijado de las semillas y ruptura de la testa con valores de 9.5 y 8.6 cm respectivamente. Para el factor A en el nivel b₃ indica que existen diferencias entre sin escarificación, lijado de semilla y ruptura de la testa con valores de 10.8, 9.6 y 8.1 cm respectivamente. Para el factor A en el nivel b₄ no se encontraron diferencias significativas en los tratamientos lijado de la semillas y ruptura de la testa con 8.8 y 8.4 cm de longitud de raíz, la mayor longitud se observó en el nivel sin escarificar con 10.6 cm.

En resumen, se puede inferir que la mayor longitud de la raíz se obtuvo con el tratamiento sin escarificar en el nivel b₂ con 13 cm, seguido del nivel b₃ y b₄ con 10.8 y 10.6 cm respectivamente de similar manera el lijado de las semillas en los niveles b₂ y b₃ son considerados tratamientos de importancia en las semillas de asaí. Esto se debe que el desarrollo temprano de las semillas ejerce un crecimiento en las raíces de la plántula.
El tratamiento ruptura de la testa mostró las longitudes más bajas en todos los niveles de B debido a que es un método que tarda en el desarrollo de las semillas lo cual generó bajos promedios en el crecimiento de la radícula.

**b) Majo** (*Oenocarpus bataua M.*)

El análisis de varianza de la variable longitud de raíz secundario prueba que existen diferencias significativas al 5% de probabilidad.

De acuerdo al análisis de varianza, el coeficiente de variación es de 13.75% este se encuentra por debajo del 30% con lo cual podemos indicar que el desarrollo del experimento se realizó en condiciones homogéneas.

**Cuadro 39. Análisis de varianza para la longitud de raíz secundaria de Majo**

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>1.807</td>
<td>0.903</td>
<td>0.31</td>
<td>0.7404</td>
<td>NS</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>221.48</td>
<td>110.74</td>
<td>24</td>
<td>0.0059**</td>
<td></td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>18.459</td>
<td>4.614</td>
<td>1.56</td>
<td>0.2275</td>
<td></td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>86.912</td>
<td>28.97</td>
<td>9.8</td>
<td>0.0005**</td>
<td></td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>98.497</td>
<td>16.416</td>
<td>5.55</td>
<td>0.0021**</td>
<td></td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>53.22</td>
<td>2.956</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>480.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 13.749%
NS = No significativo
** = Significativo al nivel de 5%

Según el análisis del cuadro 39 no se encontraron diferencias significativas entre bloque o bien se dice que no hay diferencias significativas entre bloques. Al respecto indicamos no se ganó eficiencia al bloquear las unidades experimentales. Por otra parte se encontró diferencias significativas en el efecto de la escarificación mecánica y tiempos de inmersión, por lo tanto los tratamientos aplicados a la semilla influyen en la variable longitud de raíz secundaria. Con respecto a la interacción entre el factor A y factor B demuestra que existe diferencias altamente significativas en otras palabras el tiempo de inmersión varía de acuerdo a la escarificación mecánica tendrán un comportamiento diferente respecto a la longitud de raíz secundaria.
- **Efecto de escarificación mecánica en la longitud de raíz secundaria**

Se efectuó la correspondiente prueba de Duncan al 5% de probabilidad, con el objeto identificar estadísticamente la escarificación mecánica que mayor incidencia tuvo en la variable longitud de raíz secundaria.

**Cuadro 40.** Prueba de Duncan longitud de raíz secundaria de Majo para escarificación mecánica

<table>
<thead>
<tr>
<th>ESC. MECANICO</th>
<th>LONGITUD (cm)</th>
<th>DUNCAN 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁ = Sin escarificar</td>
<td>14.36</td>
<td>A</td>
</tr>
<tr>
<td>a₂ = Lijado</td>
<td>14.15</td>
<td>A</td>
</tr>
<tr>
<td>a₃ = Ruptura de la cubierta</td>
<td>9</td>
<td>B</td>
</tr>
</tbody>
</table>

cm = centímetros

En el cuadro 40 y gráfico 29 en la salida de datos de la prueba de Duncan para el factor A se observa que el tratamiento con mejor respuesta en la longitud de raíz secundaria fue sin escarificación con un promedio de 14.36 cm, en presencia del agua ocurren reacciones como la rehidratación que da paso a la germinación y al crecimiento y desarrollo de la radícula por otro lado el método de ruptura de testa exhibe el promedio más bajo con 9 cm.

Asimismo podemos inferir que las semillas requieren de un sustrato adecuado donde la cascarilla de arroz es un componente que mejora las características físicas de la semilla y facilita la aireación, además de un riego adecuado para poder crecer y realizar eficientemente los procesos fisiológicos como transporte de nutrientes por parte de las raíces y los oportunos labores como el desmalezado con el fin de evitar competencia de la raíces por los nutrientes del suelo.

Al respecto Chilon (1997), señala que al aumentar la porosidad total del suelo en especial la macro porosidad, se mejora la aireación y la permeabilidad del suelo, es decir que texturas livianas favorecen el mejor desarrollo radicular, tanto vertical como horizontal.
Grafico 29. Comparación de longitud de raíz secundaria de majo entre escarificación mecánica

- **Efecto de los tiempos de inmersión en la longitud de raíz secundaria**

En cuanto al factor B (tiempos de inmersión) se realizó la prueba de Duncan a un nivel del 5% de significancia, considerando que el análisis de varianza del cuadro 39 expresa diferencias altamente significativas para este factor.

**Cuadro 41.** Prueba de Duncan de longitud de raíz secundaria de Majo para tiempos de inmersión

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>LONGITUD (cm)</th>
<th>DUNCAN 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>( b_2 ) = 24 horas agua natural</td>
<td>13.92</td>
<td>A</td>
</tr>
<tr>
<td>( b_3 ) = 48 horas en agua natural</td>
<td>13.51</td>
<td>A</td>
</tr>
<tr>
<td>( b_4 ) = 0.25 horas en agua a 50°C</td>
<td>12.65</td>
<td>A</td>
</tr>
<tr>
<td>( b_1 ) = 0 horas</td>
<td>9.93</td>
<td>B</td>
</tr>
</tbody>
</table>

\( \text{cm} = \text{centímetros} \)

De acuerdo con el cuadro 41 y grafico 30 la prueba de Duncan estadísticamente muestra, que el tiempo de inmersión por 24 horas de inmersión presenta mayor desarrollo de longitud de raíz secundaria con un promedio de 13.92 cm, la absorción de
agua por la imbibición causa un hinchamiento y el crecimiento de la división celular provoca la emergencia de la radícula.

En cambio el promedio 9.33 cm sin tiempo de inmersión refleja el valor más bajo de la prueba lo cual ratifica.

Grafico 30 Comparación de longitud de raíz secundaria de majo entre tiempos de inmersión

Con relación a la interacción de los factores también mostraron diferencias estadísticas, para lo cual se realizó la prueba de efectos simples con en el fin de identificar la interacción más significativa respecto de la variable longitud de raíz secundaria
- **Prueba de efectos simples para la interacción de factores**

Cuadro 42 Análisis de varianza de efecto simple de la interacción de los factores en la longitud de raíz secundaria de Majo

<table>
<thead>
<tr>
<th></th>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F. cal.</th>
<th>Ft 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (b1)</td>
<td>2</td>
<td>47.207</td>
<td>23.603</td>
<td>7.98</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b2)</td>
<td>2</td>
<td>95.216</td>
<td>47.608</td>
<td>16.10</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b3)</td>
<td>2</td>
<td>116.202</td>
<td>58.101</td>
<td>19.65</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor A (b4)</td>
<td>2</td>
<td>60.080</td>
<td>30.040</td>
<td>10.16</td>
<td>3.55 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a1)</td>
<td>3</td>
<td>172.823</td>
<td>57.608</td>
<td>19.48</td>
<td>3.16 **</td>
<td></td>
</tr>
<tr>
<td>Factor B (a2)</td>
<td>3</td>
<td>11.177</td>
<td>3.726</td>
<td>1.26</td>
<td>3.16 NS</td>
<td></td>
</tr>
<tr>
<td>Factor B (a3)</td>
<td>3</td>
<td>0.956</td>
<td>0.319</td>
<td>0.11</td>
<td>3.16 NS</td>
<td></td>
</tr>
<tr>
<td>Error exp.</td>
<td>18</td>
<td>53.220</td>
<td>2.957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>480.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = No Significativo  
** = Significancia al 5%

A continuación se describe el cuadro 42 prueba de efectos simple donde se vislumbra estadísticamente que existen diferencias significativas en longitud de raíz secundaria en el factor A (escarificación mecánica) dentro los tiempos de inmersión (0, 24, 48 horas de inmersión en agua natural y 0.25 horas de inmersión en agua a 50°C) y el factor B (tiempos de inmersión) dentro de la escarificación mecánica (Sin escarificación), sin embargo no existen diferencias significativas en factor B dentro de la escarificación ( lijado y ruptura de la testa)

Grafico 31 Efecto de la interacción métodos de escarificación y tiempos de inmersión de la longitud de raíz secundaria de majo

102
Con respecto a la longitud de raíz secundaria se observa de manera gráfica, que existen diferencias significativas en los niveles del factor A en cada uno de los niveles de los factores B. En el nivel b₁ la mayor longitud radicular se encontró en el nivel lijado de las semillas con 13.1 cm de longitud, también indicamos que no existen diferencias significativas entre sin escarificar y ruptura de la testa con 7.9 y 8.8 cm de longitud. Para el factor A en el nivel b₂ no se encontraron diferencias significativas entre el lijado y sin escarificación con 15.6 y 16.8 cm respectivamente. En cambio para el factor A en el nivel b₃ presenta diferencias significativas entre los niveles de sin escarificar con 17.3 cm seguido del lijado de semillas con 14.5 cm por último la escarificación ruptura de la testa muestra 8.7 cm de longitud radicular. Para el factor A en el nivel b₄ muestra diferencias entre los niveles de sin escarificación, lijado de las semillas y ruptura de la testa con valores de 15.4, 13.4 y 9.2 cm respectivamente.

Cabe señalar que la mayor longitud radicular se encontró en el tratamiento sin escarificar para el nivel b₃ con un valor de 17.3 cm. Asimismo, se encontraron los tratamientos sin escarificar y lijado de las semillas en b₂ y b₄ mostraron resultados entre 15.4 cm a 16.8 cm considerándose tratamientos de importancia para el tratamiento de las semillas de majo, se plantea entonces que el crecimiento de la radícula se ve afectada por el desarrollo temprano del embrión provocada por el lijado e inmersión de las semillas.

El tratamiento ruptura de la testa mostro los valores más bajos en todos los niveles de B esto se debe que las semillas son extremadamente susceptibles al factor A y que influyen en el desarrollo tardío del embrión provocando un retraso en el crecimiento radicular.

**5.3.7 Diámetro del cuello de la raíz**

Para el análisis de varianza de diámetro de cuello de raíz se efectuó un muestreo de 3 plantines por cada tratamiento durante 43 días para Asaí (*Euterpe precatoria* M.) y 64 días para Majo (*Oenocarpus bataua* M.) tomando los datos en un intervalo de 15 días para la medición se hizo uso del flexometro.
a) Asaí (*Euterpe precatoria* M.)

Se observa el análisis de varianza diámetro de la raíz principal Asaí (*Euterpe precatoria* M.) presenta diferencias estadísticamente significativas (α = 0.05).

En el cuadro 43 el análisis de varianza revela que el coeficiente de variación es de 3.98% el cual se encuentra por debajo de 30% con lo cual se ostenta que los datos son confiables.

**Cuadro 43. Análisis de varianza para diámetro de tallo de Asaí**

<table>
<thead>
<tr>
<th>Fuente de Varianza</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>0.0405</td>
<td>0.02</td>
<td>2.46</td>
<td>0.113 NS</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>0.06</td>
<td>0.028</td>
<td>4.68</td>
<td>0.089 NS</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>0.024</td>
<td>0.0061</td>
<td>0.74</td>
<td>0.576</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>0.084</td>
<td>0.028</td>
<td>3.42</td>
<td>0.039 *</td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>0.067</td>
<td>0.011</td>
<td>1.36</td>
<td>0.283 NS</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>0.15</td>
<td>0.0082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 3.985%

NS = No significativo

** = Significativo al nivel de 5%

Para la fuente de variación se acepta la hipótesis de igualdad entre bloques o bien indicamos que no hay diferencias significativas entre los bloques entonces indicamos que no se ganó eficiencia al bloquear las unidades experimentales. La significancia del factor A (escarificación mecánica) revela que no es significativo es decir que no existen diferencias significativas entre tratamientos, de la misma manera para la interacción de ambos factores, sobre el asunto inferimos que la escarificación mecánica no influyen en la variable diámetro de raíz. Acorde al análisis de la varianza existe diferencia significativa por el efecto del factor B (tiempos de inmersión lo que indica que al menos uno de los tratamientos tiene un promedio diferente. En este sentido se comprende que el agua al permanecer suficiente tiempo ejerce el estímulo en la semilla y se inicia el crecimiento y desarrollo prematuro de la radícula.
- **Efecto de los tiempos de inmersión en el diámetro de la raíz**

Según el análisis del cuadro 43 en relación al factor B (tiempos de inmersión) se muestra que existe diferencias estadísticas con la prueba de Duncan a un nivel de significancia del 5%

**Cuadro 44. Prueba de Duncan, diámetro de raíz para tiempos de inmersión**

<table>
<thead>
<tr>
<th>TIEMPOS DE INMERSION</th>
<th>DIAMETRO (mm)</th>
<th>DUNCAN (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₃ = 48 horas en agua natural</td>
<td>2.35</td>
<td>A</td>
</tr>
<tr>
<td>b₂ = 24 horas agua natural</td>
<td>2.26</td>
<td>A B</td>
</tr>
<tr>
<td>b₁ = 0 horas</td>
<td>2.26</td>
<td>A B</td>
</tr>
<tr>
<td>b₄ = 0.25 horas en agua a 50°C</td>
<td>2.22</td>
<td>B</td>
</tr>
</tbody>
</table>

mm = milímetro

Conforme a la prueba de Duncan del cuadro 44 el tiempo de inmersión por 48 horas es el que expone la mejor respuesta en la variable diámetro de la raíz con 2.35 mm, debido a que las semillas fueron expuestas a 48 horas de inmersión entonces indicamos que las semillas hidratadas son más susceptibles al desarrollo temprano y crecimiento del sistema radicular Por otro lado el tiempo de inmersión en agua a 50°C revelo un promedio de 2.22 mm siendo el valor más bajo del experimento para la variable diámetro de la raíz. De esta manera las semillas que fueron expuestas en agua a 50°C por un tiempo de 0.25 horas no influye en el desarrollo del engrosamiento de la raíz principal esto se debe que el crecimiento de la semilla es tardío.

Delgado (1999) citado por Cruz, (2009), señala que el diámetro del cuello de la raíz para todas las especies indica el vigor de la plántula para su desarrollo, que es lo que se busca en toda producción vegetal.

Escobar (2007), considera que es importante la estructura del sistema radicular y en él, el número de raíces laterales principales y raíces secundarias inferiores a un mm de diámetro o fibrosidad del sistema radicular, factor determinante en el comportamiento de las plantas en terreno, dentro de un rango de diámetro
b1 = 0 horas de inmersión  
b2 = 24 horas de inmersión en agua natural  
b3 = 48 horas de inmersión en agua natural  
b4 = 15 minutos de inmersión en agua a 50°C

**Grafico 32.** Comparación diámetro de la raíz de asáí entre tiempos de inmersión

- **Diámetro de raíz de asáí por efecto de la interacción de factores**

**Grafico 33** Interacción de los factores en el diámetro de raíz de Asáí

Observando el grafico 33 se determina que el T₉ (Ruptura de la testa vs 0 horas de inmersión) es la que obtuvo el mayor promedio de respecto al diámetro de la raíz con 2.58, mientras que los otros tratamientos tienen un comportamiento similar entre sí.
b) Majo (*Oenocarpus bataua* M.)

En el cuadro 45 apunta que el análisis de varianza establece que existen diferencias significativas al 5% de probabilidad.

En análisis de varianza revela un coeficiente de variación 5.31% con el cual se puede afirmar que el experimento tuvo un carácter homogéneo en las unidades experimentales.

**Cuadro 45. Análisis de varianza para el diámetro de la raíz de Majo**

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F - Valor</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>2</td>
<td>0.035</td>
<td>0.0175</td>
<td>0.9</td>
<td>0.4224 NS</td>
</tr>
<tr>
<td>Escar. Mecánica</td>
<td>2</td>
<td>0.30</td>
<td>0.151</td>
<td>5.84</td>
<td>0.0651 NS</td>
</tr>
<tr>
<td>Error A</td>
<td>4</td>
<td>0.103</td>
<td>0.025</td>
<td>1.33</td>
<td>0.2952</td>
</tr>
<tr>
<td>Tiempos de inmersión</td>
<td>3</td>
<td>0.072</td>
<td>0.024</td>
<td>1.24</td>
<td>0.3231 NS</td>
</tr>
<tr>
<td>E. mec. Vs T. Inmersión</td>
<td>6</td>
<td>0.049</td>
<td>0.008</td>
<td>0.43</td>
<td>0.8521 NS</td>
</tr>
<tr>
<td>Error B</td>
<td>18</td>
<td>0.35</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corregido</td>
<td>35</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 5.316%
NS = No significativo

En el cuadro 45 de acuerdo al análisis de varianza para diámetro de raíz se observó que no existe diferencias significativas para bloques por consiguiente se acepta la hipótesis de igualdad entre bloques. Por tanto no se ano eficiencia al bloquear las unidades experimentales. Por otra parte se puede afirmar que no se encontró diferencias significativas en la escarificación mecánica, también no existe diferencias significativas en los tiempos de inmersión, de igual manera en la interacción de los factores. Por lo tanto indicamos que los distintos tratamientos no influyen en el desarrollo y engrosamiento de la raíz.

**5.4 Variables económicas**

**5.4.1 Costos parciales de producción de Asáí (*Euterpe precatoria* M.)**

Para el análisis del beneficio costo para la producción de plantines de asáí se consideró los costos de producción, ingreso bruto, ingreso neto, y la relación beneficio costo como se puede ver en el cuadro 46.
Cuadro 46 Presupuesto parcial sobre la aplicación de tratamientos pres germinativos en semillas de Asaí para la producción de plantines en Bs.

<table>
<thead>
<tr>
<th>Tratamientos pregerminativos</th>
<th>pl/m2</th>
<th>Rnd ajustado pl/m2</th>
<th>Beneficio bruto</th>
<th>Costos variables</th>
<th>Beneficio neto</th>
<th>B/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (a1b1)</td>
<td>25</td>
<td>23</td>
<td>90.7</td>
<td>116</td>
<td>-25.3</td>
<td>0.8</td>
</tr>
<tr>
<td>T2 (a1b2)</td>
<td>83</td>
<td>75</td>
<td>298.3</td>
<td>116.85</td>
<td>181.4</td>
<td>2.6</td>
</tr>
<tr>
<td>T3 (a1b3)</td>
<td>83</td>
<td>75</td>
<td>298.3</td>
<td>118</td>
<td>180.3</td>
<td>2.5</td>
</tr>
<tr>
<td>T4 (a1b4)</td>
<td>91</td>
<td>82</td>
<td>328.9</td>
<td>119.22</td>
<td>209.6</td>
<td>2.8</td>
</tr>
<tr>
<td>T5 (a2b1)</td>
<td>75</td>
<td>67</td>
<td>269.6</td>
<td>132.5</td>
<td>137.1</td>
<td>2.0</td>
</tr>
<tr>
<td>T6 (a2b2)</td>
<td>83</td>
<td>75</td>
<td>298.3</td>
<td>133.3</td>
<td>165.0</td>
<td>2.2</td>
</tr>
<tr>
<td>T7 (a2b3)</td>
<td>83</td>
<td>75</td>
<td>298.3</td>
<td>134</td>
<td>164.3</td>
<td>2.2</td>
</tr>
<tr>
<td>T8 (a2b4)</td>
<td>75</td>
<td>67</td>
<td>269.6</td>
<td>135.2</td>
<td>134.4</td>
<td>2.0</td>
</tr>
<tr>
<td>T9 (a3b1)</td>
<td>30</td>
<td>27</td>
<td>109.2</td>
<td>125.25</td>
<td>-16.0</td>
<td>0.9</td>
</tr>
<tr>
<td>T10 (a3b2)</td>
<td>30</td>
<td>27</td>
<td>109.2</td>
<td>126.05</td>
<td>-16.8</td>
<td>0.9</td>
</tr>
<tr>
<td>T11 (a3b3)</td>
<td>30</td>
<td>27</td>
<td>109.2</td>
<td>126.75</td>
<td>-17.5</td>
<td>0.9</td>
</tr>
<tr>
<td>T12 (a3b4)</td>
<td>30</td>
<td>27</td>
<td>109.2</td>
<td>127.95</td>
<td>-18.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Del cuadro 46 en la primera columna se observan los tratamientos pre germinativos (Métodos de escarificación Vs tiempos de inmersión).

En la segunda columna se muestra el rendimiento de plantas obtenido por cada tratamiento, se puede observar que existe mayor rendimiento promedio del T₄ (Sin escarificar vs 15 minutos de inmersión en agua a 50°C) con 91 pl/m²,

En la tercera columna se observa el rendimiento promedio ajustado con un decremento del 10 % para todos los tratamientos de acuerdo a la recomendación de CIMMYT (1988).

En la cuarta columna se distingue los beneficios brutos de los rendimientos de cada tratamiento, por el valor de cada plantín en vivero de 4 bs/pl para los tratamientos, aquel tratamiento que obtuvo mayor beneficio bruto fue T₄ (Sin escarificar vs 15 minutos de inmersión en agua a 50°C), la quinta columna se observa el total de los costos variables en la aplicación de cada tratamiento.
A sí mismo se determinó que el T₄ (Sin escarificación Vs 15 minutos de inmersión en agua a 50°C) T₂ (Sin escarificación Vs 24 horas de inmersión) y T₃ (Sin escarificación Vs 48 horas de inmersión en agua) son los que comparativamente mejores resultados respecto a la relación beneficio costo son de 2.8, 2.6, 2.5 respectivamente lo cual significa que durante el proceso productivo por cada boliviano invertido se obtiene 1.8, 1.6, 1.5 siendo este resultado una proporción bastante significativa.

También podemos observar el menor beneficio costo obtenido en los tratamientos pregerminativos T1 (testigo) y T12 (ruptura de la testa Vs 15 minutos de inmersión en agua a 50°C) en esta situación el costo elevado y el beneficio/costo es menor, debido a que se invierte mayor mano de obra y los rendimientos de estos tratamientos no presentan significancia respecto a la producción de plantines.

5.4.2 Costos de producción de majo (*Oenocarpus bataua* M.)
En cuanto al análisis del beneficio costo para la especie de Majo se consideraron rendimiento ajustado, beneficio bruto, costos de producción, ingreso bruto, ingreso neto y la relación beneficio costo.

**Cuadro 47** Presupuesto parcial sobre la aplicación de tratamientos pre germinativos en semillas de Majo para la producción de plantines en Bs

<table>
<thead>
<tr>
<th>Tratamiento pregerminativos</th>
<th>Rendimiento pl/m²</th>
<th>Rnd ajustado pl/m²</th>
<th>Beneficio bruto</th>
<th>Costos variables</th>
<th>Beneficio neto</th>
<th>B/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (a1b1)</td>
<td>33</td>
<td>30</td>
<td>119</td>
<td>117</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>T2 (a1b2)</td>
<td>95</td>
<td>86</td>
<td>342</td>
<td>118</td>
<td>224</td>
<td>2.9</td>
</tr>
<tr>
<td>T3 (a1b3)</td>
<td>91</td>
<td>82</td>
<td>328</td>
<td>119.3</td>
<td>208</td>
<td>2.7</td>
</tr>
<tr>
<td>T4 (a1b4)</td>
<td>95</td>
<td>86</td>
<td>342</td>
<td>120.52</td>
<td>221</td>
<td>2.8</td>
</tr>
<tr>
<td>T5 (a2b1)</td>
<td>100</td>
<td>90</td>
<td>360</td>
<td>133.8</td>
<td>226</td>
<td>2.7</td>
</tr>
<tr>
<td>T6 (a2b2)</td>
<td>99</td>
<td>89</td>
<td>356</td>
<td>134.6</td>
<td>222</td>
<td>2.6</td>
</tr>
<tr>
<td>T7 (a2b3)</td>
<td>100</td>
<td>90</td>
<td>360</td>
<td>135.3</td>
<td>225</td>
<td>2.7</td>
</tr>
<tr>
<td>T8 (a2b4)</td>
<td>89</td>
<td>80</td>
<td>320</td>
<td>136.5</td>
<td>184</td>
<td>2.3</td>
</tr>
<tr>
<td>T9 (a3b1)</td>
<td>53</td>
<td>48</td>
<td>191</td>
<td>126.55</td>
<td>64</td>
<td>1.5</td>
</tr>
<tr>
<td>T10 (a3b2)</td>
<td>49</td>
<td>44</td>
<td>176</td>
<td>127.35</td>
<td>49</td>
<td>1.4</td>
</tr>
<tr>
<td>T11 (a3b3)</td>
<td>39</td>
<td>35</td>
<td>140</td>
<td>128.05</td>
<td>12</td>
<td>1.1</td>
</tr>
<tr>
<td>T12 (a3b4)</td>
<td>31</td>
<td>28</td>
<td>112</td>
<td>129.25</td>
<td>-18</td>
<td>0.9</td>
</tr>
</tbody>
</table>
El análisis del cuadro 47 demuestra en la primera columna la interacción de tratamientos pre germinativos (Escarificación mecánica vs tiempos de inmersión) segunda columna se observa el rendimiento medio de plantines de producidos en el cual se puede incidir que hay un mayor rendimiento medio del T5 (Lijado Vs 0 horas de inmersión) y T7 (Lijado Vs 48 horas de inmersión en agua) con valores de 100 plantines seguido del T6 (Lijado Vs 24 horas de inmersión en agua) con 99 plantines.

En la tercera columna se observa el rendimiento ajustado en el cual se ajustó el rendimiento obtenido con un 10% de decremento al rendimiento observado, de acuerdo a las recomendaciones de CIMMYT (1988)

En la siguiente columna se presentan los beneficios brutos, el mismo se obtuvo de los rendimientos ajustados por el precio de venta de los plantines 4 bs/pl, para obtener el beneficio bruto se descontaron los gastos de producción de cada tratamiento, se puede observar que el mayor beneficio bruto son los tratamientos que presentaron mayores rendimientos T5, T7, T6. Por otro lado el más alto beneficio neto alcanzado corresponde al T5 que logró un beneficio de 226 Bs.

Podemos establecer que el T2 Sin escarificar Vs 24 horas de inmersión en agua) seguido del T4 (Sin escarificación Vs 15 minutos de inmersión en agua a 50°C) presentaron la mayor relación beneficio costo con 2.9, 2.8 respectivamente lo cual establece que durante el proceso productivo por cada boliviano gastado se obtiene 1.9, 1.8 bolivianos respectivamente resultando ser una proporción bastante favorable.

Asimismo, el menor beneficio costo se presentó en el tratamiento T12 (Ruptura de la testa vs 15 minutos de inmersión en agua a 50°C) con 0.9 donde se puede inferir que el costo es elevado y el beneficio costo es menor debido que presenta rendimientos no significativos en la producción de plantines.
6 CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

De acuerdo a los objetivos específicos en la presente investigación y con los resultados obtenidos bajo la aplicación de los diferentes tratamientos pre germinativos en las semillas de Asaí y Majo se llegaron a las siguientes conclusiones

El análisis del peso de 100 semillas:

En cuanto a las semillas de Asaí (*Euterpe precatoria* M.) los seis ensayos que se realizaron se obtuvo un promedio 1042 semillas por kilogramo, así también las semillas de majo (*Oenocarpus bataua* M.) obtuvieron un promedio 203 semillas por kilogramo.

Análisis del porcentaje de emergencia

De acuerdo al análisis del porcentaje de emergencia para las semillas de Asaí (*Euterpe precatoria* M.) el T4 (sin escarificación Vs 0.25 horas de inmersión en agua a 50°C) con un promedio de 87% no obstante el T6 (lijado Vs 24 horas de inmersión en agua natural) expresa un promedio de 83% de emergencia, en cuanto al T1 (testigo) revela el menor promedio con 24% de emergencia. En definitiva la aplicación de los tratamientos pre germinativo se obtiene mayor cantidad de semillas emergidas y una producción más homogénea.

Según el análisis para las semillas de majo (*Oenocarpus bataua* M.) el T5 (lijado Vs 0 horas de inmersión en agua natural) con un promedio de 95.3% esta combinación fue ideal para el crecimiento homogéneo. En cambio el T12 (Ruptura de la semilla Vs 0.25 hora de inmersión en agua a 50°C) siendo este el promedio más deficiente del estudio este resultado refleja el alta sensibilidad de los embriones de esta palma a una temperatura de 50°C.

Días a la emergencia

En cuanto a los días a la emergencia, el tratamiento T6 ( lijado de las semillas con 24 horas de inmersión en agua) alcanzo el menor tiempo con 23 días en comparación al T1.
(testigo) con 46 días seguido de las semillas que sufrieron la ruptura en la testa con 50 días a la emergencia.

En cuanto a las semillas de majo el $T_6$ (Lijado de las semillas con 24 horas de inmersión en agua) alcanzo el periodo más corto con 40.6 días desde la siembra en comparación al testigo $T_1$ con 58.6 días.

Análisis de altura de plantín

Con referencia a las semillas de Asaí (*Euterpe precatoria* M.) en la variable altura de planta (cm) se identificaron promedios altos en los tratamientos $T_2$ (Sin escarificar Vs 24 horas de inmersión en agua natural) seguido del $T_5$ (Lijado Vs 0 horas de inmersión) con valores de 13 cm, 12.78 cm respectivamente estos no expresan diferencias significativas con el resto de los tratamientos e indica a sí mismo que el testigo obtuvo el promedio más bajo con 9.7 cm, sin duda los tratamientos influyen en la velocidad de crecimiento y desarrollo de los plantines.

El análisis de varianza para la variable altura de plantín en la semilla de Majo (*Oenocarpus bataua* M.) se concluyó que la mejor respuesta en la zona se obtuvo con el tratamiento $T_6$ (Lijado Vs 24 horas de inmersión en agua natural) seguido del $T_3$ (Sin escarificar Vs 48 horas de inmersión en agua natural) con valores de 22.02 cm y 21.7 cm respectivamente ya que estas semillas logran adquirir más agua para su desarrollo fisiológico, en comparación con el $T_1$ (testigo) que demuestra un promedio bajo en su análisis con 15.22 cm, en definitiva los tratamientos ejercen un efecto en el crecimiento y desarrollo de los plantines de Majo.

Asimismo, al comportamiento propio de la especie en vivero, determinado por sus características genéticas y su respuesta a las condiciones medio ambientales en las que se desarrollaron debemos considerar que la temperatura, humedad, disponibilidad de agua y el sustrato adecuado, sin duda ayudaron a lograr un mayor desarrollo en los órganos de los plantines.
Análisis de diámetro de tallo

Con respecto a la variable diámetro de tallo de (*Euterpe precatoria* M.) se obtuvo un promedio mayor de 4 mm con el T₄ (Sin escarificación Vs 15 min de inmersión en agua a 50 °C) no existe diferencias significativas con el T₂ (Sin escarificación Vs 24 horas de inmersión en agua natural) con un valor de 3.9 mm debido a que existe un proceso rápido de engrosamiento del tallo, por el contrario se distingue como el menor promedio 3.55 mm que corresponde al T₁₂ (Ruptura de la testa Vs 15 minutos de inmersión en agua a 50°C) teniendo en cuenta que la exposición de las semillas a cierta temperatura no reflejan respuestas favorables respecto a la variable diámetro de tallo.

Acerca del diámetro de tallo de la especie (*Oenocarpus bataua* M.) sucede pues que la combinación de el T₂ (Sin escarificación Vs 24 horas de inmersión en agua natural) con 5.6 mm subscribe el mayor promedio, por el contrario el valor de 4.9 mm que corresponde al T₉ (ruptura de la testa Vs 0 horas de inmersión) expresa el menor valor respecto a la variable en cuestión, de estas evidencias indicamos que los tratamientos ejercen un efecto en el desarrollo del plantín.

Entonces podemos concluir que cuando hay mayor diámetro del tallo y mayor altura de crecimiento es más vigorosa el plantín, en caso contrario la planta es menos vigorosa.

Análisis de longitud de raíz principal.

Con relación a la semilla de Asaí (*Euterpe precatoria* M.) Se concluye que la combinación del T₂ (Sin escarificación Vs 24 horas de inmersión en agua natural) refleja la mayor longitud de raíz principal con 17.01 cm, en cambio la combinación del T₁₂ (Ruptura de la testa Vs 15 minutos de inmersión en agua a 50°C) expresa un valor de 13.02 cm siendo la de menor longitud en la raíz principal, lo anteriormente expuesto nos indica que el proceso de hidratación influye en el desarrollo fisiológico de la raíz

Respecto a la semilla de Majo (*Oenocarpus bataua* M.) se plantea que el T₇ (Lijado Vs 48 horas de inmersión en agua natural) obtuvo un promedio de 22.07 cm siendo este el mejor promedio radicular en segunda instancia el T₁₂ (Ruptura de la testa Vs 15 minutos de inmersión en agua a 50°C) establece el promedio más bajo con 11.95 cm, en
definitiva es importante la hidratación de las semillas de majo por un periodo de 48 horas.

Longitud de raíz secundaria.

En cuanto a la longitud radicular secundaria para el Asaí (*Euterpe precatoria* M.) la variable tiene una respuesta efectiva con la combinación del T$_2$ (Sin escarificar Vs 24 horas de inmersión en agua natural) se logró alcanzar un valor de 13 cm así pues la imbibición de agua por parte de las semillas influye en el desarrollo de fisiológico del sistema radicular, ahora bien el T$_1$ (testigo) y el T$_9$ (ruptura de la testa Vs 0 horas de inmersión) reflejan los promedios más bajos respecto a la variable con valores de 8 cm y 7.96 cm respectivamente.

A continuación el análisis de varianza respecto a la variable longitud de raíz secundaria para el Majo (*Oenocarpus bataua* M.) demostró diferencias estadísticas con el T$_3$ (Sin escarificar Vs 48 horas de inmersión en agua natural) con un valor de 17.44 cm seguido del T$_2$ (Sin escarificaciones Vs 24 horas de inmersión en agua natural) con un promedio de 16.88 cm. en síntesis la hidratación de las semillas por un periodo favorecen al desarrollo de la raíz secundaria. En cambio la semillas que no fueron expuestas a ningún tratamiento obtuvieron un promedio de 7.88 cm de longitud de raíz secundaria T$_1$ (Testigo).

El efecto de los tratamientos pre germinativos realizado a la semilla de Asaí (*Euterpe precatoria* M.) respecto a la variable diámetro del cuello de la raíz refleja un comportamiento diferenciado en el T$_9$ (Ruptura de la testa Vs 0 horas de inmersión) con un promedio de 2.58 mm en cambio los distintos tratamientos no expresan diferencias significativas entre los mismos.

En la variable diámetro de raíz para la especie Majo (*Oenocarpus bataua* M.) el tratamiento T$_6$ (Lijado Vs 24 horas de inmersión en agua natural) coadyuvo en el engrosamiento de las raíz alcanzando un promedio de 2.76 mm seguido del T$_7$ (Lijado Vs 48 horas de inmersión en agua natural) con 2.75 mm, sin duda la hidratación de las semillas ayudan al engrosamiento de la raíz. Por otra parte el T$_9$ (Ruptura de la testa Vs...
0 horas de inmersión) en su análisis expresa el valor más bajo respecto a esta variable con 2.45 mm.

Finalmente se concluye que la comparación de los costos de los tratamientos pregerminativos en las semillas de asaí (*Euterpe precatoria* M.) se observó una mejor relación beneficio costo de 2.8 en el T4. De la misma manera el análisis de costos parciales para las semillas de majo (*Oenocarpus bataua* M.) indican que el tratamiento T2 (Sin escarificación vs 24 horas de inmersión en agua) obtuvo el valor más alto en beneficio costo con 2.9

**6.2 Recomendaciones**

De acuerdo a la experiencia y conclusiones adquiridas en este estudio se realiza las siguientes recomendaciones para trabajos posteriores.

Es recomendable aplicar el tratamiento de remojo en agua natural (ambiente) por un periodo de 24 o 48 horas, ya que no se diferencia demasiado del de escarificación con lija, pero implica menos esfuerzo y es una práctica más sencilla.

No se recomienda realizar la escarificación ruptura de la testa, esta práctica en época húmeda provoca pudrimientos en la fisura de la semilla por el exceso de humedad.

Se recomienda realizar las investigaciones enfocadas en periodos de remojo con productos químicos como el hidróxido de sodio, ácido giberelico, utilización de hormonas y técnicas de estratificación.

Se recomienda elaborar proyectos de reforestación para la preservación in situ de las especies no maderables de primera calidad, para tener un recurso natural renovable a largo plazo y que se asegure la producción sostenible en el futuro del potencial forestal que tiene esta región amazónica del departamento de La Paz.

Se recomienda llevar a cabo investigaciones con otras variedades como la *Euterpe Oleracea* que podrían servir para repoblar de una manera más eficaz, a razón de que esta es una variedad que macolla.
Se recomienda trabajar con el municipio, implementar viveros forestales con especies no maderables y maderables como el asaí (Euterpe precatoria M.) Majo (Oenocarpus bataua M.) serebo (Schizolobium parahyba) mara (Switenia macrophyla) teca (Tectona grandis) y otros, los mismos que se asociación con los cultivos agrícolas.

Por último se recomienda incentivar la actividad forestal, promoviendo la implementación de viveros forestales orientados a la producción y manejo de plantines, para incrementar y diversificar la población forestal en la amazonia boliviana.
7 BIBLIOGRAFÍA


Bonifacio, A. & María Cayoja (2001). Tratamiento de semillas y multiplicación de “la espina de mar” (*Hippophae rhamnoides*) confines de introducción en Bolivia. Instituto Benson. La Paz – Bolivia


Chilon, E. (1997), Guía de fertilidad de suelos. UMSA. La Paz, Bolivia

Cruz, C. (2009), Efecto de tres pre – tratamientos en la germinación y crecimiento inicial en vivero de tres especies forestales en Patacamaya. Tesis de grado para obtener el grado de licenciatura. Universidad Mayor de San Andrés. Facultad de Agronomía. La Paz Bolivia


Dulfus, C.; Slaugther, C. (1988) Las semillas y sus usos. 1 ed. AGT Editor S.A. 188p


Luca, N. (s/f) Características de las semillas, tratamientos pregerminativos técnicas de recolección y almacenamiento (En línea) Consultado [https://cursoreforestacion.files.wordpress.com/2010/05/tecnicas-y-tratamientos-pregerminativos.pdf](https://cursoreforestacion.files.wordpress.com/2010/05/tecnicas-y-tratamientos-pregerminativos.pdf)


Moreno Suarez. L.; Moreno Suarez O. (2006) Colección de las Palmeras de Bolivia Palmae – Arecaceae Ed. FAN. Santa Cruz - Bolivia


Tesis de grado para obtener el título de licenciado en Ingeniería Agronómica La Paz Bolivia 60p


8 ANEXOS
Fotografías complementarias a la investigación:

Centro Experimental Santa Rosita

Construcción del vivero

Semillas de Majo y Asai

Preparación del sustrato

Desinfección del sustrato

Llenado de bolsitas
Aplicación de tratamientos
Siembra de semillas de
Emergencias de las semillas
Medición de la altura
Raiz de Majo
Unidades experimentales del estudio